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Abstract

We consider a convex optimization problem on linearly constrained cones in a Eu-
clidean Jordan algebra. The cost function consists of a quadratic cost term plus a
penalty function. A damped Newton algorithm is proposed for minimization. Quadratic
convergence to the global minimum is shown using an explicit step-size selection.

1 Introduction

Grasping and manipulation of objects plays an important role in robotics, with a strong

incentive towards real time implementations. In the area of dextrous hand grasping, positive

definite programming yields a satisfactory solution to optimization of finger forces, subject

to balancing of external forces and friction cone constraints. In [1], the grasping force

optimization task has been formulated as the minimization of the convex function

Φ(X) = tr(X)− log(det X) (1.1)

on positive definite matrices satisfying linear equality constraints. This approach led to the

first real time solution. In [5], a damped Newton algorithm has been proposed with faster,

quadratic convergence to the optimum.

In this paper we propose an extension of this prior work within the more general context

of convex optimization in a Jordan algebra. Specifically we consider the optimization of

functions

Φ(x) = tr(p(x))− log(det x) (1.2)
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on the intersection of a finite number of affine subspaces with the cone of positive elements of

a Euclidean Jordan algebra. Here p(x) = c0 + c1 ◦x+ 1
2
c2 ◦x2 denotes an arbitrary quadratic

polynomial. A damped Newton algorithm for minimizing (1.2) is proposed, together with an

explicit step-size that guarantees quadratic convergence. Since symmetric matrices form a

Euclidean Jordan algebra, our results immediately generalize those of [5]. In this short paper

no proofs are given. For a complete analysis we refer to [7]. Independent of the applications

in robotics, the minimization of cost functions (1.2) can be of interest in other areas as well.

For example, the minimization of the unconstrained cost function

Φ(x) = tr(c ◦ x)− log(det x) (1.3)

on positive elements x is equivalent to solving the linear equation c ◦ x = e. In the Jor-

dan algebra of symmetric matrices this is just equivalent of solving the Sylvester equation

AX+XA = I. Similarly, other interesting equations on matrices or polynomials can also be

recast as optimization problems in a Jordan algebra.

2 Cost function and properties

For references on Jordan algebras we refer to [2] and [8]. Let V be a Euclidean Jordan algebra

and Ω := {x ∈ V |x > 0} denote the cone of invertible squares. Similarly, we write x ≥ 0 to

denote the squares x = y2 of V . Given arbitrary linear independent elements a1, . . . , am ∈ V

and real numbers b1, . . . , bm, let

C := {x ∈ Ω|tr(aj ◦ x) = bj, j = 1, . . . , m}. (2.4)

Without loss of generality we assume in the sequel that a1, . . . , am are orthonormal, i.e.,

tr(ai ◦ aj) = δij for i, j = 1, . . . , m. Thus C is the convex intersection of the open cone Ω and

m affine hyperplanes in V . Throughout this paper we assume that the feasibility condition

C 6= ∅ holds. We consider the minimization problem minx∈C Φ (x) for the smooth function

Φ (x) = tr (p(x))− log (det (x)) , x ∈ C, (2.5)

where p(x) := c0 + c1 ◦ x + 1
2
c2 ◦ x2 and c2 ≥ 0. To compute the first and second derivative

of Φ note that the tangent space of C at x is the linear subspace

TxC = {ξ ∈ V |tr(aj ◦ ξ) = 0, j = 1, . . . , m}.

Then we have

DΦ (x) (ξ) =
〈
c1 + c2 ◦ x− x−1, ξ

〉
and D2Φ (x) (ξ, η) =

〈
c2 ◦ ξ + P

(
x−1

)
ξ, η

〉

for ξ, η ∈ V , where DkΦ (x) is the k-th derivative of Φ at x ∈ Ω.

Proposition 2.1. Let c2 ≥ 0. The function Φ : C −→ R is strictly convex. Φ has compact

sublevel sets, provided c2 > 0 or c2 = 0, c1 > 0.
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See also [4]. In the sequel, we will always assume that c2 > 0 or c2 = 0, c1 > 0 holds. As

a consequence of Proposition 2.1 , there is a unique local and global minimum of Φ. We

denote this unique minimum by x∗.
We propose a gradient type algorithm for minimization of Φ and study its convergence

properties; see also [6]. The projected Euclidean gradient in TxC with respect to the canonical

scalar product is calculated as

∇Φ (x) = c1 + c2 ◦ x− x−1 −
m∑

i=1

γiai, (2.6)

where γi = tr(ai ◦ (c1 + c2 ◦ x− x−1)).

Consider the Riemannian metric g on C defined by

g(x; ξ, η) := D2Φ(x)(ξ, η), ξ, η ∈ TxC. (2.7)

Note, by strict convexity of Φ, that g is positive definite on each tangent space.

The gradient with respect to the Riemannian g is the uniquely determined vector field

gradΦ satisfying the identity

D2Φ(x)(gradΦ(x), ξ) = DΦ(x)ξ, ∀ξ ∈ Tx. (2.8)

Let HΦ(x) : TxC → TxC denote the Hessian operator of Φ at x, i.e.,

D2Φ(x)(η, ξ) = tr(HΦ(x)η ◦ ξ) (2.9)

for ∀η, ξ ∈ TxC. The Hessian HΦ(x) exists uniquely by nondegeneracy of D2Φ(x) on TxC.

Thus

gradΦ(x) = H−1
Φ (x)∇Φ(x), x ∈ C. (2.10)

Following [5] we consider the damped Newton algorithm for minimization of Φ:

xk+1 = xk − αkH
−1
Φ (xk)∇Φ (xk) . (2.11)

The parameter αk > 0 is chosen as large as possible, subject to the downhill inequality

constraint Φ(xk+1) ≤ Φ(xk). Via (2.10), the damped Newton algorithm is simply the gradient

algorithm with respect to the Riemannian metric g, i.e.,

xk+1 = xk − αkgradΦ (xk) . (2.12)

In order to numerically implement the damped Newton algorithm, the step-size αk has to be

appropriately chosen. To this end, we consider at each time instant the “downhill” gradient

direction ∆ = −gradΦ (x) in the tangent space TxC. Since Φ is convex, the line search is a

convex minimization task.
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3 Step-size selection and main theorem

In order to obtain an effectively implementable step-size with resulting quadratic conver-

gence rate, we have to find a “good” upper bound on admissible values for α. Let ∆ :=

−gradΦ(x) ∈ TxC. To estimate the step-size, consider the cost function for t ≥ 0

φ (t) = Φ(x + t∆) = tr(p(x + t∆))− log det (x + t∆) . (3.13)

Let P (x) : V → V be the quadratic representation defined as

P (x)y := 2x ◦ (x ◦ y)− x2 ◦ y

for x, y ∈ V . Then P (x) is selfadjoint and P (x) > 0 if and only if x > 0. The second

derivative of φ is

φ′′ (t) = tr(c2 ◦∆2) + tr

[(
e + tP

(
x−

1
2

)
∆

)−2

◦
(
P

(
x−

1
2

)
∆

)2
]

. (3.14)

For ∆ = −gradΦ (x) ∈ TxC then φ′ (0) = −〈∇Φ(x), H−1
Φ (x)∇Φ(x)〉 < 0. Let λ0 (x) =√

tr (∇Φ (x) ◦ gradΦ (x)) =
√
〈∇Φ(x), H−1

Φ (x)∇Φ(x)〉 denote the Newton decrement. Clearly,

λ2
0 (x) = −φ′ (0) . By inspection,

−φ′ (0) = φ′′ (0) . (3.15)

We have the following bound on the second derivative φ′′(t)

sup
06t6α

φ′′ (t) 6 tr(c2 ◦∆2) +
tr(P (x−1) ∆2)

(1− αλ∗0)
2 , (3.16)

where

λ∗0 :=
√

tr(P (x−1)∆2). (3.17)

Thus, by the mean value theorem,

|φ′ (α)− φ′ (0)| 6
(

sup
06t6α

φ′′ (t)
)

α

6 α

[
tr(c2 ◦∆2) +

tr(P (x−1) ∆2)

(1− αλ∗0)
2

]
6 −φ′ (0) = φ′′(0),

where the desired last inequality holds only if α is chosen such that

α

[
tr(c2 ◦∆2) +

tr(P (x−1) ∆2)

(1− αλ∗0)
2

]
≤ tr(c2 ◦∆2) + tr(P

(
x−1

)
∆2). (3.18)

Let α∗0 of x denote the smallest positive root of the quadratic polynomial in α

αtr(P (x−1)∆2) = (1− αλ∗0)
2tr(P (x−1)∆2). (3.19)
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Then

α∗0 (x) =
1 + 2λ∗0 (x)−

√
1 + 4λ∗0 (x)

2λ∗20 (x)
. (3.20)

Then we get

0 < α∗0 (x) 6 1. (3.21)

Since α∗0(x)tr(c2 ◦∆2) ≤ tr(c2 ◦∆2), we conclude

|φ′(α)− φ′(0)| ≤ −φ′(0)

for all α ≤ α∗0(x). Note that for the Newton decrement λ0

λ2
0(x) = tr(c2 ◦∆2) + tr(P (x−1)∆2) ≥ (λ∗0)

2.

Our main convergence result is:

Theorem 3.1. Assume c2 > 0 or c2 = 0, c1 > 0. For any x ∈ C, let λ∗0 (x) be defined by

(3.17) and let

α∗0 (x) =
1 + 2λ∗0 (x)−

√
1 + 4λ∗0 (x)

2λ∗20 (x)
.

For any initial condition x0 ∈ C the algorithm

xk+1 = xk − α∗0 (xk) gradΦ (xk) ,

converges quadratically fast to the unique global minimum x∗ ∈ C of

Φ(x) = tr(c0 + c1 ◦ x +
1

2
c2 ◦ x2)− log(det x).
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