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Abstract

Means of applying Krylov subspace techniques for adaptively extracting accurate reduced-

order models of large-scale nonlinear dynamical systems is a relatively open problem. There has

been much current interest in developing such techniques. We focus on a bi-linearization method,

which extends Krylov subspace techniques for linear systems. In this approach, the nonlinear

system is first approximated by a bilinear system through Carleman bilinearization. Then a

reduced-order bilinear system is constructed in such a way that it matches certain number of

multimoments corresponding to the first few kernels of the Volterra-Wiener representation of the

bilinear system. It is shown that the two-sided Krylov subspace technique matches significant

more number of multimoments than the corresponding one-side technique.

1 Introduction

Several model reduction techniques for nonlinear dynamical systems have been studied by re-

searchers in various fields. Two of the most well-known methods are the Karhunen-Loève decom-

position based methods and methods of balanced truncation. Karhunen-Loève decomposition based

methods are also known as proper orthogonal decomposition (POD) methods. Methods of balanced

truncation extend the success of balanced truncation of linear systems to nonlinear systems. The

interested reader is referred to [6] and [14]. The latest work includes [7] and [11]. Means of applying

Krylov subspace techniques for adaptively extracting accurate reduced-order models of large-scale

nonlinear dynamical systems is a relatively open problem. There has been much current interest

in developing such techniques. We will briefly discuss two methods, which extend Krylov subspace

techniques for linear dynamical systems.

We consider single-input single-output nonlinear dynamical systems of the form:

{
ẋ = f(x) + bu,

y = lTx
(1.1)

with initial condition x(0) = x0, where x ∈ RN is the state variables, N is the dimension of

the state space. u ∈ R and y ∈ R are inputs and outputs, respectively. b ∈ RN is the input

distribution array. l ∈ RN is the output measurement array. We assume that the nonlinear state

evolution function f(x) : RN → RN is smooth, i.e., C∞, and has an equilibrium. Without loss of

generality we take this equilibrium at 0, i.e., f(0) = 0.

Examples of the origins of nonlinear dynamical systems of the form (1.1) include the simulation of

time-varying nonlinear circuit elements by independent excitation source [4, 3], and MEMS, such as
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micro-pressure sensor [8]. The modeling of the dynamical behavior of a voltage-controlled parallel-

plate electrostatic actuator also derives a set of state equations of the form (1.1) [15, p.138]. Such

an electrostatic actuator invokes multi-domain parameters, such as mass, stiffness and damping in

the mechanical domain, and an excitation force network in the electrical domain.

2 Linearization method

We will discuss two methods for the reduced-order modeling of the nonlinear system (1.1). The

first method is called the linearization method. It linearizes the system around the equilibrium

point, and then extracts a Krylov subspace for reduced-order modeling. Specifically, suppose that

the power series expansion of f(x) about the equilibrium point 0 is written as

f(x) = A1x + A2(x ⊗ x) + A3(x ⊗ x ⊗ x) + · · · (2.2)

where A1 ∈ RN×N is the Jacobian or the first derivative of f , and A2 ∈ RN×N2

is the second

derivative matrix of f , and so on. ⊗ is the Kronecker product. We linearize the original nonlinear

system (1.1) by only using the first term in the expansion (2.2) of f , and obtain a linear system:
{

˙̂x = A1x̂ + bu,

ỹ = lTx̂.
(2.3)

We can then apply a reduced-order modeling method for the linearized system (2.3), and obtain

a linear reduced-order model. The output ỹ is an approximation of the output y of the original

system (1.1). If we are interested in a small region of the state space near the equilibrium point,

or so-called small-signal analysis, then as demonstrated in [4], this approach provides an efficient

tool for analyzing the nonlinear system (1.1).

Alternatively, one may also use the linearized model (2.3) to extract a Krylov projection subspace

spanned by Vn. Then, by substituting x ≈ Vnz into the original nonlinear system (1.1), a nonlinear

reduced-order model is obtained: {
ż = g(z) + bnu,

ŷ = lTnz

where g(z) = VT
n f(Vnz), bn = VT

nb and ln = VT
n l. We assume that Vn is an orthonormal basis

of the projection subspace. One of the issues associated with this approach is that one must have a

representation of g(z) = VT
n f(Vnz) that can be efficiently stored and evaluated. The challenge of

this issue is highlighted in [8]. If f has a certain structure, then one may exploit such structure to

derive an efficient representation of g. For example, in [3, 2], f is considered as a quadratic function

f(x) = Ax+J(x⊗x), and in [5], f is represented as a gradient of a scalar function f(x) = ∇xφ(x).

It is often the case that in order to obtain some pre-knowledge about the dynamical behavior

of the full-order nonlinear system, we intentionally linearize a system even if it is not near the

equilibrium and accept some degree of error rather than confront the full-order nonlinear system.

To understand the limitation of the linearization approach, namely, when a reduced-order model

strictly based on the Jacobian of the nonlinear state evaluation function f is accurate enough for

a particular application, we may invoke the tool of variational analysis to analyze the contribution

of the higher order nonlinear term [12, p.113]. As a by-product, we may also use the resulting

sequence of linearized systems to develop a technique for the reduced-order model of the nonlinear

dynamical system, as reported in [9].
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3 Bilinearization method

The second approach is intended to explicitly incorporate the higher order nonlinear terms in

the power series expansion (2.2) of f into the construction of a Krylov projection subspace. The

approach is based on the Carleman bilinearization of a nonlinear system. The following one-sided

Krylov method is similar to the method presented in [10].

By Carleman bilinearization (see, for example, [12, 13]), the nonlinear system (1.1) can be ap-

proximated by a bilinear system given in the following form
{

˙̂x = Âx̂ + N̂ x̂ u + b̂u,

ŷ = ĉTx̂.
(3.4)

The Volterra-Wiener representation of the bilinear systems (3.4) with the kernel in regular form is

given by y(t) =
∑

∞

k=1 yk(t), where the degree-k subsystem yk(t) is given by

yk(t) =

∫ t

0
hreg(t1, . . . , tk)u(t − t1 − · · · − tk)u(t − t2 − · · · − tk) · · · u(t − tk)dt1 · · · dtk

with the associated k-th degree regular kernel

hreg(t1, . . . , tk) = ĉT eÂtkN̂ · · · N̂eÂt2N̂eÂt1 b̂.

The multi-dimensional Laplace transform of hreg(t1, . . . , tk) yields the transfer function

Hk(s1, . . . , sk) = ĉT(skI − Â)−1N̂ · · · N̂(s2I − Â)−1N̂(s1I − Â)−1b̂. (3.5)

From the power series expansion of (sjI − Â)−1, it is natural to define the corresponding multi-

moments as

m(`1, `2, . . . , `k) = (−1)kĉTÂ−`kN̂ . . . N̂Â−`2N̂Â−`1b̂, (3.6)

where `i are nonnegative integers. The expressions of the transfer function (3.5) and the associated

multi-moments (3.6) suggest that in order to match the moments for the degree-k kernel, we can

first generate the subspace V(k) of nested Krylov subspaces with depth k defined by

span{V(k)} = Km

(
· · · · · · Km

(
Â−1, Â−1N · Km(Â−1, Â−1b)

)
· · ·

)
, (3.7)

for k = 1, 2, . . . , p, and then take a union of the subspaces

span{Vn} =

p⋃

k=1

span{V(k)}. (3.8)

Once the basis Vn of the projection subspace is extracted, we can approximate the state vector

x̂(t) by another state vector z(t) constrained to the subspace span{Vn}, i.e., let x̂(t) ≈ Vnz(t).

This yields a reduced-order model of the bilinear system (3.4):

{
ż = Ânz + N̂n zu + b̂nu,

ỹ = ĉT
nz.

(3.9)

This approach can explicitly incorporate higher order nonlinear terms of the state evolution function

f .
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To match a desired number of multimoments, the dimension of the one-sided Krylov subspace

span{Vn} can become quite large even for lower degree kernels, which results in a high dimension

of the reduced-order bilinear model. For example, to match the multimoments of the first, second

and third order kernels up to order m:

ĉT Â−`1b̂, ĉT Â−`2N̂Â−`1b̂, ĉT Â−`3N̂Â−`2N̂Â−`1b̂,

where `1, `2, `3 = 1, . . . ,m, it requires a subspace of dimension m + m2 + m3. To avoid such rapid

growth of the dimension, we propose to build a pair of biorthogonal bases for both left and right

Krylov subspaces to match the multimoments in a more efficient way. The result is more dramatic

than the difference between one-sided and two-sided Krylov methods for linear systems.

In the two-sided method, the right subspace is the same as (3.8). For the left subspace, we first

construct the p nested Krylov subspaces with depth k:

span{W(k)} = Km

(
· · · · · · Km

(
Â−T ,NT Â−T · Km(Â−T , c)

)
· · ·

)
,

where k = 1, . . . , p. The left projection subspace Wn is then taken as the union of these subspaces

span{Wn} =

p⋃

k=1

span{W(k)}.

Furthermore, the bases Vn and Wn are constructed to be biorthogonal. The system matrices in

the reduced-order bilinear model (3.9) are then defined as

Â−1
n = WT

n Â−1Vn, N̂n = ÂnW
T
n Â−1N̂Vn, b̂n = ÂnW

T
n Â−1b̂, ĉn = VT

n ĉ.

It can be shown that the reduced-order model matches all multimoments that can be represented

through the scalar product

sT r = (−1)k ĉTÂ−`kN̂ . . . N̂Â−`2N̂Â−`1b̂,

where r ∈ span{Vn} and s ∈ span{Wn}. It matches more number of multimoments than the total

number of basis vectors, whereas by using only one-sided basis, it generally only matches the same

number of multimoments as the number of basis vectors.

Example 1. Let the right and left subspaces be

span{V} = {Â−1b̂, Â−2b̂, . . . , Â−7b̂, Â−1N̂Â−1b̂, . . . , Â−1N̂Â−4b̂}

and

span{W}T = {ĉT , ĉT Â−1, . . . , ĉT Â−6, ĉT Â−1N̂, . . . , ĉT Â−4N̂, }

By using the combined information in the basis V and W, it can be shown that the reduced-order bilinear

model matches 13 moments of the degree-1 kernel

ĉT Â−1b̂, ĉT Â−2b̂, . . . , ĉT Â−13b̂,

40 multimoments of the degree-2 kernel

ĉT Â−`2N̂Â−`1 b̂,

4



0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

t
0 2 4 6 8 10

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t

Figure 1: Transient responses of a nonlinear circuit system with full-order system (solid line), linearized

system (dash line), and the reduced-order bilinear system (dot-dot line). The plots of full-order bilinear

system overlap the plots of the reduced-order one and is omitted. Left: The input signal u(t) is the ramp

function (u(t) = t/5, 0 ≤ t ≤ 5, u(t) = 1, t > 5). Right: the input signal is the sin function u(t) = sin(t).

where `1, `2 = 1, 2, 3, 4; `1 = 5, 6, 7, `2 = 1, 2, 3, 4; or `1 = 1, 2, 3, 4, `2 = 5, 6, 7, and 16 multimoments of the

degree-3 kernel

ĉT Â−`3N̂Â−`2N̂Â−`1 b̂,

where `1 = 1, 2, 3, 4, `2 = 1, `3 = 1, 2, 3, 4. It matches a total of 69 multimoments with only 22 basis vectors.

On the other hand, to be able to match the same number of moments using only the left or right subspace, we

will need 69 basis vectors. As a result, the dimension of the reduced-order model using two-sided subspaces

will be of order 11, not the order of 69 by using one-sided subspace.

One critical issue associated with the bilinearization method is the growth of the dimension of

the bilinear system (3.4) as a result of Carleman linearization. For example, even if we only use the

first two terms in the power series expansion (2.2) of f , the order of the resulting bilinear system

is about O(N 2). However, the matrices Ai in the power series expansion (2.2) of f are generally

extremely sparse, and the matrices Â and N̂ in the bilinear system (3.4) are highly structured, so

one can exploit these facts in a Krylov process, namely through the matrix-vector multiplications

during the Lanczos or Arnoldi process, to produce an efficient reduced-order model.

Example 2. In Fig. 1, we show the transient responses of a RC circuit with nonlinear resistors as described

in [3]. The dimension of the original full-order nonlinear system is N = 100. Although the order of the

bilinear system by using second-order approximation is of dimension 10100, the order of the reduced one is

only 11. The pair of bases Vn and Wn is constructed as described in Example 1.

Further details of the bilinearization-based Krylov subspace techniques for reduced-order model-

ing of large-scale nonlinear dynamical systems will be reported in [1].
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