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Abstract

In this article we show that the series resonant DC/DC converter, which is a hybrid system,
is piecewise differentially flat with a flat output which is invariant with respect to the structural
changes undergone by the system evolution. This fact considerably simplifies the design of a
switching output feedback controller that can be essentially solved by linear techniques. Flatness
clearly explains all practical issues associated with the normal operation of the converter.

1 Introduction

In aim of the present paper is to present an alternative approach to the regulation problem of a pop-
ular DC/DC power converter, known as the series resonant converter (SRC ), from the combined
perspective of differential flatness and hybrid systems. The converter is a variable structure system
with a linear controllable model in each one of the two locations, or regions, of the systems hybrid
state space. On each constitutive location of the corresponding hybrid automaton the system is
thus represented by a flat system. The flat output expression of the system, in terms of the state
variables, is distinctively marked by the hybrid character of the system. However, the differential
relation existing between the flat output and the control input is invariant throughout the set of
locations. By resorting to flatness, one clearly shows that the circuit variables which are required
to achieve resonance (i.e., sinusoidal oscillatory behavior) also exhibit invariant differential param-
eterizations, in terms of the flat output. These two facts considerably simplify the hybrid controller
design problem for both the start up phase and the steady state energy set point regulation phase
of the converter. The regulation of the steady state oscillations entitle switchings on a hyperplane
whose synthesis requires knowledge of the resonant state variables. Furthermore, by designing a
prototype, we show explicitly that ours theoretical and experimental results are in good agreement.
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2 The series resonant DC/DC power converter

Resonant converters have been the object of sustained interest throughout the last two decades.
Roughly speaking, the controller design for such hybrid systems has been approached from different
viewpoints including: an approximate DC viewpoint, a phase plane approach, averaging methods
defined on phasor variable methods and, more recently, from a passivity based approach.

Approximate analysis, based on DC considerations, was undertaken in Vorpérian and Cúk [1],
[2]. These tools are rather limited given the hard nonlinear nature of the converter. Control
strategies based on state variable representations were initiated in Oruganti and Lee in [3], [4].
These techniques were clearly explained later, on a simplified converter model, in Rossetto [5]. An
optimal control approach was developed in Sendanyoye et al [6] and a similar approach was reported
in the work of Oruganti et al [7]. Several authors have also resorted to either exact or approximate
discretization strategies as in Verghese et al [8] and in Kim et al [9]. A phasor transformation
approach was provided in the work of Rim and Cho [10], which is specially suited for DC to DC
conversion. An interesting averaging method, based on local Fourier analysis, has been presented
in an article by Sanders et al [11]. These frequency domain approximation techniques have also
found widespread use in other areas of power electronics. Using this approach, approximate schemes
relying on Lyapunov stability analysis and the passivity based control approach, have been reported,
respectively, in the works of Stankovic et al [12] and Escobar [13].

Our approach is fundamentally based in the concept of differential flatness introduced ten year
ago in [14] (see also [15]). The flatness property, exhibited by many systems of practical interest, is
here exploited to obtain, from its simple linear dynamics, suitable estimates of the converter state
variables by means of linear design techniques.

3 The resonant DC/DC converter nonlinear model

3.1 The converter’s nonlinear model

In Figure 1 we show a simplified nonlinear circuit representing the series resonant DC/DC power
converter. A direct computation shows that the controlled nonlinear differential equations modelling
the circuit are given by [12]

L
di

dt
= −υ − υosign (i) + E (t)

C
dυ

dt
= i

Co
dυo

dt
= abs (i) − υo

R
− Io (3.1)

where υ and i are, respectively, the series capacitor voltage and the inductor current in the resonant
series tank, while υo is the output capacitor voltage feeding both the load R and the sink current
Io which, for simplicity, we assume to be of value zero. The input to the system is E (t), which is
usually restricted to take values in the discrete set {−E,E} where E is a fixed given constant.

The objective is to attain a nearly constant voltage across the load resistance R on the basis of
the rectified, and low-pass filtered, sinusoidal inductor current signal internally generated by the
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system in the L, C series circuit with the suitable aid of the amplitude restricted control input
signal.

Defining the scaling state space and time transformation,
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E 0
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i

υ
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 , τ =

t√
LC

(3.2)

One readily obtains the following normalized model of the resonant circuit equations (3.1).

ż1 = −z2 − z3sign (z1) + u

ż2 = z1

αż3 = abs (z1) − z3

Q
(3.3)

where, abusing the notation, the symbol: “ · ” now represents derivation with respect to the scaled
time, τ . The variable, u, is the normalized control input, necessarily restricted to take values in the
discrete set, {−1,+1}. The parameter Q, defined as Q = R

√
C/L, is known as the quality factor

of the circuit, while the constant, α, is just the ratio, α = Co/C.
The normalized resonant converter may then be represented as the hybrid automaton shown in

Figure 2 (see Van der Schaft and Schumacher in [16]).

3.2 Differential flatness of the hybrid converter

We propose to view the normalized converter system dynamics (3.3) as constituted by a hybrid
combination of two linear controllable (i.e., differentially flat) systems, each one characterized by a
corresponding flat output. Consider then the following pair of controllable linear systems, derivable
from the system model for the instances in which z1 > 0 and z1 < 0, respectively.

for z1 > 0

ż1 = −z2 − z3 + u

ż2 = z1

αż3 = z1 − z3

Q

for z1 < 0

ż1 = −z2 + z3 + u

ż2 = z1

αż3 = −z1 − z3

Q

Indeed, on each state space location the system is constituted by a controllable and, hence,
differentially flat system. As a result, there exists, in each case, a flat output y which is a linear
combination of the state variables. Such outputs allow for a complete differential parameterization
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of each local representation of the system. The flat output variables are given by,

y = z2 − αz3 ; for z1 > 0

y = z2 + αz3 ; for z1 < 0

which have the physical meaning, respectively, of being proportional to the difference and the sum
of the instantaneous stored charges in the series capacitor, C, and the output capacitor, Co.

One readily obtains the following differential parameterization of the constitutive system variables
in each case

for z1 > 0

z3 = Qẏ

z2 = y + αQẏ

z1 = ẏ + αQÿ

u = αQy(3) + ÿ + Q (1 + α) ẏ + y

for z1 < 0

z3 = −Qẏ

z2 = y + αQẏ

z1 = ẏ + αQÿ

u = αQy(3) + ÿ + Q (1 + α) ẏ + y

The key observations, on which our control approach is based, are the following:

• The differential parameterizations associated with the flat outputs lead to the same differential
relation between the flat output, y, and the control input u. In other words, independently
of the region of the state space of the underlying hybrid system, the flat output satisfies the
dynamics,

αQy(3) + ÿ + Q (1 + α) ẏ + y = u (3.4)

• The normalized series capacitor voltage, z2, and the normalized inductor current, z1, (i.e.,
the resonant variables) also exhibit the same parameterizations in terms of the corresponding
flat output.

z2 = y + αQẏ, z1 = ẏ + αQÿ

These representations are, therefore, invariant with respect to the structural changes under-
gone by the system.

4 Design of a feedback control strategy

The operation of the series resonant converter undergoes two distinctive phases. The first one is
the start up phase in which the converter’s total stored energy is increased from the value zero
towards a suitable level. The second phase is the steady oscillation phase in which the resonant
condition is regulated to produce a desired resonant voltage amplitude value or, alternatively, an
approximately constant stored energy set-point level. Each phase requires of a different feedback
controller. Below, we exploit flatness to deal with the two control design phases. We assume
throughout that all the variables, are measurable.
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4.1 The start up feedback controller

The ideal control objective is to induce a sinusoidal behavior on the voltage variable z2. The relation
(3.4), reveals that the variable z2, coinciding everywhere with the quantity y + αQẏ, satisfies,

d2

dτ2
(y + αQẏ) + (y + αQẏ) + Qẏ = u (4.1)

A perfect sinusoidal behavior for the voltage, z2, would imply that the control input u should
exactly cancel the term, Qẏ = z3signz1, so as to render a closed loop dynamics represented by
the ideal oscillator: z̈2 + z2 = 0. Given the discrete-valued character of u ∈ {−1,+1}, such a
cancellation is not possible. Thus, at best, the control strategy may be specified as,

u (z1) = signz1 = sign (ẏ + αQÿ) (4.2)

It is clarifying to see the effect of the proposed feedback law on the total normalized stored energy
of the system, defined as

W (z) =
1
2

(
z2
1 + z2

2 + αz2
3

)

The time derivative of the normalized stored energy, i.e., the closed loop normalized instantaneous
power, is given by

Ẇ (z) = u (z1) z1 − z2
3

Q
= |z1| − z2

3

Q
(4.3)

The stored energy thus grows while the condition:

|z1| >
z2
3

Q (4.4)

is valid, and it decreases otherwise (see Figure 3). Since the variables of the converter are all
started from the zero value (i.e., from the zero energy level), the devised hybrid feedback control
law (4.2) is clearly useful in increasing the energy of the converter up to a certain desired level.

4.2 The steady state feedback regulator

Notice that if we insist in using the control strategy (4.2) for an indefinite period of time, the
resonant variables will stabilize to an approximately sinusoidal steady state behavior, characterized
by fixed maximum amplitude signals. We, thus, loose the possibilities of decreasing, or further in-
creasing, at will, both the operating energy level of the converter and the corresponding amplitudes
of the resonant variables. This would mean that the output voltage also remains approximately
constant. Therefore, the control law (4.2) should be suitably modified, right after a reasonable
intermediate level of stored energy is reached. The modification should be geared to recover some
degree of set point regulation around a prespecified operating energy level reference set-point.

A regulation strategy for the steady state oscillation phase consists in suitably changing from
the switching start up controller to a second switching controller that is capable of sustaining the
achieved oscillatory behavior of the resonant variables. This may be accomplished by choosing a
switching hyperplane different to z1 = 0. We propose to use a switching strategy based entirely on
the flat output y.
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Define σ = z1 − kz2 = αQÿ + ẏ − k (y + αQẏ), with k > 0 being a constant parameter, and
consider the switching strategy,

u = signσ = sign [αQÿ + ẏ − k (y + αQẏ)] (4.5)

It is easy to show that the switching policy (4.5) produces a stable oscillation in the reduced
phase space (z1, z2) = (ż2, z2) whose steady state amplitudes can be now calibrated in terms of the
design parameter k, representing the slope of the switching line in the plane (z1, z2). The differ-
ential parameterization provided by flatness also allows for a calibration of the resonant variables
amplitudes in terms of k.

5 Simulation and experimental results

In order to evaluate the validity of the proposed controls, these controls are implemented and tested
in conjunction with the full-bridge SRC operating in resonant frequency.

The following parameters are used in the experimental test bed. The inductance and capacitance
in the resonant tank circuit are L = 1.5mH, C = 10.6nF , respectively. This corresponds to a
resonant frequency of fr = 40KH. The capacitor in the output filter is Co = 1µF . A commercial
dc-voltage source is fixed to 48V in order to feed the SRC circuit. The robustness of the control
laws against disturbances introduced by this source has not been considered here. For the moment,
we assume that the dc voltage source provides a constant dc voltage level. The experimental setup
neither allows changes in the load resistance, it is 72Ω. The converter was designed to supply 25W
of power. Finally, the output voltage was designed to supply 42V . The given parameter values
result in α = 94.34 and Q = 0.1914.

5.1 Simulation results

Now, using relationship between normalized and real time

τ = t√
LC

(5.1)

we have the following:

τ = t√
LC

=
(
2.5078 × 105

)
t (5.2)

t =
√

LCτ =
(
3.9875 × 105

)
τ (5.3)

In simulations we used a sample period 2.5 × 10−7 s, which gives the normalized time

τ = t√
LC

= 62.696 × 10−3.

(In this subsection in all the figures t∗ = τ .)
Commutation between the two control strategies must be done when (4.4) is violated. However,

necessary hardware to verify this condition is huge. Hence, we have used an alternative criterion
to commute. From (4.3) we see energy increases while (4.4) is satisfied. Thus, it is simply a matter
of time before this condition is violated. We decided to commuted at t = 50.11 µs (τ = 12.57).
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Figure 4 shows behavior of state variables, control input, total power and oscillations in the
phase plane (z1, z2), when start up strategy is used alone.

Figure 5 depicts the combined used of start up and steady state oscillation strategies. This figure
was obtained assuming all required state variables used in feedback were measurable. We use the
value k = 1. Note steady state values of stored energy, corresponding resonant voltage amplitude
and resulting output voltage are now inferior to the corresponding ones obtained in Figure 4.

Figure 6 depicts several output voltage responses and power for different values of k. This
demonstrates steady state oscillation strategy allows to control the steady state value of output
voltage and the total stored energy. The corresponding phase plots are shown in Figure 7 for
k = 0, 1, 2, 5.

5.2 Prototype development

A block diagram is shown in Figure 8. We remark that there are three important blocks:

• Resonant-rectifier. It is made up of two components: 1) a series resonant circuit and 2) a
rectifier. The electric diagram is shown in Figure 9.

• Driver-inverter. It is made up of two components: 1) a driver and 2) an inverter. The core
of the first one is a IR2110 integrated circuit. It receives two complementary square waves
from the control block and uses them to appropriately trigger transistors of the inverter. The
second one consists of four power transistors connected in full-bridge configuration. Figure
10 shows the corresponding electric diagram.

• Control. In this block the control strategies are implemented using analog electronics. This
receives voltage and current signals (i and υ) from the resonant-rectifier block. It also includes
a delay circuit to avoid short circuits during power transistors commutation in the full-bridge.
The electric diagram is shown in the Figure 11.

Resonant-rectifier and driver-inverter blocks implementation is well known. See Kazimierczuk
and Czarkowski [17] for the former and Mohan et al, Steigerwald, and Nelms et al, in [18], [19] and
[20], for the latter. Hence in what follows we concentrated in the control block.

5.3 The control block

In this block we implement the control strategies (4.2) and (4.5) by means of analog electronics.
Using (3.2), equations (4.2) and (4.5) can be written as,

u (i) = sign (i) (5.4)

u (i, υ) = sign

[√
L
C i − kυ

]
. (5.5)

Control law (5.4) is implemented by using the circuit shown in Figure 11. CT is a current
transformer CS4050V−01 (see www.coilcraft.com). We have used RT = 50Ω which allows to have
1V in its terminals for each ampere in the primary winding. In (5.4) possible values of u (i) are
+1 and −1, meaning on/off, respectively. In Figure 11, Q1(t) represents u (i), whose only possible
values are 12V and 0V corresponding to +1 and −1, respectively.
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Implementation of control law (5.5) is done as shown in Figure 11. According to simulations we
obtained that υC reaches its maximum value is 450V , which is difficult to measure directly. Hence
we use voltage transformer (VT ) with ratio n = 1

10 , together with a potentiometer as a tension
divisor to have νx = 1

40υC (see Figure 11). Because of this voltage attenuation we have to do so
with current in order to keep correct proportions in (5.5). Hence we have

u (i, υ) = sign
[
9.14i − 1

40kυ
]

(5.6)

In Figure 11, Q2 represents u (i, υ) whose only possible values are 12V and 0V corresponding to
+1 and −1, respectively.

On the other hand, timer used to commute between control strategies (5.4) and (5.6) as well as
delay circuit are shown in Figure 13 and Figure 12, respectively. Finally, electric diagram of the
whole control block is shown in Figure 11 and picture of the whole SRC prototype is shown in
Figure 14.

5.4 Experimental results

In this section we present the experimental results achieved in the bank of test this is shown in
the Figure 14. We first presented, for the purposes of comparison, the response of the converter to
the start up feedback strategy applied for an indefinite period of time. In Figure 15 we show the
behavior of the state variables, the control input, the total power and the oscillations achieved in
the resonant variables phase plane (z1, z2). Observe that the experimental and simulated results
are in good agreement, see Figures 4.

Figure 16 depicts the combined start up and steady state oscillation phases of the feedback
regulation strategy. The figures also show the trajectory of the applied control input. We use the
value k = 1. Note that the steady state value of: the power, the resonant voltage amplitude and
the resulting output voltage are now inferior to the corresponding ones obtained by the application
of the start up feedback strategy alone, which are in good agreement with the results shown in
Figure 5.

Figure 17 depicts several output voltage responses and of the power for different values of the
parameter k.

6 Conclusions

In this article we have presented a flatness based approach for the regulation of a hybrid system
represented by the popular series resonant DC/DC converter. The system dynamics was shown to
be representable as a hybrid automaton undergoing structural changes on the common boundary of
two clearly identified regions of the state space. Each one of the constitutive dynamic systems of the
automaton happens to be differentially flat. The key feature that allows a simple approach to the
star up and steady state amplitude oscillation regulation phases of the converter is constituted by the
following facts: 1) The flat output, which, as in almost every case, has a clear physical interpretation,
exhibits a controlled dynamics relation which is invariant with respect to the system’s structural
changes. 2) The differential parameterizations of the resonant state variables, placed in terms of
the flat output, are also invariant with respect to the same structural changes. The practical
limitation which is related to fixed control input amplitudes is easily handled by the proposed
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approach. The effect of a bang-bang, or switching control input is easily analyzable on the flat
output linear dynamics.

The approach was illustrated by means of digital computer simulations and experimental re-
sults in the developed experimental test bench. Since differences between the simulation values
and the measured data are due to the winding resistances of the inductors and transformer, the
equivalent series resistance of the capacitors, the junction capacitances of the switching devices and
the resistances parasites that are neglected in the analysis. We conclude that the simulated and
experimental results that are in good agreement.
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différentiellement plats,” C.R. Acad. Sci. Paris , Série I, Mathématiques, 315 (1992), 619-
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12



i

v

vp (t)
1

p (t)
2

q (t)
2

q (t)
1 Q(t)

Figure 8: Diagram block of the SRC implemented.

+

-
E(t)

L C

L

D1

D2' D1'

D2

C R

A'

A B

B'

L

o

D

D'C'

C

CT
1
:1

0
VT

S

P

TR RP

Figure 9: Electric circuit of the resonant-rectifier block.

R

R

R

R

p (t)
1

2
p (t)

2
p (t)

1
p (t)

S
1

S'
2

E(t)

1
q (t)

q (t)
2

p (t)
1

p (t)
2

E(t)

IR2110

IR2110

Vcc

Vcc

+Vcc

-Vcc

V

V

V

V

S'
1

S
2

2
q (t)

q (t)
1

V

V

V

0 V

0 V

0 V

0 V

Figure 10: Electric circuit of the driver-inverter block.

13



10k

10k 50k

32k 50k

10k

1.1k

2150

2150

1k

10M
2.2k

2150

2150

+

-

-

+
+

-

-

+

12V

1.1kB'
B

A'

CT

A

+
TL082
-

C C'

VT

D

D'

TL082

1.1k

-

+

1.1k

TL082

TL082

TL082

LM311

x

a

b

c

i

v

+

-

TL082

1.1k

+

-

1.1k

25k

1k

-
LM311

+

10M
2.2k

12V

Pulse

counter

9.14Q (t) = sign( )i - 1/40 kv
2

Q (t) = sign( )
1 i

Q (t)
1

Q (t)
2

50

10k

dead
time

q (t)
1

q (t)
2

start up phase

Steady state oscillation phase

v = 1/40
x

v

v = 9.14 i
a

- 1/40v =
c 9.14 i kv

v = -1/40
b

kv

logic for
Delay

Figure 11: Electric circuit of the control block.

q (t)
2

1
q (t)

R
Q'(t)

Q(t)

C

Q(t)

_

Q(t)

q (t)
1

q (t)
2

Figure 12: Delay logic for dead time in complementary switch signals.

Q (t)

1

D

CP

Q

Q

1

2
Q (t)

RST

b 0

b 1

b 7

1
Q (t)

2
Q (t)

time

q (t)

Delay

dead

q (t)
1

logic for

2

Figure 13: Electric circuit of the pulse counter.

Figure 14: Picture of the developed experimental test bench.
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Figure 15: Experimental results: Closed loop for the start up feedback strategy alone.
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Figure 16: Experimental results: Closed loop responses for the to composite start up and steady
state oscillation control strategies, k = 1.
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Figure 17: Experimental results: Output voltage and stored energy for k = 1, 2 and 5.
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