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Abstract

This paper concerns policy synthesis in large queuing networks. The results provide answers
to the following questions:

(i) It is well-known that an understanding of variability is important in the determination
of safety stocks to prevent unwanted idleness. Is this the only use of high-order statistical
information in policy synthesis?

(ii) Will a translation of an optimal policy for the deterministic fluid model (in which
there is no variability) lead to an allocation which is approximately optimal for the stochastic
network? If so, what is the ‘regret’?

(iii) Where are the highest sources of sensitivity in network control?

A sensitivity analysis of an associated fluid-model optimal control problem provides an exact
dichotomy in (ii). If an optimal policy for the fluid model is ‘maximally non-idling’, then
variability plays a small role in control design.

If this condition does not hold, then the ‘gap’ between the fluid and stochastic optimal policies
is exactly proportional to system variability. However, sensitivity of steady state performance
with respect to perturbations in the policy vanishes with increasing variability.
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1 Introduction

Optimization and performance evaluation of networks is of great interest in both academia and the
industry for obvious reasons. It is equally obvious that standard approaches to optimization based
upon a discrete state-space Markov queueing model lead to intractable optimality equations even
for small network models. This has led to the development of various alternative network models
tuned to address particular issues such as steady-state performance; contention for resources; or
the impact of breakdowns (e.g. [14, 15, 6, 2, 37, 7].)

The simplest model is the linear, deterministic fluid model used in, for example, [1, 5, 4, 8, 24,
25, 26, 34, 39, 38]. It provides a framework for policy synthesis for large networks based on linear
programming, and this leads to attractive approaches to sensitivity analysis through the associated
Lagrange-multipliers.

Further motivation for the deterministic network model comes from an emerging theory estab-
lishing solidarity among various models. A strong solidarity between stability of fluid models and
their stochastic counterparts is established in [9, 10]. Results establishing solidarity among respec-
tive optimal control solutions are developed in [30, 31], based on this stability theory. It is shown
that scaled optimal solutions for the stochastic network are approximated by the optimal solution
for the fluid model. Conversely, it is shown in [32] that a policy based on an optimal solution for
the fluid model will be approximately optimal for the stochastic network model, provided a certain
effective cost is monotone.

The linear fluid model can be refined by the addition of an additive disturbance. When the
disturbance is Gaussian then one obtains the Brownian model developed in, for example, [35, 15,
36, 16, 23, 27, 19, 15, 20, 6, 22].

Certain small Brownian network models have yielded to exact analysis, and a translation of the
optimal policy to a network model with general statistics is then shown to be approximately optimal
by comparison with the Brownian network. A now standard approach to policy translation is to
impose thresholds, or safety-stocks. This ensures feasibility of solutions by preventing ‘deadlocks’
or ‘starvation of resources’. One example is the ‘criss-cross network’ introduced in [19], and further
studied in several subsequent references. When the effective cost is monotone then one obtains a
policy that is approximately path-wise optimal in heavy traffic [28]. A similar approach is pursued
in [3].

When the effective cost for the fluid-model is not monotone then an optimal policy is not path-
wise optimal for the Brownian model (see [32, Section 4.5]). An optimal policy for the Brownian
model is defined by nonlinear switching curves in workload-space. In this case only qualitative
structural results have been established in small examples (e.g. [28]), and numerical studies have
appeared in [21, 12].

The aforementioned optimality theory is based upon a workload representation of the network
under study. Related general constructions are described in [17, 31], and this framework will form
the basis of the results of the present paper. Some of the issues to be addressed are listed below.

(i) How does a policy for a stochastic model change when variability is increased? When the
monotonic effective cost assumption of [31] does not hold we demonstrate in Proposition 3.3 that
an optimal policy scales linearly with increasing variability.

(ii) When the effective cost is not monotone, but the fluid model admits a path-wise optimal
solution, we construct an affine policy based on the optimal fluid solution that is approximately
path-wise optimal in the mean, with exponentially small regret (see Theorem 4.2).

(iii) In Theorem 4.4 we find that, although the policy changes linearly with increased variability,
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second order sensitivity vanishes as variability approaches infinity.

(iv) In the process of translating a fluid policy to a stochastic model we identify parameters that
have a strong impact on performance. These correspond to hard constraints in the deterministic
optimal control problem. Some results are described in Section 4.3, and illustrated in Section 5.

The remainder of the paper is organized as follows. Section 2 contains a description of the models
used for analysis and control synthesis, and includes a construction of their workload relaxations.
Background on optimal control for these models is provided in Section 3, and this section also
contains new results that strengthen the solidarity first established in [30]. In the development
of Section 4 we establish qualitative bounds on sensitivity with respect to control parameters and
with respect to system variability. Section 5 provides detailed numerical examples, and Section 6
contains conclusions and suggestions for further research.

2 Network models and their relaxations

We begin with a description of the basic network models.

2.1 Network models in ‘buffer-coordinates’

The results of this paper are based on two primary network models: A stochastic network model
and its fluid counterpart.

Stochastic network models are the focus of most research in the networks area since they capture
a range of behaviors. In this sense, the deterministic model is limited. For example, it is obvious
that it has little value for steady-state prediction since no variability is included in the model.
However, the focus of this paper is on optimal control solutions for these various models, and the
relationship between their respective control solutions. Both the reduced complexity and linearity
of the fluid model are tremendous virtues in control design.

The stochastic and fluid network models are described through the respective equations,

Q(t;x) = x− S(Z(t;x)) + R(Z(t;x)) + A(t) (1)

q(t;x) = x + Bz(t;x) + αt, t ∈ R+ (2)

In both models time is continuous; the state processes Q(t;x), q(t;x) evolve on X := R
`
+; and the

allocation processes Z(t;x), z(t;x) evolve on R
`u

+ , for some integers `, `u ≥ 1.
For the fluid model (2) we have the following interpretations,

(i) q(t;x) ∈ R
`
+ is a vector of buffer-levels of various materials in the network;

(ii) ζ(t;x) := d
dt

z(t;x) is a vector of instantaneous processing rates of various activities. It is
subject to linear constraints:

ζ(t;x) ∈ U, U := {u ∈ R
`u

+ : Cu ≤ 1} t ∈ R+, (3)

where the constituency matrix C is an `m × `u matrix with binary entries, and 1 denotes a vector
of ones.

(iii) The vector α represents the rate of exogenous arrivals to the network, and possibly also
exogenous demands for materials from the network.
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(iv) The matrix B is of the form B = −S + R where R,S have positive entries: The value
Sij is the rate at which buffer i is drained when activity j is permitted to work at maximum rate
ζj(t;x) = 1, and Rkj is the rate at which that material is then sent to buffer k.

The stochastic network model (1) is a version of the stochastic processing network developed
in [17, 18]. It is subject to analogous interpretations and constraints:

(i) Q(t;x) ∈ R
`
+ is again a vector of buffer-levels. Typically, the entries of Q are further

constrained to be integer-valued, and the entries of Z are piece-wise linear, but these assumptions
are not required in this paper.

(ii) The allocation process Z satisfies the linear constraints,

Z(t;x)− Z(s;x)

t− s
∈ U, ∀ 0 ≤ s < t < ∞ , (4)

where the rate-set U is precisely the same as given previously for the fluid model.

(iii) The stochastic process A evolves on R
` with overall rate given by

lim
n→∞

A(tn)

n
= αt, a.s., t ≥ 0 .

(iv) Each of the stochastic process {R,S} are random functions from R
`u

+ → R
`
+. For any

ζ ∈ U the pair of stochastic processes {R(ζt), S(ζt) : t ∈ R+} obey the long-run rate condition,

lim
r→∞

R(rζt)− S(rζt)

r
= Bζt, a.s., t ≥ 0 .

We note that for each z ∈ R
`u

+ , the random variables S(z) and R(z) are typically highly correlated.

The rate condition in (iv) provides a justification of the fluid model (2) through scaling the
system equations (1). For r ≥ 1 define

qr(t;x) =
Q(rt; rx)

r
, x ∈ X, t ≥ 0 . (5)

Suppose that the open-loop, constant control is applied, z(t) = ζt, t ≥ 0, where ζ ∈ U is given. We
then have the approximation [6], for any initial x ∈ X, and any time t ∈ R+,

qr(t;x) = x + r−1[−S(Z(rt; rx)) + R(Z(rt; rx)) + A(rt)]

→ x + Bζt + αt, r →∞ a.s.

2.2 Workload relaxations

To define precisely what is meant by heavy-traffic we now give a general formulation of network
load. It is defined with respect to the fluid model (2) since it is a property of the ‘mean flow’ of
the model. The definition is independent of network variability.
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Stabilizability and network load The network model (2) is stabilizable if, for any initial condi-
tion x ∈ X, one can find an allocation z and a time T > 0 such that q(T ;x) = x+Bz(T )+αT = θ.
If this is the case, then the network can be controlled so that, starting empty, it will remain empty.
Consequently, there exists at least one solution ζ ss ∈ U to the equilibrium equation

Bζss = −α.

In the scheduling problem the number of activities is equal to the number of buffers in the
network. Hence the matrix B is square, and if it is invertible then ζ ss = −B−1α. We then define
the vector load by

ρ = (ρ1, . . . , ρ`)
T = Cζ ss = −CB−1α , (6)

and the system load is defined to be the maximum, ρ = maxi ρi. It is clear that ζ ss ∈ U if and only
if ρ ≤ 1.

When B is not square then a definition of load requires further effort. First, note that the linear
fluid model (2) may be described as a differential inclusion on X = R

`
+,

q̇(t;x) ∈ V, q(t;x) ∈ X,

where
V := {v : 〈ξi, v〉 ≥ −(δi − ρi), 1 ≤ i ≤ `v}.

The vectors {(ξi, ηi)} ⊂ R
` × R

`m

+ are given in [31] together with several simple examples. The
construction given in [31] defines an integer `r < `v such that δi = 1 for i ≤ `r, and δi = 0 for
i > `r. For the general network model we define ρi = 〈ξi, α〉, 1 ≤ i ≤ `v, and we assume that these
load parameters are decreasing in i with ρ = ρ1 = max{ρi}.

We let Ξ denote the `r × ` matrix with rows equal to {ξi : 1 ≤ i ≤ `r}, and for any fluid
trajectory q we define the workload process by

w(t;w0) = Ξq(t;x0), t ≥ 0 .

Fluid workload relaxation models
For arbitrary 1 ≤ n ≤ `r, the nth workload relaxation of (2) is defined as follows.

(i) The state space X is taken as R
`
+, and the velocity set is given by

V̂ =
{
v : 〈ξi, v〉 ≥ −(1− ρi), 1 ≤ i ≤ n

}
.

We denote by q̂ any trajectory in X satisfying d+

dt
q̂(t) ∈ V̂, t > 0, where d+

dt
denotes the

right-derivative.

(ii) The workload process for the relaxation is given by,

ŵ(t;x) = Ξ̂q̂(t;x), t ≥ 0, x ∈ X,

where Ξ̂ is the n× ` matrix with rows equal to {ξi : 1 ≤ i ≤ n}.

We assume that the workload vectors {ξi : 1 ≤ i ≤ n} are linearly independent. It then follows
that the dynamics of ŵ(t;x) are decoupled. That is, ŵ is defined as the state process for a differential
inclusion with constraints,

d

dt
ŵi(t;x) ≥ −(1− ρi), 1 ≤ i ≤ n .
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Equivalently, ŵ is described by the linear system,

ŵi(t;w) = w − (1− ρi)t + ιi(t), 1 ≤ i ≤ n , (7)

where the control ι :={ι(t) ∈ R
n
+ : t ∈ R+} represents idle-time of various resources in the network.

The control and state process are subject to the following constraints:

ιj(t)− ιj(s) ≥ 0, t, s ∈ R+, t ≥ s, j = 1, . . . , n. (8)

ŵ(t;x) ∈ Ŵ := {Ξ̂x : x ∈ X}. (9)

The set Ŵ is a positive cone since X = R
`
+.

Probabilistic workload relaxation models A formal workload relaxation can be formulated
for the stochastic model through the introduction of an exogenous disturbance N :

Ŵ (t;w) = w − (1 − ρ)t + I(t) + N(t), w ∈ Ŵ . (10)

The stochastic process N is an n-dimensional Brownian motion with zero-drift and instantaneous
covariance Σ > 0.

The control I again represents cumulative idle-time at various resources in the network. It is
constrained to be adapted to the Brownian motion N , with the simple constraint Ii(t)− Ii(s) ≥ 0
for all t ≥ s, and all 1 ≤ i ≤ n.

The model (10) can be justified through scaling the stochastic model (1) - this is a refinement
of the scaling given in (5). However, rather than justify the existence of a limiting RBM model,
which is far beyond the scope of this paper, we instead investigate properties of the relaxation (10).

3 Optimal control

Throughout the paper we denote by c : R
` → R+ a cost function on buffer-space. It is assumed

that c is a norm on R
`. Consequently, it is radially homogeneous, convex, and vanishes only at the

origin.
For the fluid model we consider the total-cost optimal control problem: For any initial condition

q(0) = x, we seek an allocation z that minimizes

J(x) =

∫ ∞

0

c(q(t;x)) dt, x ∈ X . (11)

We let J∗(x) denote the ‘optimal cost’, i.e., the infimum over all policies.
For the stochastic model we consider the steady state cost,

γ = lim sup
t→∞

E[c(Q(t;x)] .

Let us consider the problem of optimizing the RBM model. Optimization of the fluid model (2)
is considered in detail in [31].

Consider now the model (10) where the exogenous disturbance N has instantaneous covariance
Σ > 0. To effectively translate an optimal control ẑ∗(t;x) for the relaxed fluid model to (1) or (10)
one must understand how variability impacts policy structure for the stochastic model.

We assume that there exists a solution (h∗, γ∗) to the following average-cost optimal control
equations,

h∗(w) = inf E

[∫ T

0

(c̄(Ŵ (s;w))− γ∗) ds + h∗(Ŵ (T ;w))], T ≥ 0, (12)
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where h∗ is a continuous function on Ŵ, normalized so that h∗(0) = 0, and γ∗ > 0 is a constant (see
[33, 13]). Typically in average-cost optimization problems the function h∗ is also the value-function
of the infinite-horizon optimization,

h∗(w) = inf

∫ ∞

0

E[c̄(Ŵ (t;w)) − γ∗] dt (13)

In either form, the infimum is with respect to all admissible controls I . We further assume that,
for each w ∈ R

n
+, there exists an admissible idleness process {I ∗(t;w) : t ∈ R} that achieves the

infimum above.
The following result follows as in [29].

Proposition 3.1. Suppose that a solution (h∗, γ∗) to (12) exists with h∗ continuous. Then,

(i) γ∗ is the optimal average cost: for each w ∈ Ŵ,

γ∗ = inf
(
limT→∞ E

[
1

T

∫ T

0
c̄(Ŵ (t;w)) dt

])

= limt→∞ E
[
c̄(Ŵ ∗(t;w))

]

where the infimum is over all admissible controls, and the second equation uses the expectation with
respect to the optimal control I∗.

(ii) The relative value function h∗ is convex and monotone on Ŵ.

(iii) The relative value function is quadratically bounded:

0 < lim inf
‖w‖→∞

(h∗(w)

‖w‖2

)
< lim sup

‖w‖→∞

(h∗(w)

‖w‖2

)
< ∞.

(iv) As n →∞,
1

n2
h∗(nw) → Ĵ∗(w), w ∈ Ŵ, w 6= 0.

ut

Proposition 3.1 tells us that the relative value function is approximated by the fluid value
function for large w ∈ Ŵ. One would expect a similar result to hold for models with small
variability. We next address this question: How do optimal control solutions vary with increased
system variability?

Consider the following family of models with increasing variability, parameterized by the real
variable κ ≥ 0,

Ŵ (t;w, κ) = w − (1 − ρ)t + I(t) +
√

κN(t), Ŵ (0) = w ∈ Ŵ . (14)

This is a perturbation of (10). We again assume that N is a drift-less Brownian motion with
strictly positive covariance Σ. It follows that the scaled process N(t;κ) :=

√
κN(t) is a Brownian

motion with instantaneous covariance κΣ. For κ = 1 we suppress the dependency of Ŵ on κ and
write Ŵ (t;w) for the process starting from w ∈ Ŵ.

To understand the model (14) we introduce a second parametrized family of network models
by scaling the original model (10). For any κ > 0 define

Ŵ κ(t;w) = κŴ (t/κ;w/κ).
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This is also described as a linear model

Ŵ κ(t;w) = w − (1 − ρ)t + Iκ(t) + Nκ(t), Ŵ κ(0) = w ∈ Ŵ , (15)

where Iκ, Nκ are defined in the same way,

Iκ(t) := κI(t/κ), Nκ(t) := κN(t/κ) t ∈ R+ .

The following result is immediate from the definitions:

Lemma 3.2. For any κ > 0 the following two stochastic processes are identical in law:

Nκ(t) = κN(t/κ) , N(t;κ) =
√

κN(t) t ≥ 0.

Both are Brownian motion with zero drift, and instantaneous covariance equal to κΣ. ut

This observation leads to an exact description of the dependency of optimal control laws on
variability. Proposition 3.3 also provides a refinement of Proposition 3.1.

We henceforth assume that there is a region R∗(κ) ⊂ Ŵ that defines the optimal control I∗ so

that Ŵ (t;w, κ) ∈ R∗(κ) a.s. for all t > 0 and d
dt

I∗(t) = θ when Ŵ ∗(t;w, κ) lies in the interior of

R∗(κ). Assume that a stochastic process {Ŵ ∗
, I} satisfying these constraints exists, and that Ŵ

∗

is a strong-Markov process.

Proposition 3.3. Suppose the assumptions of Proposition 3.1 hold so that a continuous solution
(h∗, γ∗) exists to the average cost optimality equations for the model (14) with κ = 1.

Then, for any κ > 0 and any w ∈ Ŵ

(i) γ∗(κ) = κγ∗(1);

(ii) h∗(w;κ) := κ2h∗(w/κ; 1) defines the relative value function for (14);

(iii) Suppose that h∗( · ; · ) is C2 in K × [0, 1], where K ⊂ R∗(0) is compact. Then, letting
RK denote the positive cone,

RK = {aw : a > 0, w ∈ K} ,

there exists a radially-homogenous function ` : RK → R such that

h∗(w;κ) = Ĵ∗(w) + κ`(w) + O(κ2), w ∈ RK .

The error term O(κ2) is bounded in w.

(iv) For all κ > 0,

R∗′(κ) := κR∗(1) := {κw : w ∈ R∗(1)} ,

defines an optimal region for the model (14).
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4 Results on Sensitivity in Optimization of RBM Models

This section further develops structural properties of optimal control solutions. Our goal is to
obtain bounds on sensitivity of cost with respect to the following variables,

(i) Switching curves defining a policy;

(ii) System variability; and

(iii) Hard constraints on the network.

Throughout most of this section we restrict to the two dimensional case, and we assume that
Ŵ = R

2
+.

The range of possible behavior in the two dimensional case is limited, but in this special case
the impact of variability on optimal control solutions is most transparent.

4.1 Affine policies

For a two dimensional workload relaxation there are three cases to be considered

Case I The effective cost c̄ is monotone on R
2
+.

Case II The effective cost c̄ is not monotone on R
2
+, but the vector

(1− ρ1, 1− ρ2)
T lies in Ŵ

+.

Case III The effective cost c̄ is not monotone on R
2
+, and (1− ρ1, 1− ρ2)

T 6∈ Ŵ
+.

In [31] it is argued that the fluid-model relaxation admits a path-wise optimal solution from
any initial condition in Cases I and II: the optimal trajectories evolve in the set Ŵ

+ for all t > 0
Path-wise optimality cannot hold for any initial conditions w 6∈ Ŵ

+ in Case III. Optimal
trajectories evolve in a closed positive cone R∗(0) that is strictly larger than Ŵ

+. It is of the form

R∗(0) = {w ∈ R
2
+ : w2 ≥ s∗1(w1; 0), w1 ≥ s∗2(w2; 0)} ,

where the functions s∗i are linear for each i. The ‘0’ in this notation refers to the assumption that
κ = 0.

When κ > 0 then we can once again conclude that the optimal solution is trivial, in the sense
that Ŵ is point-wise minimal, in Case I. This is not true in Cases II or III: the model (10) does
not admit a path-wise optimal solution from any initial condition.

In Case II we attempt to obtain a solution that is approximately path-wise optimal in the mean
for κ > 0. This policy takes on a simple form:

Affine policies

(i) A policy for (14) is called affine if the controlled model is a reflected Brownian
motion in an affine domain of the form

R(κ) = {w ∈ Ŵ : 〈ηi, w〉 ≥ diκ}, 1 ≤ i ≤ `d,

with {ηi} ⊂ R
2, {di} ⊂ R.
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(ii) An affine translation of the optimal policy for the fluid model takes the specific
form,

si(wi;κ, β) = m∗
i [wi − κβi]+, wi ≥ 0, i = 1, 2 , (16)

where 0 ≤ m∗
1 < m∗

2 ≤ ∞ are the slopes of the optimal switching-curves {s∗i (wi; 0) : i =
1, 2}. Hence, for any κ > 0, β ∈ R

2
+, this is a simple “affine shift” of the optimal policy

for the fluid model.

The motivation for (16) is the following argument: firstly, from Proposition 3.3 (iv) we have
R∗(κ) = κR∗ for arbitrary κ > 0. The fact that {s∗i } define the upper and lower boundaries of
R∗(κ) further implies that,

s∗i (wi;κ) = κs∗i (wi/κ; 1), wi ∈ R+, κ > 0 .

Applying Proposition 3.3 again we obtain the following approximations which suggest that the
optimal switching curves {s∗i } are asymptotically affine and justify consideration of affine policies:

Proposition 4.1. Assume that, for some positive {w0
i : i = 1, 2}, the following derivatives exist

and are negative:

d∗i := lim
κ→0

s∗i (wi;κ) − s∗i (w
0
i ; 0)

κw0
i

.

Then, the optimal switching curve s∗i (wi;κ) is asymptotically affine: For each i = 1, 2,

s∗i (wi;κ) = s∗(wi, 0) + κd∗i + O(κ2), κ → 0, ∀wi > 0;

s∗i (wi; 1) = s∗(wi, 0) + d∗i + O(w−1

i ), wi →∞ .

ut
Having shown that the optimal policy is asymptotically affine, it is natural to attempt to

quantify the additional cost incurred when using the best affine policy, rather than the optimal
policy.

In Case II this is possible by analysing the one-dimensional height processes. For simplicity we
present the definition with respect to the lower switching curve. The definition of H 2 is completely
analogous.

The height process

(i) The unconstrained process X1(t) is the reflected Brownian motion in the do-
main {w ∈ R

2 : w2 ≥ m∗
1w1}, with instantaneous covariance κΣ, drift −(1 − ρ), and

initial condition X1(0) = (w1,m
∗
1w1)

T.

(ii) The height process associated with the lower boundary of R(κ) is the stochastic
process defined by H1(t) := X1

2 (t)−m∗
1X

1
1 (t), t ≥ 0. This is a one-dimensional reflected

Brownian motion whose drift and instantaneous covariance are given by,

δH1 = (1 − ρ) · (−m∗
1, 1)

T σ2

H1(κ) = κσ2

H1(1) = κ(−m∗
1, 1)Σ(−m∗

1, 1)
T

In Case II the upper and lower height processes {H i} are each recurrent since δHi ≥ 0, i = 1, 2.

In Theorem 4.2,we show that optimization of E[c̄(Ŵ (t;w, κ, β))] is essentially equivalent to
optimizing a cost function on the height process. This reasoning leads to the following parameters,

β∗1 = σ2

H1(1)(2m
∗
1δH1)−1 log

(
1 +

|c2
2
|

|c1
2
|

)

β∗2 = σ2

H2(1)(2m
∗
2δH2)−1 log

(
1 +

|c1
1
|

|c2
1
|

) (17)
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The affine shift β∗ ∈ R
2
+ given in (18)

The following theorem shows that it is possible to describe a simple affine policy that is approx-
imately optimal. The optimal affine shifts {β∗i } depend on the slopes of the linear functions that
make up the piece-wise linear (effective) cost function, and on the load vector ρ in the following
way:

β∗1 = (2m∗
1δH1)−1 log

(
1 +

|c22|

|c1
2
|

)

β∗2 = (2m∗
2δH2)−1 log

(
1 +

|c1
1
|

|c2
1
|

) (18)

The affine shift β∗ ∈ R
2
+ given in (18) is approximately optimal, with exponentially small regret

for small κ:

Theorem 4.2. Suppose that the effective cost c̄ is piece-wise linear, that Σ > 0, and that δHi > 0
for each i. Then, for any value of β, any fixed 0 < T1 < T2 < T ∗(w), and for each t ∈ [T1, T2],

‖w‖ ≤ 1, if we let Ŵ (t;w, κ, β) denote the resulting workload process initialized at Ŵ (0) = w under
the affine policy (16), we have,

E[c̄(Ŵ (t;w, κ, β∗))] ≤ E[c̄(Ŵ (t;w, κ, β))] −O(κ)
( ‖β − β∗‖2

1 + ‖β − β∗‖
)

+ O(exp(−M/κ))‖β − β∗‖ (19)

for some constant M > 0 depending on T1 > 0, T2 < T ∗(w). ut

There are many possible extensions and interpretations of Theorem 4.2. We give one corollary
here. By exploiting the scaling properties of optimal solutions established in Proposition 3.3, and
Proposition 4.1, we obtain approximations for κ = 1:

Theorem 4.3. Suppose that c̄ is piece-wise linear, that Σ > 0, and that δHi > 0 for each i. Fix
β ∈ R

2, w ∈ Ŵ, and 0 < T1 < T2 < T ∗(w‖w‖−1). Then,

(i) There exists M > 0 independent of w such that for all t satisfying 0 < T1‖w‖ ≤ t ≤
T2‖w‖ < T ∗(w),

E[c̄(Ŵ (t;w, κ, β∗))] ≤ E[c̄(Ŵ (t;w, κ, β))] + B0‖w‖ exp(−M‖w‖)

(ii) Assume in addition that {s∗i (wi, κ)} are C1 on (0, 1) × [0, 1]. There exists B0 < ∞
independent of w such that for each i = 1, 2 and each wi > 0,

|s∗i (wi; 1) − si(wi; 1, β
∗)| ≤ B0

wi

That is, m∗
i = d∗i where d∗i is as given in Proposition 4.1.

ut

The results above only apply to models satisfying Case II: In Case I the switching curves are
trivial, and independent of κ; in Case III the associated height process is not positive recurrent so
the construction of an optimal affine policy is not possible using the approach introduced here. To
better understand policies in Case III we now derive sensitivity formulae for cost with respect to
control parameters.
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4.2 Sensitivity to policy structure

Tp study sensitivity with respect to policy structure, suppose that a perturbation of the affine
switching curve (16) is given. To understand its effect on the average cost we again consider a
parametrized family of policies.

Suppose that ∆: R+ → R is a bounded, continuous function, and define for any real parameter
0 ≤ η ≤ 1,

s(w1;κ, η) := κs(w1/κ) + η∆(w1/κ), w1 ∈ R+.

We have not multiplied ∆ by κ since we wish to consider a perturbation of uniform size for the
entire range of κ.

Theorem 4.4 describes the scaling properties, and asymptotic nature, of the average cost when
the parameter η is varied.

Theorem 4.4. Suppose that the switching curve s(w1;κ, η) is stabilizing when κ = 1 and 0 ≤ η ≤ 1,
and that the steady state cost γ(1, η) is C2 on [0, 1]. Then,

(i) The steady state cost γ(κ, η) satisfies, γ(κ, η) = κγ(1, ηκ−1), κ ≥ 1, 0 < η ≤ 1.

(ii) The second derivative vanishes as κ →∞,

∂2

∂η2
γ(κ, η) = κ−1

( ∂2

∂η2
γ(1, ηκ−1)

)
, κ ≥ 1, 0 < η ≤ 1

ut

4.3 Sensitivity to buffer constraints

Theorem 4.4 suggests that there is little reason to devote effort to exactly optimize a workload-
relaxation since sensitivity is very low. First-order sensitivity is zero when the switching curve is
an interior-point minimizer, and second-order sensitivity vanishes for models with high variability.
These theoretical results are plainly illustrated in the numerical results shown in Section 5. This
brings us back to the title of this paper - where does the sensitivity lie?

We show here that if hard constraints are placed on the network then first order sensitivity with
respect to these constraints is non-zero, and bounded from below as system load increases. We
consider the special case of buffer constraints. The main conclusion is that if certain buffer levels
are constrained, independently of κ > 0, then the relative cost increases linearly with κ.

There is ample room in this area for further research. Structural results for the constrained
control problem and some further numerical experiments are described in [11].

Consider first the fluid model. If buffer constraints are imposed then the state space takes the
form X = {x : x ≥ θ, x ≤ b}, where b ∈ R

n
+ (we allow some entries to be infinite). The workload

space is equal to Ŵ = {Ξ̂x : x ∈ X}, and the effective cost c̄ : Ŵ → R+ is the solution to the
nonlinear program,

c̄(w) := min c(x)

subject to Ξx = w
x ≤ b

x ≥ θ.

(20)

We again define X ∗(w) to be the optimizing x ∈ X. If c is piece-wise linear in x then the effective
cost is piece-wise linear in the variables {wi, bj : 1 ≤ i ≤ `w, 1 ≤ j ≤ `}. This may be complex for
a large network with many constraints, but it can be written explicitly [11].

11



Computing the sensitivity of cost with respect to a buffer constraint bi < ∞ is straightforward
given the formula (20). For the relaxation we have,

∂

∂bi

c(q̂∗(t;w)) = −ΓiI(q̂
∗
i (t;w) = bi) .

where Γi ≥ 0 is a Langrange-multiplier. The sensitivity for the original fluid-model is identical,
after a transient period, since the two trajectories couple after a fixed time, independent of network
load [[31, Theorem 15]].

Consider now the stochastic workload-relaxation. Suppose that the policy is fixed, and that
the state space Ŵ and workload process Ŵ do not depend on b in a neighborhood of some value
of interest. In this case we obtain an exact expression for first-order sensitivity since only the cost
function c̄ is subject to variation:

∂

∂bi

E[c̄(Ŵ (t))] = −ΓiP(Ŵ (t) ∈ Wbi
), (21)

where Wbi
= {w : X ∗(w)i = bi}. For example, suppose that the optimal policy for the workload-

relaxation is non-idling for one κ ≥ 0. Then the same holds for any κ > 0, and we may conclude
that (21) holds.

We see here that sensitivity with respect to hard constraints is of order one. Consequently, for
fixed b, the relative cost γ∗(κ, b)− γ∗(κ) increases linearly with system variability.

If the policy also changes with bi then the formula (21) is no longer valid. However, Theo-
rem 4.4 (ii), and the numerical experiments presented in Section 5 all suggest that the sensitivity
of cost with respect to the policy in workload space is low. Taking this for granted, the identity
(21) suggests several approximations.

5 Numerical results

We conclude with numerical simulations illustrating the results of Section 4 for model shown in
Figure 1 with Poisson arrivals and exponential service distributions. We present affine policies in
Cases II and III, and we give results from a series of experiments to test sensitivity of cost with
respect to control parameters.

An optimal solution for the fluid model is described in workload space by the linear policy,

Work resource 2 at maximal rate if w2 ≥ m∗
1w1

and w2 6= 0

for some constant m∗
1. For a stochastic model we consider affine policies of the specific form,

Work resource 2 at maximal rate if (w2 − w̄2) ≥ m∗
1(w1 − w̄1)

and w2 ≤ w̄2

(22)

Numerical results for Case II We consider two instances of Case II for this model.

Case II (a) Rates: µ1 = µ3 = 20, µ2 = 10, α = 9.
The system is balanced with ρ1 = ρ2 = 9

10
.

Case II (b) Rates: µ1 = µ3 = 20, µ2 = 11, α = 9.
The loads are ρ1 = 9

10
and ρ2 = 9

11
.
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Figure 1: The network used in this section. Optimal policies for the Poisson workload-relaxation
in Case II obtained using value iteration.
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Figure 2: Contour and surface plots of average cost are shown on the left for Case II (a), and on
the right for Case II (b), for a sequence of affine translations of the optimal policy for the fluid
model.

In each instance the vector (1 − ρ1, 1 − ρ2)
T lies within the monotone region Ŵ

+. Hence the
optimal trajectory for the workload-relaxation ŷ will be greedy and path-wise optimal. Optimal
policies for Ŷ are shown in Figure 1. On the left is Case II (a), where the network is balanced, and
on the right is Case II (b). In the balanced case II (a) we see that the difference between the fluid
and stochastic switching curves is significant. This corresponds to null-recurrence of the associated
height process. The optimal policy in Case II (b) is accurately approximated by an affine policy
whose offset is determined by an associated Brownian workload model.

We now compare a family of affine policies of the form (22) for the three-dimensional Poisson
model. In Case II these may be expressed,

Serve buffer one if buffer three is zero, or
x3 ≤ β and x2 ≤ x̄2.

(23)

For the fluid model, the optimal parameters are x̄2 = 0 and β = ∞. The simulation results are
shown in Figure 2 for Case II (a) and Case II (b).

Numerical results for Case III Now the loads at the two machines are ρ1 = 9

11
and ρ2 = 9

10

respectively. We are thus in Case III, and expect lower sensitivity with respect to the policy since
the mean drift forces the process away from the optimal switching curve for both stochastic and
fluid models.

Shown in Figure 3 are the results of a simulation of affine translations of the optimal policies
with x̄2 = 1, 2, . . . , 12 and β = 1, 2, . . . , 36, where x̄2 indicates when the control will change and β
indicates an affine shift of the switching curve. This example illustrates the relative sensitivity of
cost to hard constraints and interior points. On a fluid scale, the sensitivity of cost with respect to
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Figure 3: Contour and surface plots of average cost for Case III for a sequence of affine translations
of the optimal policy for the fluid model.
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Figure 4: Surface plots of average cost for the balanced model with buffer constraints. The sen-
sitivity estimate (24) is nearly exact in this example. Sensitivity with respect to β remains very
small.

the threshold x2 ≤ x̄2 is strictly positive. On the other hand, the sensitivity of the optimal policy
to the parameter β is zero for the fluid model at its optimal value β = x̄3 − x̄1 − 2x̄2 = 0. The
contour plot given in Figure 3 shows that this dichotomy is inherited by the stochastic model in
this example.

Sensitivity to hard constraints To illustrate the conclusions of Section 4 we focus on buffer
constraints. We consider a single numerical experiment in Case II (a). We take b2 = b3 = ∞, and
vary the constraint b1 on buffer one. We impose the constraint that buffer one receives priority
whenever Q1(t) ≥ b1. A policy of this form will maintain a constraint of the form Q1(t) ≤ b1 + K
with high probability (of order (9/20)K ). We stress that this is not a loss-model - we do not reject
any arriving customers.

A candidate sensitivity approximation with respect to b1 is

[
E

b1=k[c(Q(t))] − E
b1=k−1[c(Q(t))]

]
≈ −[Pb1=k(Q1(t) ≥ k)], k ≥ 1

The simplest case is b1 = k = 0 since the resulting policy is First-Come First-Served (FBFS). In
this case Q1 is equivalent to an M/M/1 queue with arrival rate α and service rate µ1. For the
numerical values considered here it follows that P(Q1(1) ≥ 1) = α/µ1 = 9/20, and this gives the
approximation,

E
b1=1[c(Q(t))] − E

b1=0[c(Q(t))] ≈ −9/20 (24)

Numerical results are shown in the surface plot shown in Figure 4. We see in this example that
the approximation (24) is nearly exact.
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6 Conclusions

This paper has developed structural properties of various network models, and has broadened the
solidarity between their respective optimal control solutions.

A central tool has been the analysis of a one-dimensional parametrized family of stochastic mod-
els. At one extreme, κ = 0, we obtain the fluid network-model, and as κ increases the model shows
increasing variability. By exploring the relationship between these models we found that increasing
variability typically results in increasingly conservative optimal solutions (see Proposition 3.3). For
example, for certain network models the fluid optimal solution would require significant idle-time
of bottlenecks in certain regimes (e.g. the sixteen-buffer model considered in [31, 11]). With higher
variability, an optimal solution will place higher priority on feeding bottlenecks. This corresponds
exactly with the intuition of many working in the manufacturing area [14].

However, the conclusions of Theorem 4.4 and the numerical results shown in Section 5 all
suggest that a focus on computing exact solutions to the workload optimization problem is not
likely to yield significant improvements in applicability of the theory. In a specific application one
will typically find control parameters for which sensitivity is far greater.

We are currently investigating in more detail control issues surrounding buffer constraints;
safety-stocks; and non-standard performance metrics such as disaster-recovery [11]. These ideas
may also be valuable in design. For example, what is the true value of a reduction in variability?
The value of additional hardware or additional monitoring to reduce variability can be analysed
through a sensitivity analysis as described briefly in Section 4.3.

We are also currently investigating a question posed in [31]: Do the results of this paper lead
to improved methods for performance approximation via simulation, or through calculation, by
exploiting the simplicity of the network model following state space collapse?

It is likely that a deeper look at the theory will lead to further insights
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