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Abstract

The paper is devoted to a problem of synergetic regulators synthesis for nonlinear

unstable two-mass system “inverted pendulum”. The different variants of synergetic

regulators synthesis for this system are presented. Synthesized regulators are con-

structed on basis of nonlinear mathematical models. The synthesized regulators allow

not only to solve the pendulum stabilization task at the top unstable position but also

form the new modes of dynamic behavior such as auto-oscillations of the pendulum

and the cart around the set position

1 Introduction

More than 30 years in the world literature on control theory and systems there are discus-

sions about the inverted pendulum (IP) system control [1–5].

The thing is that the two-mass system “inverted pendulum” to a certain degree reflects

various real systems – from a biomechanical system of hand and body motion to the behavior

of various manipulating robots and other pendulum systems. Due to its distinctive features

this model has became a sort of test problem for control theory methods – from classical

linear methods based on PID regulators to the modern ones based on Fuzzy Neural Networks

using a certain combination of a PID regulator with a fuzzy one [2–5].

It should be mentioned that most of the works consider linearized IP models. This es-

sentially limits the possibilities of reaching the ultimate characteristics of the IP control

systems. The task of controlling the IP described by the full nonlinear model is a complex

one. Its solution will allow to reach ultimate recoverable pendulum degrees with an account

of limitation on the cart’s position and the value of the control force etc.

In all the considered task belongs to the important problem of controlling the nonlinear

oscillating objects of various nature. Here for solving this task the principles and the methods

of synergetic control theory [6] are used and main research results are presented.

2 Mathematical Model

Let consider the IP shown at figure 1. The pendulum’s axis is mounted on the cart that

can move horizontally. The cart is driven by a drive that applies a force µ(t) at time t. This
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Figure 1: Inverted pendulum on cart

force is the control action for the system.

Analyzing forces and motions we can describe the system dynamics by following nonlinear

mathematical model:

ẋ1(t) = x3;

ẋ2(t) = x4;

ẋ3(t) = u;

ẋ4(t) =
g

L′
sin x2 −

1

L′
cos x2 · u,

(2.1)

where x1 = s – cart’s horizontal motion; x2 = ϕ – pendulum’s angle, x3 = ṡ(t), x4 = ϕ̇(t); m,

L – pendulum’s mass and the distance from axis to the mass center, J– moment of inertia;

M – cart’s mass, L′ = J+mL2

mL
– pendulum’s effective length;

u =
mLL′

L′(M +m) −mL cos2 x2

(

µ

mL
−

Dsx3

mL
−

g sin 2x2

2L′
+ x2

4 sin x2

)

. (2.2)

Nonlinear differential equations (2.1), (2.2) describe the behavior of the system “IP –

controlled cart”. As we see form these equations, one and the same control u(t) (and therefore

µ(t)) is applied to different channels separated by dynamic units. From our point of view

this quality lead to many years of not very successful attempts of many specialists to solve

the task of synthesis of effective control laws ensuring vertical pendulums position by means

of applying force to the cart.
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We had an idea to apply synergetic method of analytical design of aggregated regulators

(ADAR) [6] and to search for such a nonlinear transform that would allow to extend the

allowed angle range to the ultimate values: −
π
2
< x2 <

π
2
. We also wanted to take out the

limitations on the cart’s position. This allows to obtain an exhaustive solution of set control

task. Let’s proceed to consideration of such a transform of coordinates.

3 Nonlinear Transform of Coordinates

Let’s introduce the following macrovariable:

ψ = x1 − ρ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
− γ

∫

ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
dt (3.1)

then we get

ψ̇(t) = ẋ1(t) +
ρẋ2(t)

cos x2

− γ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
(3.2)

and

ψ̈(t) = ẍ1(t) +
ρ

cos x2

ẍ2(t) +
ρẋ2

2(t)

cos x2

tan x2 +
γẋ2(t)

cos x2

. (3.3)

Substitute the derivatives ẍ1(t) and ẍ2(t) into (3.3) from the initial equations i.e.

ẍ1(t) = u, (3.4)

ẍ2(t) =
g

L′
sin x2 −

1

L′
cos x2 · u. (3.5)

As a result we get

ψ̈(t) = u+
ρ

cos x2

[

g

L′
sin x2 −

1

L′
cos x2 · u

]

+
ρẋ2

2(t)

cos x2

tan x2 +
γẋ2(t)

cos x2

(3.6)

or

ψ̈(t) = Bu+
ρg

L′
tan x2 +

ρẋ2
2(t)

cos x2

tanx2 +
γẋ2(t)

cos x2

, (3.7)

where B = 1 − ρ

L′
.

According to the ADAR method we form the functional equation

ψ̈(t) + α1ψ̇(t) + α2ψ = 0, α1 > 0, α2 > 0. (3.8)

Substituting ψ̈(t) (3.7) into (3.8) we get the control

u = −

ρg

B L′
tanx2 −

ρẋ2
2(t)

B cos x2

tan x2 −

γẋ2(t)

B cos x2

−

F (ẋ2)

B cos x2

−

α1

B
ψ̇(t) −

α2

B
ψ. (3.9)
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4 Motion on the Manifolds

According to the ADAR method, control u (3.9) moves the system (3.4), (3.5) to the

manifolds ψ = 0 (3.1) and ψ̇(t) = 0 (3.2) from the arbitrary initial conditions. Motion of the

coordinate x2 on the manifolds ψ = ψ̇(t) = 0 is described by the equations (3.5), (3.9), i.e.

ẍ2ψ(t) =
g

L′
sin x2ψ +

ρg

B(L′)2
sin x2ψ +

ρ

B L′
ẋ2

2ψ tanx2ψ +
γ

B L′
ẋ2ψ(t). (4.1)

To make the solutions of the equation (4.1) stable we’ll assign B = −λ < 0, then

ρg

B(L′)2
= −

1 + λ

λL′
g,

ρ

B L′
= −

1 + λ

λ
, ρ = (λ+ 1)L′. (4.2)

Accounting for (4.2), equation (4.1) takes the following form:

ẍ2ψ(t) + a1 sin x2ψ + a2ẋ
2

2ψ(t) tan x2ψ + a3ẋ2ψ(t) = 0, (4.3)

where

a1 =
g

λL′
, a2 =

λ + 1

λ
, a3 =

γ

λL′
. (4.4)

The equation (4.3) with a1 > 0, a2 > 0, a3 > 0 is asymptotically stable with respect to

x2ψ = 0 in the range −
π
2
< x2ψ <

π
2
. Depending on the values of the coefficients a1, a2, a3,

the equation (4.3) can have various character of the transients. The most influence is caused

by the coefficient γ.

The equation (4.3) appeared because of introduction of the nonlinear transform (3.1),

which allowed to ensure asymptotic stability of motion on the manifolds ψ = 0 and ψ̇(t) = 0

and, therefore, stability of the initial system with a control law (3.9). Indeed, according

to (4.1) with a1 > 0, a2 > 0, a3 > 0 the angle x2 always approaches zero, which means

stabilization of the pendulum at the top position. This phenomenon can be interpreted as

an effect of generation of the internal stabilizing controls resulting from nonlinear transform

of coordinates. It should be underlined that this quality of internal controls generation is a

result of synergetic control theory laws.

5 Control Laws and Modeling Results

Let’s write the control law (3.9) using the notation (4.2) in the following form:

u = −

1 + λ

λ
tan x2

(

g −
ẋ2

2(t)

cos x2

L′

)

+
γ

λ

ẋ2(t)

cos x2

+
α1

λ
ψ̇(t) +

α2

λ
ψ, (5.1)

where:

ψ = x1 + (1 + λ)L′ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
− γ

∫

ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
dt. (5.2)

ψ̇(t) = ẋ1(t) +
(1 + λ)L′

cos x2

ẋ2(t) − γ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
. (5.3)
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Figure 2: Pendulum’s Subsystem Phase

portrait
Figure 3: Cart’s Subsystem Phase por-

trait

Now using the expressions (2.1) and (2.2) basing on (5.1)–(5.3) we find the control µ(x1, x2, x3, x4):

µ = −mL

(

x2

4 sin x2 +
g sin 2x2

2L′

)

+Dsx3 +
1

λ

(

M +m−

mL cos2 x2

L′

)

[

(1 + λ)

(

L′

cos x2

x2

4 − g

)

tan x2 + α1

(

x2 +
(1 + λ)L′

cos x2

x4 − γ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣

)

+

+
γx4

cos x2

+ α2

(

x1 + (1 + λ)L′ ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
− γ

∫

ln
∣

∣

∣
tan

(π

4
−

x2

2

)
∣

∣

∣
dt

)]

.

(5.4)

In (4.1) we should select such αi that ψ(t) has the desired character of changing.

So during the aperiodic process:

α2 =
1

T1 T2

;
α1

α2

= T1 + T2, (5.5)

then

ψ(t) = c1e
−

t

T1 + c2e
−

t

T2 , (5.6)

which is ensured by the proper selection of T1 and T2. If the selection of α1, α2 is different

from (5.5) results in a damping oscillating transient. Figures 2 and 3 present the modeling

results for the control law (5.4) for the subsystems of the pendulum and the cart. Fig 4

presents transients for x10 = 0, 5, x20 = −0, 5.

We can use the following control instead of (3.8)

ψ̈(t) − ξ(1 − βψ2)ψ̇(t) + ψ = 0. (5.7)
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Figure 4: Transients

Figure 5: Pendulum’s Subsystem Phase

portrait
Figure 6: Cart’s Subsystem Phase por-

trait

The equation (5.7) is the Van-der-Paul Equation, that describe the auto-oscillations mode.

The control law takes the following form:

u =
1 + λ

λ

(

g +
ẋ2(t)

cos x2

L′

)

tan x2 +
γ

λ

ẋ2(t)

cos x2

− ξ(1− βψ2)ψ̇(t) + ψ. (5.8)

The phase portraits for the pendulum’s and cart’s subsystems are presented in Figures 5 and

6 for u (5.8). Modeling was performed with the following parameters: L = 0, 1, L′ = 0, 1,

M = 1, m = 0, 1, g = 9, 81, Ds = 100, γ = 1, λ = 1, β = 2, ξ = 0, 5.

It should be mentioned that control laws µ(x) acquired as a result of application of the

synergetic synthesis methods are actually the torques created by cart electric drives. Ac-

cording to the ADAR method, knowing µ(x1, . . . , x4) it is very easy to get the corresponding

closed loop laws controlling the voltage on the drive’s input. To do this, µ(x1, . . . , x4) should

be presented as internal controls and then basing on the drive’s model we should synthesize

corresponding control laws for electric drive control.
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6 Conclusion

The performed research allowed to achieve the following scientific results:

• an absolutely new synergetic control method was developed. It is based on the proposed

nonlinear transform of coordinates and uses a full nonlinear system’s model. This

allowed to obtain exhaustive solution of the control problem comparing to the known

results. The two-mass system ”IP-cart” is theoretically controllable in the maximal

range (−π
2
< x2 <

π
2
) without any limitations on the cart’s motion. The developed

new synergetic control method has an important individual meaning. It allows to

solve a wide range of control tasks for various oscillating mechanical systems that were

unsolvable by the known methods of control theory;

• the developed methods of synergetic control allow not only to solve the pendulum

stabilization task at the top unstable position but also form the new modes of dynamic

behavior such as auto-oscillations of the pendulum and the cart around the set position.

So application of the synergetic approach to the control task for the unstable nonlinear

system ”IP-cart” allowed to obtain exhaustive solution of the control task for a full nonlinear

model. This indicates the outstanding capabilities of the synergetic approach to solution the

complex control tasks arising in various classed of nonlinear objects.
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