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Abstract

In this paper, we define and study quotients for fully nonlinear control systems.

Our definition is inspired by categorical definitions of quotients as well as recent work

on abstractions of affine control systems. We show that quotients always exist under

mild regularity assumptions, and characterize the structure of the quotient control

bundle. We also introduce a notion of projectability which turns out to be equivalent

to controlled invariance. This allows to regard previous work on symmetries, partial

symmetries, and controlled invariance as leading to special types of quotients. We

also show the existence of quotients that are not induced by symmetries or controlled

invariance.

1 Introduction

The analysis and synthesis problems for nonlinear control systems are often very difficult

due to the the size and the complicated nature of the equations describing the processes

to be controlled. It is therefore desirable to have a methodology that decomposes control

systems into smaller subsystems while preserving the properties relevant for analysis or

synthesis. From a theoretical point of view, the problem of decomposing control systems

is also extremely interesting since it reveals system structure that must be understood and

exploited.

In the study of control systems structure by several authors we implicitly encounter no-

tions of quotients. When symmetries for control systems exist, one of the blocks of the

decompositions introduced in [4] is simply the original control system factored by the action

of a Lie group representing the symmetry. If a control system admits a controlled invariant

distribution, it is shown in [10] that it has a simpler local representation. This simpler

representation can be obtained by factoring the original control system by an equivalence

relation induced by the controlled invariant distribution. The notion of abstraction intro-

duced in [12] can also be seen as a quotient since the abstraction is a control system on

a quotient state space. These facts motivate fundamental questions such as existence and

characterization of quotient systems.

The study of quotients has also important consequences for hierarchical control, since

the construction of quotients proposed in [12] implicitly indicates that certain states of the

original system may become inputs on the quotient control system. We can, therefore, regard
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a control design performed on a quotient system as a design specification for the original

system. A complete and thorough understanding of how the states and inputs propagate

from control systems to their quotients will enable such a hierarchical design scheme.

In this paper, we take a new approach to the study of quotients by introducing the category

of control systems as the natural setting for such problems in systems theory. The use of

category theory for the study of problems in system theory also has a long history which can

be traced back to the works of Arbib [2]. More recently several authors have also adopted

a categorical approach as in [6] where the category of affine control system is investigated

or [13], where a categorical approach has been used to provide a general theory of systems.

We define the category of control systems whose objects are fully (non-affine) nonlinear

control systems, and morphisms map trajectories between objects. In this categorical setting

we formulate the notion of quotient control systems, and show that under mild regularity

assumptions quotients always exist. We introduce the notion of projectable control sections,

which will be a fundamental ingredient to characterize the structure of quotients. This

notion is in fact equivalent to controlled invariance, and this allows to regard quotients based

on symmetries or controlled invariance as a special type of quotients. General quotients,

however, are not necessarily induced by symmetries or controlled invariance and have the

property that some of their inputs are related to states of the original model. This fact,

implicit in [12], is explicitly characterized in this paper by understanding, how the state and

input space of the quotient is related to the state and input space of the original control

system.

2 Control Systems

In this section we review the relevant notions from differential geometry [1] and control

systems [10] necessary for the remaining paper.

2.1 Fiber Bundles

A fiber bundle is a tuple (B, M, πB,F , {Oi}i∈I), where B, M and F are manifolds called

the total space, the base space and standard fiber respectively. The map πB : B −→ M is

a surjective submersion and {Oi}i∈I is an open cover of M such that for every i ∈ I there

exists a diffeomorphism Ψi : π−1

B
(Oi) −→ Oi × F satisfying πoi

◦ Ψi = πB, where πoi
is the

projection from Oi × F to Oi. The submanifold π−1

B
(x) is called the fiber at x ∈ M and is

diffeomorphic to F . We will usually denote a fiber bundle simply by πB : B −→ M . Since a

fiber bundle is locally a product, we can always find local coordinates, which we shall call

trivializing coordinates, of the form (x, b), where x are coordinates for the base space and

b are coordinates for the local representative of the standard fiber. A map ϕ : B1 −→ B2

between two fiber bundles is fiber preserving iff there exists a map φ : M1 −→ M2 between

2



the base spaces such that the following diagram commutes:

M1 M2
-

φ

B1 B2
-ϕ

?
πB1

?
πB2

(2.1)

that is to say, iff πB2
◦ϕ = φ ◦ πB1

. In such a case we also refer to ϕ as a fiber preserving lift

of φ. Given fiber bundles B1 and B2 we will say that B1 is a subbundle of B2 if the inclusion

map i : B1 ↪→ B2 is fiber preserving.

Given a map h : M −→ N defined on the base space of a fiber bundle we denote its extension

to all of the bundle B by he, defined by he = h ◦ πB. We now consider the extension of a

map H : B −→ TM to a vector field in B. Globally, we define He as the set of all vector

fields X ∈ TB such that:

B TM-
H

X
�

�
���

TB

?
TπB

(2.2)

commutes, that is TπB(X) = H. When working locally, one can be more specific and select

a distinguished element of He, denoted by H l, which satisfies in trivializing coordinates

TπF(H l) = 0, where πF is the projection from Oi × F to F . Using trivializing coordinates

(x, b) this simply means that H l = H ∂

∂x
+ 0 ∂

∂b
. A vector field Y : M −→ TM on the base

space M of a fiber bundle can also be extended to a vector field on the whole bundle. It

suffices to compose Y with the projection πB : B −→ M and recover the previous situation

since Y ◦πB is a map from B to TM . Given a distribution D on M , we define1 its extension,

De, as:

De =
⋃

X∈D

Xe (2.3)

2.2 Control Systems

Since the early days of control theory it was clear that in order to give a global definition of

control systems the notion of input could not be decoupled from the notion of state [17].

Definition 2.1 (Control System) A control system ΣM = (UM , FM) consists of a fiber

bundle πUM
: UM −→ M called the control bundle and a map FM : UM −→ TM making the

following diagram commutative:

UM TM-FM

M
?

πUM
πM

�
�

��	
(2.4)

that is, πM ◦ FM = πUM
, where πM : TM −→ M is the tangent bundle projection.

1Note that this definition implies the equality Ker(The) = (Ker(Th))e.
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The input space UM is modeled as a fiber bundle since in general the control inputs available

may depend on the current state of the system. Closely related to control systems is the

notion of control section which will be fundamental in our study of quotients:

Definition 2.2 (Control Section) Given a manifold M , a control section on M is a sub-

bundle πSM
: SM −→ M of TM .

We denote by SM (x) the set of vectors X ∈ TxM such that X ∈ π−1

SM
(x), which allows to

show that any control system (UM , FM) defines a control section by the pointwise assignment

SM(x) = FM(π−1

UM
(x)). We shall call a control system, control affine, when the control section

defines an affine distribution and fully nonlinear, otherwise. Having defined control systems

the concept of trajectories or solutions of a control system is naturally expressed as:

Definition 2.3 (Trajectories of Control Systems) A curve c : I −→ M , I ⊆ R
+

0 is

called a trajectory of control system ΣM = (UM , FM), if there exists a curve cU : I −→ UM

making the following diagrams commutative:

I M-
c

cU

�
�

���

UM

?
πUM

I TM-
Tc

cU

�
�

���

UM

?
FM

(2.5)

where we have identified I with TI.

3 The Category of Control Systems

We start by reviewing the notion of φ-related control systems introduced in [11] and which

motivates the construction of the category of control systems to be later presented.

Definition 3.1 (φ-related Control Systems) Let ΣM and ΣN be two control systems de-

fined on manifolds M and N , respectively. Given a map φ : M −→ N we say that ΣN is

φ-related to ΣM iff for every x ∈ M :

Txφ(SM(x)) ⊆ SN ◦ φ(x) (3.6)

In [11] it is shown that this notion, local in nature, is equivalent to a more intuitive and

global relation between ΣM and ΣN .

Proposition 3.1 ([11]) Let ΣM and ΣN be two control systems defined on manifolds M

and N , respectively and let φ : M −→ N be a map. Control system ΣN is φ-related to ΣM iff

for every trajectory c(t) of ΣM , φ(c(t)) is a trajectory of ΣN .

Informally speaking, a category is a collection of objects and morphisms between objects,

that relate the structure of the objects. Choosing manifolds for objects leads to the the
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natural choice of smooth maps for morphisms and defines Man, the category of smooth

manifolds. In this section we introduce the category of control systems which we regard as

the natural framework to study quotients of control systems. We defer the reader to [5] for

further details on the elementary notions of category theory used throughout the paper and

to [14] for the proofs of the results given in this and the forthcoming sections.

The category of control systems, denoted by Con, has as objects control systems as de-

scribed in Definition 2.1. The morphisms in this category extend the concept of φ-related

control systems described by Definition 3.1.

Definition 3.2 (Morphisms of Control Systems) Let ΣM and ΣN be two control sys-

tems defined on manifolds M and N , respectively. A morphism f from ΣM to ΣN is a

pair of maps f = (φ, ϕ), φ : M −→ N and ϕ : UM −→ UN making the following diagrams

commutative:

M N-
φ

UM UN
-ϕ

?
πUM

?
πUN

TM TN-
Tφ

UM UN
-ϕ

?
FM

?
FN

(3.7)

It will be important for later use to also define isomorphisms:

Definition 3.3 (Isomorphisms of Control Systems) Let ΣM and ΣN be two control

systems defined on manifolds M and N , respectively. System ΣM is isomorphic to sys-

tem ΣN iff there exist morphisms f1 from ΣM to ΣN and f2 from ΣN to ΣM such that

f1 ◦ f2 = (idN , idUN
) and f2 ◦ f1 = (idM , idUM

).

In this setting, feedback transformations can be seen as special isomorphisms. Consider an

isomorphism (φ, ϕ) with ϕ : UM −→ UM such that φ = idM . In trivializing coordinates

(x, v) adapted to the fibers, the isomorphism has a coordinate expression for ϕ of the form

ϕ = (x, β(x, v)). The fiber term β(x, v) representing the new control inputs is interpreted

as a feedback transformation since it depends on the state at the current location as well as

the former inputs v. We shall therefore refer to feedback transformations as isomorphisms

over the identity since we have φ = idM .

The relation between the notions of φ-related control systems (3.1) and Con morphisms (3.2)

is stated in the next proposition.

Proposition 3.2 Let ΣM and ΣN be two control systems defined on M and N , respectively.

Control system ΣN is φ-related to ΣM iff f = (φ, ϕ) is a Con morphism from ΣM to ΣN for

some fiber preserving lift ϕ of φ.

We now see that if there is a morphism f from ΣM to ΣN , then this morphism carries

trajectories of ΣM to trajectories of ΣN in virtue of Proposition 3.1.
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4 Quotients of Control Systems

Given a control system ΣM and an equivalence relation on the manifold M we can regard

the quotient control system as an abstraction since some modeling details propagate from

ΣM to the quotient while other modeling details disappear in the factorization process. This

fact motivates the study of quotient control systems as they represent lower complexity

(dimension) objects that can be used to verify properties of the original control system.

Quotients are also important from a design perspective since a control law for the quotient

object can be regarded as a specification for the desired behavior of the original control

system. In this spirit we will address the following questions:

Existence: Given a control system ΣM defined on a manifold M and an equivalence

relation ∼M on M when does there exist a control system on M/ ∼M , the quotient manifold,

and a fiber preserving lift pU of the projection pM : M −→ M/ ∼M such that (pM , pU) is a

Con morphism?

Uniqueness: Is the lift pU of pM , when it exists, unique?

Structure of the quotient control bundle: What is the structure of the quotient

control system control bundle?

We remark that the characterization of the quotient control system system map F : U

−→ T (M/ ∼M ) was already solved for the case of control affine systems in [12] where a con-

structive algorithm for its computation was proposed. To clarify our discussion we formalize

the notion of quotient control systems:

Definition 4.1 (Quotient Control System) Let ΣL, ΣM , ΣN be control systems defined

on manifolds L, M and N , respectively and g, h two morphisms from ΣL to ΣM . The pair

(f, ΣN ) is a quotient control system of ΣM if f ◦ g = f ◦ h and for any other pair (f ′, Σ′
N

)

such that f ′ ◦ g = f ′ ◦ h there exists one and only one morphism f from ΣN to Σ′
N

such that

the following diagram commutes:

ΣM ΣN
-f

f ′
@

@
@@R

Σ′
N

?
f

ΣL
-g
-

h

(4.8)

Intuitively, we can read diagram (4.8) as follows. Assume that the set ∼= {(u, v) ∈ UM ×

UM : (u, v) = (g(l), h(l)) for some l ∈ UL} is a regular equivalence relation [1]. Then,

the condition f ◦ g = f ◦ h simply means that f respects the equivalence relation, that

is, u ∼ v ⇒ f(u) = f(v). Furthermore it asks that for any other map f ′ respecting

relation ∼, there exists a unique map f such that f ′ = f ◦f . This is a usual characterization

of quotient manifolds [1] that we here use as a definition. The same idea must, therefore,

hold for control systems and this means that control system ΣN must also satisfy a unique

factorization property in order to be a quotient control system.
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The first two questions of the previous list are answered in the next theorem which asserts

that quotients exist under very moderate conditions:

Theorem 4.1 Let ΣM be a control system on a manifold M and φ : M −→ N a surjective

submersion. If the distribution (TSM +Ker(TTφ))/Ker(TTφ) has constant rank, then there

exists a control system ΣN on N and a unique fiber preserving lift ϕ : UM −→ UN of φ such

that the pair ((φ, ϕ), ΣN) is a quotient control system of ΣM .

This result provides the first characterization of quotient objects in Con. It shows that

given a regular equivalence relation on the base (state) space of a control system and a

mild regularity condition2, there always exists a quotient control system on the quotient

manifold3. Furthermore it also shows that the regular equivalence relation on M or the map

φ uniquely determines a fiber preserving lift ϕ which describes how pairs state/input of the

control system on M relate to the pairs state/input of the quotient control system. Having

answered the first two questions from the previous list, we concentrate on the characterization

of the quotient control bundle on the remaining papaer.

5 Projectable Control Sections

We now extend the notion of projectable vector fields from [7] and of projectable families

of vector fields from [8] to control sections. The notion of projectable control sections is

weaker then projectable vector field or families of vector fields but nonetheless stronger

than Con morphisms. The motivation for introducing this notion comes from the fact

that projectability of control sections will be a fundamental ingredient in characterizing the

structure of the quotient control bundle.

Definition 5.1 Let M be a manifold, SM a control section on M and φ : M −→ N a

surjective submersion. We say that SM is projectable with respect to φ iff SM induces a

control section SN on N such that the following diagram commutes:

M N-
φ

P(TM) P(TN)-Tφ

6
SM

6
SN

(5.9)

We see that if SM is in fact a vector field we recover the notion of projectable vector fields.

Sufficient and necessary conditions for projectability of control sections are given in the next

result.
2The constant rank condition on (Ker(TTφ) + TSM )/Ker(TTφ) is only required to ensure that SN is a

manifold. If one does not require a control section to be a manifold, then this condition can be weakened.
3This fact can be put in a more general context by introducing a forgetful functor from Con to Man

that associates with each control system ΣM defined over M the manifold M and to each morphism from

ΣM to ΣN the map φ. In this context the previous result assumes the form of a universal arrow for this

functor.
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Proposition 5.1 (Projectable Control Sections) Let SM be a control section, φ : M

−→ N a surjective submersion and 0e = Tπ−1

UM
(0). Given any control parameterization

(UM , FM) of SM and any FM ∈ F e

M
, SM is projectable with respect to φ iff:

[FM , Ker(Tφe)] ⊆ Ker(Tφe) + [FM , 0e] (5.10)

If a control section is projectable then locally we can always chose FM = F l
M

and therefore

recover the conditions for local controlled invariance from [3]:

Theorem 5.1 ([3]) Let ΣM be a control system over a manifold M and φ : M −→ N a

surjective submersion. The distribution Ker(Tφ) is locally controlled invariant for FM iff

SM is projectable with respect to φ.

From the study of symmetries of nonlinear control systems [4, 9] it was already known that

the existence of symmetries or partial symmetries implies controlled invariance. This shows

that control systems that are projectable comprise quotients induced by symmetries and

controlled invariance. However there are also quotients for which projectability does not

hold as we describe in the next section.

6 The Structure of Quotient Control Systems

We start by characterizing the fiber preserving lift ϕ of φ. Recall that if f = (φ, ϕ) is a

morphism from ΣM to ΣN we have the following commutative diagram:

TM TN-
Tφ

UM UN
-ϕ

?
FM

?
FN

(6.11)

Since ϕ is a surjective submersion we know that UN is diffeomorphic to UM/ ∼, where ∼ is

the regular equivalence relation induced by ϕ. This means that to understand the structure

of UN it is enough to determine the regular and involutive distribution on UM given by

Ker(Tϕ). However the map ϕ is completely unknown, so we will resort to the elements that

are available, namely FM and φ to determine Ker(Tϕ). Differentiating4 diagram (6.11) we

get:

TTM TTN-
TTφ

TUM TUN
-Tϕ

?
TFM

?
TFN

(6.12)

4The operator sending manifolds to their tangent manifolds and maps to their tangent maps is an endo-

functor on Man, also called the tangent functor.
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from which we conclude:

Ker(TTφ ◦ TFM) = Ker(TFN ◦ Tϕ) = Ker(Tϕ) (6.13)

where the last equality holds since FN is an immersion by definition of control parameteri-

zation. We can now attempt to understand what is factored away and what is propagated

from UM to UN since Ker(Tϕ) is expressible in terms of FM and φ. The first step is to

clarify the relation between Ker(Tϕ) and Ker(Tφ). Since ϕ is a fiber preserving lift of φ

the following diagram commutes:

TM TN-
Tφ

TUM TUN
-Tϕ

?
TπUM

?
TπUN

(6.14)

which implies that:

TπUM
(Ker(Tϕ)) ⊆ Ker(Tφ) (6.15)

However this only tell us that the reduction on M due to φ cannot be “smaller” than the

reduction on the base space of UM due to ϕ. This leads to the interesting phenomena which

occurs when, for e.g. :

TπUM
(Ker(Tϕ)) = {0} ⊆ Ker(Tφ) (6.16)

The above expression implies that the base space of UM is not reduced by ϕ. However, UN

is a fiber bundle with base space N and therefore the points reduced by φ must necessarily

lift to the fibers of UN . This will not happen if we can ensure the existence of a distribution

D ⊆ Ker(Tϕ) such that TπUM
(D) = Ker(Tφ). The existence of such a distribution turns

out to be related with projectability as asserted in the next proposition:

Proposition 6.1 Let ΣM = (UM , FM) be a control system over a manifold M , φ : M −→ N

a surjective submersion and ϕ : UM −→ UN a fiber preserving lift of φ. There exists a

regular distribution D on UM satisfying D ⊆ Ker(Tϕ) and TπUM
(D) = Ker(Tφ) iff SM is

projectable with respect to φ.

Proposition 6.1 shows that projectability characterizes the structure of the quotient control

system in the sense that states lift to the fibers when the control section is not projectable.

However we can be a little more detailed in our analysis and try to determine if the fibers

of UM are reduced or if the fibers of UM are in fact diffeomorphic to the fibers of UN and

reduction takes place only on the base space. The answer is given in the next proposition:

Proposition 6.2 Let ΣM = (UM , FM) be a control system over a manifold M , φ : M −→ N

a surjective submersion, ϕ : UM −→ UN a fiber preserving lift of φ and FM any vector field

in F e

M
. A regular and involutive distribution E on UM such that TπUM

(E) = {0} satisfies

E ⊆ Ker(Tϕ) iff:

[FM , E ] ⊆ Ker(Tφe) (6.17)
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Collecting the results given by Propositions 6.1 and 6.2 we can now characterize both ϕ and

UN .

Theorem 6.1 (Structure of Quotients) Consider a control system ΣM = (UM , FM) over

a manifold M , (f, ΣN ) = ((φ, ϕ), (UN , FN)) a quotient of ΣM , and any vector field FM in

F e
M

. Let E be the involutive distribution defined by E = {X ∈ 0e : [FM , X] ∈ Ker(Tφe)},

which we assume to be regular, and denote by RE the regular equivalence relation induced by

E . Under these assumptions:

Reduction from states to states and from inputs to inputs - Fiber bundle UN has

base space diffeomorphic to N , and standard fiber FN diffeomorphic to FM/RE iff SM is

projectable with respect to φ.

Reduction from states to inputs and from inputs to inputs - Fiber bundle UN has

base space diffeomorphic to N , and standard fiber FN diffeomorphic to (FM/RE)× K iff:

1. [FM , Ker(Tφe)] ∩
(

Ker(Tφe) + [FM , 0e]
)

= {0};

2. [FM , Ker(Tφe)] 6= {0}.

where K is any leaf of the foliation on M induced by the distribution Ker(Tφ).

We see that the notion of projectability is fundamentally related to the structure of quotient

control systems. If the controlled section SM is projectable then the control inputs of the

quotient control system are the same or a quotient of the original control inputs. Projectabil-

ity can therefore be seen as a structural property of a control system in the sense that it

admits special decompositions [10]. However, for general systems that are not projectable,

it is still possible to construct quotients by lifting the neglected state information to the

fibers. The states of the original system that are factored out by φ are regarded as control

inputs in the quotient control system. This shows that from a hierarchical synthesis point

of view, control systems that are not projectable are much more appealing since one can

design control laws for the abstracted system, that when pulled-down to the original one are

regarded as specifications for the dynamics on the neglected states.

7 Conclusions

In this paper quotients of fully nonlinear control systems were investigated. We showed

that under mild conditions quotients always exist and we characterized the structure of the

quotient control bundle. This was achieved by introducing the category of control systems

which was the natural framework to discuss quotients of control systems. One of the im-

portant ingredients of the characterization of quotients was the notion of projectable control

section, which being equivalent to controlled invariance allowed to understand the difference

between general quotients and those induced by symmetries, partial symmetries or controlled

invariance.

Other directions being currently investigated include similar results for mechanical control

systems [15] as well as hybrid control systems [16].
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