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Abstract

Standard switching control methods are based on the certainty equivalence philos-
ophy in that, at each switching time, the supervisor selects the candidate controller
that is better tuned to the currently estimated process model. If the estimated model
does not appropriately describe the process, this procedure may result in the selection
of a controller that is not appropriate for the actual process.

In this paper, we propose a supervisory switching logic that takes into account the
uncertainty on the process description when performing the controller selection. Specif-
ically, a probability measure describing the likelihood of the different models is com-
puted on-line based on the collected data and, at each switching time, the supervisor
selects the candidate controller that, according to this probability measure, performs
the best on the average. If the candidate controller set is hierarchically structured, the
supervisor automatically selects the controller that appropriately compromises robust-
ness and performance, given the actual level of uncertainty on the process description.
The use of randomized algorithms makes the supervisor implementation computation-
ally tractable.

1 Introduction

Suppose that a process with transfer function G◦(z−1) has to be regulated by choosing a

controller in some candidate controller set {K(γ, z−1) : γ ∈ Γ}. In a standard optimal

control setting, the control performance achieved by applying controller K(γ, z−1) to the

process G◦(z−1) is typically measured by a (positive) cost criterion J(G◦(z−1); K(γ, z−1)):

the lower the value of J(G◦(z−1); K(γ, z−1)), the more satisfactory the control performance.

If the process is known, an optimal controller is computed by minimizing J over the candidate

controller set. In this context, J can represent any cost, e.g., of the H2 or H∞ type.

Consider now the case of interest – i.e., when the process is not known – and suppose that a

parametric class of admissible process models is introduced {G(ϑ, z−1) : ϑ ∈ Θ}. Then, the

problem of selecting the best controller according to J can be addressed by introducing a

state variable representing the unknown parameter vector, and solving the optimal control

problem on the so-obtained augmented state-space representation of the process. The result-

ing controller incorporates a self-adjusting mechanism, in that it selects a control input that
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realizes an appropriate compromise between the control and the identification objectives

(dual action, see, e.g., [1]). However, such an optimal dual control approach is generally

difficult, except in a few simple cases, where computing the solution to the optimization

problem is actually feasible.

A computationally feasible – though sub-optimal – approach to the design of self-adjusting

controllers is the so-called switching control design method originally introduced in [2] and

further developed in, e.g., [3]-[7]. The switching control scheme is composed of an inner loop

where a candidate controller is connected in closed-loop with the process, and an outer loop

where a supervisor decides which controller to select and when to switch to a different one,

based on the input-output data.

The switching time instants are chosen so as to avoid switching that is too fast with respect

to the system’s settling time, thus causing instability. As for the controller selection proce-

dure, it is typically an “estimator-based” procedure ([3, 4]). Specifically, at any switching

time instant, a performance signal – given by the integral norm of an estimation error – is

computed for each admissible model parameter. The supervisor then selects the candidate

controller that is optimal for the model that minimizes the performance signal (certainty

equivalence approach). Implementation and analysis of the switching control scheme are

typically simplified by considering a finite set of candidate controllers with the characteristic

that, associated to each admissible process model, there is a candidate controller that en-

sures stability when placed in closed-loop with it. This set is called a finite controller cover

([8, 9]).

In a standard switching control scheme, the compromise between robustness and performance

is made when one designs the controller cover and the map associating each process model

with a particular controller. When the controller cover is composed by a few controllers,

each one stabilizing a wide set of models, then robust stability is generally guaranteed in the

transient phase, but in the long run the resulting performance is typically low. In contrast,

when the controller cover is composed by a large number of controllers, each one tailored

to a narrow set of models, a highly performing control system is potentially achieved, but

poor performance will most likely occur until there is sufficient data to obtain an accurate

estimate of the process model.

In this paper, we propose a cautious switching logic that still relies on the introduction

of a parameterized class of admissible process models but, differently from the certainty

equivalence-based logic, takes into account the uncertainty in the process description when

performing the controller selection.

The controller choice is based on an on-line computed probability measure Pt describing the

likelihood of the different process models. At any switching time instant t, the supervisor

selects the controller that minimizes the average control cost ct(γ) := EPt
[J(ϑ, γ)], γ ∈ Γ,

where J(ϑ, γ) is the short-hand-notation for J(G(ϑ, z−1), K(γ, z−1)) and EPt
[J(ϑ, γ)] is the

expectation of J(ϑ, γ) with respect to the measure Pt for ϑ. Minimizing ct(·) corresponds

to optimizing the average control system behavior where different models are given different

weights according to their likelihood at time t (cautious control, [10],[1, pag. 438]).
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With cautious switching, we can overcome the difficulty in standard switching control that

arises from being forced to establish an a-priori compromise between robust stability and

performance by associating to each model a single candidate controller. To achieve this,

we propose to integrate in the cautious switching scheme a hierarchically-structured set of

candidate controllers composed of different finite controller covers: the lower level cover

contains controllers with a high level of robustness, but low performance guarantees, and, as

we go up in the hierarchical structure, we have controller covers with increasing performance,

while progressively penalizing robustness. When the distribution Pt is spread out over the

set Θ, it is expected that the cautious supervisor will select a controller that is robust with

respect to stability, though low performing. As time goes by, more and more information is

accumulated and the distribution Pt is expected to become more and more sharply peaked

around the model that better describes the actual process. Consequently, the cautious

supervisor will select controllers better tailored to the true process, ultimately resulting in

an improvement of performance. Thus, in finite time the control scheme is robust, and it

progressively becomes better performing.

The use of average control cost criteria was originally proposed in [11] in the context of

robust control and then extended to the adaptive control context in [12]. In these refer-

ences, randomized algorithms are used to make the minimization of the average control

cost computationally tractable. Inspired by this, we suggest a stochastic algorithm for the

implementation of the cautious switching logic.

The design of the proposed switching scheme is carried out for a discrete-time single in-

put/single output process affected by white Gaussian noise. We analyze the performance of

the resulting control algorithm and prove that the closed-loop is stable.

2 Problem formulation

We address the problem of regulating a stochastic linear process described by

A(ϑ◦, z−1)yt+1 = B(ϑ◦, z−1)ut + wt+1,

where the polynomials A(ϑ◦, z−1) = 1−
∑ns

i=1 a◦i z
−i, ns ≥ 1, and B(ϑ◦, z−1) =

∑ms

i=1 b◦i z
−(i−1),

ms ≥ 1, depend on the unknown parameter vector ϑ◦ = [a◦1, . . . , a
◦
ns

, b◦1, . . . , b
◦
ms

]T and the

signal w is a noise process described by the following assumption.

Assumption 2.1. {wt} is a sequence of independent and identically distributed Gaussian

random variables with zero mean and variance σ2 > 0.

We suppose that some a-priori knowledge is available on ϑ◦. Specifically, we assume that

Assumption 2.2. ϑ◦ is an interior point of the compact set Θ ⊂ Rns+ms.
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Model class: We consider the class of models

A(ϑ, z−1)yt+1 = B(ϑ, z−1)ut + wt+1, ϑ ∈ Θ.

Each model can be expressed in the regression-like form

yt+1 = ϕT
t ϑ + wt+1, (2.1)

where ϕt = [ yt, . . . , yt−ns+1, ut, . . . , ut−ms+1 ]T is the regression vector.

Candidate controller set: We consider a finite set of candidate controllers, where each

controller is described by

C(γ, z−1)ut = E(γ, z−1)yt,

with the polynomials C(γ, z−1) = 1 −
∑mc

i=1 χiz
−i and E(γ, z−1) =

∑nc

i=0 ηiz
−i depending on

γ = [η0 η1 . . . ηnc χ1 χ2 . . . χmc ]
T ∈ Γ ⊆ Rnc+mc+1.

We assume that the candidate controller set is sufficiently rich to appropriately control any

admissible model. To make this precise, let us denote by S(ϑ, γ) the closed-loop system

for which the model with parameter ϑ is controlled by the controller with parameter γ.

Given λ ∈ [0, 1), we say that S(γ, ϑ) is λ-stable if all the eigenvalues of the characteristic

polynomial of S(γ, ϑ) have absolute value smaller than or equal to λ. We assume that the

control performance of S(γ, ϑ) is measured by

J(ϑ, γ) :=


αJ ′(ϑ, γ)

1 + αJ ′(ϑ, γ)
, if S(ϑ, γ) is λ-stable

1, otherwise,
(2.2)

where J ′(ϑ, γ) is some positive cost criterion (e.g., an H2 or H∞ cost), and α is a positive

constant. The criterion J thus combines both stability and performance. Note that J ′ is

normalized so that J takes values in [0, 1]. This is done for technical reasons related to the

implementation of the cautious switching logic.

We can then formalize the required richness of the candidate controller set as follows.

Assumption 2.3. J̄ := supϑ∈Θ infγ∈Γ J(ϑ, γ) < 1.

This means that for any admissible model, there is a candidate controller which ensures a

closed-loop performance of at least J̄ .

Supervisory switching logic: The task of supervisor is to generate a switching signal

that determines, at each time instant, which is the candidate controller to place in closed-loop

with the process, based on the data collected. In a switching control system, the switching

rate is slowed down so as to avoid switching that is too fast with respect to the system’s

settling time, destabilizing it. We adopt the so-called dwell-time switching logic where a
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dwell time is forced between consecutive switching instants ([4, 13, 14, 15]). Similarly to

[15], we use a varying dwell time, which is adaptively selected based on the data collected

from the system. We postpone to Subsection 2.2 the description of the method used for

dwell-time selection. In the next subsection, we describe the candidate controller selection

procedure, which is the distinguishing feature of the proposed approach.

2.1 Cautious controller selection

At each switching time t, the supervisor selects the next candidate controller by minimizing

the average cost ct(γ) = EPt [J(ϑ, γ)] over the controller set Γ. The controller selection

procedure involves two tasks: i) computing the probability measure Pt, and ii) minimizing

the average cost ct(·). We address these two issues next.

i) Computing Pt

In order to derive a method for computing Pt, it is mathematically convenient to assume that

ϑ◦ is stochastic and randomly chosen according to a distribution P . Under this assumption,

we can in fact think of Pt as the a-posteriori distribution of ϑ◦ conditioned to the observations.

This line of reasoning dates back to [16], [17], and has become common practice in adaptive

control, see, e.g., [18], [19], [20]. In these references, ϑ◦ is supposed to be a Gaussian random

variable independent of the noise process {wt} and therefore the a-posterior distribution of

ϑ◦, given all the observations up to time t, is still Gaussian with mean and variance that can

be computed using the Kalman filter equations ([21]).

Here, we assume that ϑ◦ is a random variable, independent of the noise process {wt}, taking

values in Θ and distributed according to a Gaussian distribution truncated to Θ. Specifically,

we set P ∼ NΘ(M, V ), where NΘ(M, V ) denotes the rescaled Gaussian distribution with

mean M and variance V , whose support is restricted to the set Θ. We assume that V > 0.

This allows us to embed in the stochastic framework for computing Pt the a-priori knowledge

on ϑ◦ provided by Assumption 2.2. Moreover, the results proven in [21] for the standard

Gaussian case can be extended to our framework. Indeed, denote by Mt and Vt the mean

and variance of the posterior distribution of ϑ◦ in the case when ϑ◦ is a Gaussian random

variable with mean M and variance V . Since the posterior distribution of ϑ◦ satisfies

P(ϑ◦|yj, j = 0, 1, . . . , t) = P(yj, j = 0, 1, . . . , t|ϑ◦) P(ϑ◦)

P(yj, j = 0, 1, . . . , t)
, ϑ◦ ∈ Rns+ms ,

where P(yj, j = 0, 1, . . . , t|ϑ◦) depends only on the considered value for ϑ◦ and P ∼ NΘ(M, V ),

one concludes that Pt(ϑ
◦) ∼ NΘ(Mt, Vt).
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Therefore, Pt can be recursively updated as follows.

Algorithm 2.1.

1. compute Mt and Vt through the Kalman filter equations

Kt−1 = Vt−1ϕt−1/(ϕ
T
t−1Vt−1ϕt−1 + σ2)

Mt = Mt−1 + Kt−1(yt − ϕT
t−1Mt−1)

Vt = Vt−1 − Vt−1ϕt−1ϕ
T
t−1Vt−1/(ϕ

T
t−1Vt−1ϕt−1 + σ2),

initialized with M0 = M and V0 = V .

2. set Pt ∼ NΘ(Mt, Vt).

ii) Minimizing ct(·)

An exact minimization of ct(·) is computationally hard because ct(γ) = EPt [J(ϑ, γ)] is the

integral over Θ of the cost J(ϑ, γ) with respect to measure Pt for ϑ. For many control

objectives, the integrand function J(ϑ, γ) cannot be computed in a closed-form and even the

evaluation of J(ϑ, γ) for a given pair (ϑ, γ) may be time consuming. The approach adopted

here to overcome this difficulty follows to a large extent the ideas in [11, 12] and is based on

the use of randomized methods. The resulting minimizers are not rigorously optimal (i.e.,

they do not minimize EPt [J(ϑ, γ)] with probability 1). Nevertheless, it is possible to see that

minimization is achieved in a weaker sense.

Algorithm 2.2. Given ε ∈ (0, 1) and δ ∈ (0, 1), do the following:

1. extract at random M(ε, δ) ≥ 2
ε2

ln 2|Γ|
δ

independent model parameters ϑ1,t, ϑ2,t,. . . , ϑM(ε,δ),t

according to the probability distribution Pt;

3. compute ÊPt,M(ε,δ)[J(ϑ, γ)] :=
1

M(ε, δ)

M(ε,δ)∑
i=1

J(ϑi,t, γ);

4. choose γt := arg min
γ∈γ

ÊPt,M(ε,δ)[J(ϑ, γ)].

We next prove that the controller parameter γt obtained through the stochastic Algorithm 2.2

is an approximate minimizer of EPt [J(ϑ, γ)] over Γ. In the following proposition, the phrase

“with probability not less than 1 − δ” makes reference to the probability involved in the

random extraction of γt, once the past up to time t has been fixed.

Proposition 2.1. The controller parameter γt computed via Algorithm 2.2 is an approx-

imate minimizer of EPt [J(ϑ, γ)] to accuracy ε with confidence 1 − δ, i.e., EPt [J(ϑ, γt)] ≤
infγ∈Γ EPt [J(ϑ, γ)] + ε, with probability not less than 1− δ.

Proof. γt is the minimizer of the sampling estimate ÊPt,M(ε,δ)[J(ϑ, γ)], which is based on a

random selection of parameters ϑi ∈ Θ and, as such, it is a random variable over the space

ΘM(ε,δ) := Θ × Θ × . . . × Θ, M(ε, δ) times. Consider the multi-samples θ ∈ ΘM(ε,δ) such
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that ÊPt,M(ε,δ)[J(ϑ, γ)] is an uniformly good approximation to EPt [J(ϑ, γ)] over the set Γ to

accuracy ε/2, namely Q :=
{
θ ∈ ΘM(ε,δ) : supγ∈Γ |ÊPt,M(ε,δ)[J(ϑ, γ)] − EPt [J(ϑ, γ)]| ≤ ε

2

}
.

Then, ∀θ ∈ Q, letting γt := arg minγ∈Γ ÊPt,M(ε,δ)[J(ϑ, γ)], and γ◦t := arg minγ∈Γ EPt [J(ϑ, γ)],

we have that

EPt [J(ϑ, γt)] ≤ ÊPt,M(ε,δ)[J(ϑ, γt)] +
ε

2
≤ ÊPt,M(ε,δ)[J(ϑ, γ◦t )] +

ε

2

≤ EPt [J(ϑ, γ◦t )] +
ε

2
+

ε

2
= inf

γ∈Γ
EPt [J(ϑ, γ)] + ε. (2.3)

We next show that the probability that the multisample θt := {ϑ1,t, . . . , ϑM(ε,δ),t} belongs to

Q is greater than or equal to 1− δ. In view of (2.3), this concludes the proof.

By the definition of Q and the fact that the parameters ϑ1,t, . . . , ϑM(ε,δ),t are independently

extracted according to Pt, we have that

Pr{θt ∈ Q} = 1− PM(ε,δ)

t

{
θt ∈ ΘM(ε,δ) : sup

γ∈Γ
|ÊPt,M(ε,δ)[J(ϑ, γ)]− EPt [J(ϑ, γ)]| > ε

2

}
≥ 1− 2|Γ|e−M(ε,δ)ε2/2,

where the last inequality follows from Hoeffding’s inequality ([22]). Given that M(ε, δ) ≥
2
ε2

ln 2|Γ|
δ

, it is straightforward to verify that Pr{θt ∈ Q} ≥ 1− δ.

2.2 Dwell-time selection

We adaptively select the dwell-time interval between consecutive switching times based on

the model parameters extracted in step 1 of Algorithm 2.2. Specifically, we introduce the

dwell-time function τD : 2Θ × γ → N, where 2Θ is the power set of Θ, and compute the

switching time sequence {ti} by the recursive equation

ti+1 = ti + τD(θti , γti), i = 0, 1, . . . (2.4)

initialized with t0 = 0, where θti := {ϑ1,ti , ϑ2,ti , . . . , ϑM(ε,δ),ti} is the set of M(ε, δ) model

parameters extracted at point 1 of Algorithm 2.2 at time t = ti.

To define the dwell-time function, we first introduce the following notation: Consider the

closed-loop system {
A(ϑ, z−1) yt+1 = B(ϑ, z−1) ut + wt+1,

C(γ, z−1)ut = E(γ, z−1)yt.
(2.5)

By letting xt := [yt . . . yt−(n−1) ut−1 . . . ut−(m−1)]
T where n := max{ns, nc + 1} and m :=

max{ms, mc + 1}, system (2.5) can be represented by{
xt+1 = A(ϑ) xt + B(ϑ)ut + Cwt+1,

ut = L(γ)xt,
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where

A(ϑ) =



a1 . . . an−1 an

1 0 . . .
. . . . . .

1 0

b2 . . . bm−1 bm

0 . . . 0
. . . 0

0

0 . . . . . . 0

0 . . . . . . 0
. . . . . .

0 0

0 . . . . . . 0

1 0
. . . . . .

1 0


, B(ϑ) =



b1

0
...

0

1

0
...

0


, C =



1

0
...

0

0

0
...

0


,

L(γ) =
[

η0 · · · ηn−2 ηn−1 χ1 · · · χm−2 χm−1

]
,

with ai = 0 if i > ns, ηi = 0 if i > nc, bi = 0 if i > ms, χi = 0 if i > mc, thus leading to

the state-space representation xt+1 = F (ϑ, γ) xt +Cwt+1, where F (ϑ, γ) = A(ϑ)+B(ϑ)L(γ).

The condition that S(ϑ, k) is λ-stable implies that matrix F (ϑ, γ) has all eigenvalues with

absolute value smaller than or equal to λ.

Fix a contraction constant µ ∈ [0, 1). Then, τD is defined by

τD(Θ̄, γ) := min{τ ≥ 1 : sup
ϑ∈Θ̄:F (ϑ,γ) λ-stable

‖F (ϑ, γ)τ‖ ≤ µ}, Θ̄ ⊆ Θ, γ ∈ Γ, (2.6)

with the understanding that, if the set {ϑ ∈ Θ̄ : F (ϑ, γ) λ-stable} is empty, then τD(Θ̄, γ) =

1. Thus, by (2.4), the controller with parameter γti is kept in the loop until the possible

overshoot of any system S(ϑ, γti), ϑ ∈ θti , stabilized by it has decayed of a factor µ.

3 Stability Analysis

In this section, we analyze the cautious switching control scheme:{
yt+1 = [1−A(ϑ◦, z−1)] yt+1 + B(ϑ◦, z−1) ut + wt+1

ut = E(σt, z
−1) yt + [1− C(σt, z

−1)] ut,
(3.7)

where σt is the switching signal given by

σt :=

{
γti , if t = ti

σt−1, otherwise.

In particular, we shall prove that the closed-loop system is L2-stable in the following sense:

lim
N→∞

1

N

N−1∑
t=0

[u2
t + y2

t ] < ∞, a.s. (almost surely), (3.8)

for all ϑ◦ satisfying Assumption 2.2.
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Theorem 3.1. The cautious switching control scheme is L2-stable.

Note that, differently from Proposition 2.1, the statement (3.8) is not of average type, instead

it is guaranteed to hold true for all interior points of Θ. As a matter of fact, the interpretation

of ϑ◦ as a stochastic random variable is just instrumental to computing Pt. In this section,

ϑ◦ is viewed simply as a deterministic parameter satisfying Assumption 2.2.

The following proposition is needed to prove Theorem 3.1.

Proposition 3.1. The model parameters ϑ1,t, ϑ2,t, . . . , ϑM(ε,δ),t independently extracted in step

1 of Algorithm 2.2 according to Pt ∼ NΘ(Mt, Vt) computed in Algorithm 2.1 satisfy

(ϑj,t − ϑ◦)T

t∑
s=1

ϕs−1ϕ
T
s−1(ϑj,t − ϑ◦) = o

( t∑
s=1

‖ϕs−1‖2
)
, j = 1, . . . ,M(ε, δ), a.s.

Proof. Fix a real constant β > 0 and define

vt := log1+β
( t∑

s=1

‖ϕs−1‖2
)
. (3.9)

Observe that from equation yt = ϕt−1ϑ
◦ + wt it follows that w2

k ≤ 2 max{‖ϑ◦‖2, 1}[ y2
k +

‖ϕk−1‖2 ]. Taking into account the fact that the autoregressive part of model (2.1) is not

trivial (n > 0), this in turn implies that w2
k ≤ 2 max{‖ϑ◦‖2, 1}[ ‖ϕk‖2 + ‖ϕk−1‖2 ], hence,∑t

k=1 ‖ϕk−1‖2 ≥ h
∑t−1

k=1 w2
k, where h is a suitable constant. By Assumption 2.1, we then

have

t =O(
t∑

k=1

‖ϕk−1‖2), a.s. (3.10)

Define the set St :=
{

ϑ ∈ Θ : (ϑ−Mt)
T V −1

t (ϑ−Mt) > vt

}
⊆ Θ. We next prove that,

lim
t→∞

Pt(St) = 0, a.s. (3.11)

at an appropriate rate. This will be key to prove the proposition.

Fix a time instant t ≥ 0. Since Pt ∼ NΘ(Mt, Vt), Pt(St) can be upper bounded as follows

Pt(St) ≤

∫
ϑ∈Rns+ms\Et

pg(ϑ; Mt, Vt)dϑ∫
ϑ∈Θ

pg(ϑ; Mt, Vt)dϑ

, (3.12)

where pg(·; Mt, Vt) is the density function associated with the Gaussian distribution with

mean Mt and variance Vt, and Et denotes the ellipsoid in Rns+ms defined by Et := {ϑ ∈
Rns+ms : (ϑ−Mt)

T V −1
t (ϑ−Mt) ≤ vt}. We next bound the numerator and denominator of
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the right-hand-side in (3.12).

By changing the integration variables, the numerator can be expressed as follows:∫
ϑ∈Rns+ms\Et

pg(ϑ; Mt, Vt)dϑ =
1

(2π)(ns+ms)/2

∫
‖v‖>vt

exp
(
− 1

2
‖v‖2

)
dv

=
c

(2π)(ns+ms)/2

∫
r>vt

rns+ms−1 exp
(
− 1

2
r2

)
dr, (3.13)

where crns+ms−1, with c := (ns + ms)
π(ns+ms)/2

((ns+ms)/2)!
, is the surface of the (ns + ms)-sphere of

radius r. Observe that by (3.9) and (3.10), there exists a.s. t′ ≥ 0 such that

c

(2π)(ns+ms)/2
rns+ms−1 exp

(
− 1

4
r2

)
≤ c

(2π)(ns+ms)/2
vns+ms−1

t exp
(
− 1

4
v2

t

)
≤1, r > vt, t ≥ t′.

Then, using this bound in (3.13), we have that
∫

ϑ∈Rns+ms\Et
pg(ϑ; Mt, Vt)dϑ ≤

∫
r>vt

exp(−1
4
r2)dr,

t ≥ t′. Since
∫

r>vt
exp(−1

4
r2)dr ≤ 1√

vt
exp(−1

4
v2

t ), we finally obtain∫
ϑ∈Rns+ms\Et

pg(ϑ; Mt, Vt)dϑ ≤ 1
√

vt

exp
(
− 1

4
v2

t

)
, t ≥ t′. (3.14)

As for the denominator in the right-hand-side of (3.12), it can be bounded as follows:∫
ϑ∈Θ

pg(ϑ; Mt, Vt)dϑ ≥
∫

ϑ∈Θ

pg(ϑ; ϑ◦, Vt) exp
(
− 1

2

(
ϑ− ϑ◦

)T
V −1

t

(
ϑ− ϑ◦

))
dϑ

exp
(
−

(
ϑ◦ −Mt

)T
V −1

t

(
ϑ◦ −Mt

))
, (3.15)

since (ϑ−Mt)
T V −1

t (ϑ−Mt) ≤ 2(ϑ− ϑ◦)T V −1
t (ϑ− ϑ◦) + 2(ϑ◦ −Mt)

T V −1
t (ϑ◦ −Mt).

By [23, Theorem 4.1] and [24], (ϑ◦ −Mt

)T
V −1

t

(
ϑ◦ −Mt) = O(log(

∑t
s=1 ‖ϕs−1‖2)), a.s. This

jointly with (3.9) and (3.10) implies that there exists a.s. a time instant t̃ ≥ 0 such that(
ϑ◦ −Mt

)T
V −1

t

(
ϑ◦ −Mt

)
≤vt, t ≥ t̃. (3.16)

We next bound the term
∫

ϑ∈Θ
pg(ϑ; ϑ◦, Vt) exp(−1

2

(
ϑ− ϑ◦

)T
V −1

t

(
ϑ− ϑ◦

)
)dϑ in (3.15).

By some algebraic manipulations, it can be easily seen that Vt given by the Kalman filter

equations satisfies the following equation

V −1
t =

1

σ2

t∑
s=1

ϕs−1ϕ
T
s−1 + V −1, (3.17)

and, hence, V −1
t+1 ≥ V −1

t , ∀t. From Assumption 2.2 and this property of Vt, it follows that

there exists a ∆ > 0 such that Dt := {ϑ ∈ Rns+ms : (ϑ − ϑ◦)T V −1
t (ϑ − ϑ◦) ≤ ∆} ⊆ Θ,

t ≥ 0. Indeed, since ϑ◦ is an interior point of the compact set Θ, there exists ∆ > 0 such

that D0 ⊆ Θ. Then, Dt ⊆ Θ, ∀t ≥ 0, follows from the monotonicity property Dt+1 ⊆ Dt,
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∀t ≥ 0, which is a consequence of the fact that V −1
t+1 ≥ V −1

t , ∀t. We then have that∫
ϑ∈Θ

exp
(
− 1

2
(ϑ− ϑ◦)T V −1

t (ϑ− ϑ◦)
)
pg(ϑ; ϑ◦, Vt)dϑ

≥
∫

ϑ∈Dt

exp
(
− 1

2
(ϑ− ϑ◦)T V −1

t (ϑ− ϑ◦)
)
pg(ϑ; ϑ◦, Vt)dϑ

≥ exp(−∆)

∫
ϑ∈Dt

pg(ϑ; ϑ◦, Vt)dϑ = exp(−∆)

∫
‖v‖≤∆

pg(v; 0, I)dv.

By introducing the map ε : [0,∞) → [0, 1) defined by ∆ 7→
∫
‖v‖≤∆

pg(v; 0, I)dv, we finally

obtain that there exists a.s. t̃ ≥ 0 such that∫
ϑ∈Θ

exp
(
− 1

2
(ϑ− ϑ◦)T V −1

t (ϑ− ϑ◦)
)
pg(ϑ; ϑ◦, Vt)dϑ ≥ ε(∆) exp(−∆), t ≥ t̃.

Using this inequality and (3.16) in (3.15), we conclude that∫
ϑ∈Θ

pg(ϑ; Mt, Vt)dϑ ≥ε(∆) exp(−∆) exp(−vt), t ≥ t̃. (3.18)

Consider now equation (3.12). Using the bounds (3.14) and (3.18) in (3.12), we get

Pt(St) ≤
1
√

vt

exp
(
− 1

4
v2

t + vt

)
ε(∆)−1 exp(∆), t ≥ τ := max{t′, t̃}. (3.19)

Since by (3.10) vt →∞, we conclude that (3.11) is satisfied.

We next show that with probability 1 there exists t̄ ≥ 0 such that, for any t ≥ t̄, the

M(ε, δ) model parameters ϑ1,t, . . . , ϑM(ε,δ),t independently extracted at step 1 of Algorithm 2.2

according to Pt belong to set Θ \ St. This concludes the proof because it entails that

(ϑj,t−Mt)
T

∑t
s=1 ϕs−1ϕ

T
s−1(ϑj,t−Mt) = o(

∑t
s=1 ‖ϕs−1‖2), j = 1, . . . ,M(ε, δ), where we used

equation (3.17) and the fact that by (3.10) vt = o(
∑t

s=1 ‖ϕs−1‖2).

Consider the event when at least one of the parameters extracted at time t belongs to St,

i.e., At := {ϑ1,t ∈ St or . . . or ϑM(ε,δ) ∈ St}. Since they are independently extracted from the

same distribution Pt, then, Pr{At} ≤ M(ε, δ) Pr{ϑ1,t ∈ St} = M(ε, δ)Pt(St), and by (3.19),∑∞
t=0 Pr{At} ≤ M(ε, δ)

∑τ−1
t=0 Pt(St) + M(ε, δ)ε(∆)−1 exp(∆)

∑∞
t=τ

1√
vt

exp
(
− 1

4
v2

t + vt

)
. We

next show that
1
√

vt

exp
(
− 1

4
v2

t + vt

)
= o(

1

t2
), a.s., (3.20)

which implies that
∑∞

t=0 Pr{At} < ∞, with probability 1. By Borel-Cantelly Lemma ([23]),

we then have (i.o.=infinitely often) Pr{At i.o.} = 0, thus, with probability 1 there exists

t̄ > 0 such that all model parameters ϑ1,t, . . . , ϑM(ε,δ),t belong to the set Θ \ St, ∀t ≥ t̄.

The following chain of equalities can be easily derived by (3.9) and (3.10)

t2
1
√

vt

exp
(
− 1

4
v2

t + vt

)
= o

(
t2 exp

(
− 1

5
v2

t

))
= o

(
t2 exp

(
− 1

5
log2(1+β)(t)

))
= o

(
t2

(
exp(− log t)

) 1
5

log(1+2β)(t)
)

= o
(
t−

1
5

log(1+2β)(t)+2
)

= o(1),

which proves that equation (3.20) is satisfied.
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Before proving Theorem 3.1, we outline the structure of its proof.

We start by showing that for each switching time ti there exists a parameter value ϑ̄ti

belonging to the set θti := {ϑ1,t, . . . , ϑM(ε,δ),t} such that S(ϑ̄ti , γti) is λ-stable. We then define

the sequence of parameters {ϑt}t≥0 by

ϑt =

{
ϑ̄ti , if t = ti,

ϑt−1, otherwise,
(3.21)

and represent the closed-loop system (3.7) as a variational system with respect to the time

varying closed-loop system S(ϑt, σt) as follows{
yt+1 = [1−A(ϑt, z

−1)] yt+1 + B(ϑt, z
−1) ut + et + wt+1

ut = E(σt, z
−1) yt + [1− C(σt, z

−1)] ut,
(3.22)

where et := ϕT
t (ϑ◦ − ϑt) is regarded as an exogenous input.

This representation has two nice properties:

1) the closed-loop system S(ϑt, σt) is time invariant over each switching time interval [ti, ti+1),

i ≥ 0, and has a λ-stable dynamic matrix F (ϑ̄ti , γti);

2) by Proposition 3.1, ϑt−ϑ◦ appearing in et satisfies (ϑti −ϑ◦)T
∑ti

s=1 ϕs−1ϕ
T
s−1(ϑti −ϑ◦) =

o(
∑ti

s=1 ‖ϕs−1‖2).

On the basis of 1), we are then able to show that i) the dwell-time interval sequence {ti+1−
ti}i≥0 is bounded, and ii) the time-varying system (3.22) where et is viewed as an exogenous

input is exponentially stable, uniformly in time. Then, by 2) jointly with i), we conclude

that the perturbation term feeding system (3.22) is L2-bounded ([15]). These properties will

finally lead to equation (3.8).

Proof of Theorem 3.1. Consider any switching time instant ti and suppose by contradic-

tion that there is no parameter ϑ ∈ θti such that S(ϑ, γti) is λ-stable. Then, by (2.2),

ÊPti
,M(ε,δ)[J(ϑ, γti)] = 1. Pick up any ϑ̄ ∈ θti . Since ϑ̄ ∈ Θ, by Assumption 2.3 there ex-

ists γ̄ ∈ Γ such that J(ϑ̄, γ̄) ≤ J̄ < 1. Then, ÊPti
,M(ε,δ)[J(ϑ, γ̄)] ≤ M(ε,δ)−1

M(ε,δ)
+ J̄ < 1 =

ÊPti
,M(ε,δ)[J(ϑ, γti)], which contradicts the controller selection policy in Algorithms 2.2. This

proves that, for every switching time ti, there exists a parameter value ϑ̄ti ∈ θti such that

S(ϑ̄ti , γti) is λ-stable. Since the set {ϑ ∈ θti : F (ϑ, γti) is λ-stable} is not empty, because of

(2.4) and (2.6), we conclude that

ti+1 − ti = min{τ ≥ 1 : sup
ϑ∈θti :F (ϑ,γti ) is λ-stable

‖F (ϑ, γti)
τ‖ ≤ µ}. (3.23)

To each γ ∈ Γ, we can associate the set of parameters ϑ ∈ Θ such that S(ϑ, γ) is λ-stable,

i.e., Θγ := {ϑ ∈ Θ : |λmax

(
F (ϑ, γ)

)
| ≤ λ}, where λmax(F (ϑ, γ)) is the maximum eigenvalue

of F (ϑ, γ). Since λmax(F (·, γ)), γ ∈ Γ, is a continuous function of ϑ and Θ is compact, it

then follows that Θγ is a compact set.
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Consider now a parameter γ ∈ Γ and fix ν ∈ (λ, 1). The matrix 1
ν
F (ϑ, γ) is exponentially sta-

ble ∀ϑ ∈ Θγ, hence, the solution Pγ(ϑ) to the Lyapunov equation 1
ν
F (ϑ, γ)T P 1

ν
F (ϑ, γ)−P =

−I is positive definite. This implies that xT 1
ν
F (ϑ, γ)T Pγ(ϑ) 1

ν
F (ϑ, γ)x ≤ xT Pγ(ϑ)x, ∀x ∈

Rn+m−1. By applying τ times this equation, we get xT ( 1
ντ F (ϑ, γ)τ )T Pγ(ϑ) 1

ντ F (ϑ, γ)τx ≤
xT Pγ(ϑ)x, ∀x ∈ Rn+m−1, which leads to

‖F (ϑ, γ)τx‖ ≤cγν
τ‖x‖, ∀x ∈ Rn+m−1, ϑ ∈ Θγ, (3.24)

where cγ := maxϑ∈Θγ

√
λmax(Pγ(ϑ))/λmin(Pγ(ϑ)). Note that cγ < ∞ because Pγ(ϑ) is

continuous on the compact set Θγ ([25]).

Define Tγ := inf{τ ∈ N : cγ ντ ≤ µ}. Then, ‖F (ϑ, γ)Tγ‖ = sup‖x‖6=0
‖F (ϑ,γ)Tγ x‖

‖x‖ ≤ µ,

∀ϑ ∈ Θγ, ∀γ ∈ Γ. Therefore, {ti+1 − ti}i=0 is uniformly bounded by T̄ := maxγ∈γ Tγ, since

by (3.23) ti+1 − ti ≤ min{τ ≥ 1 : supϑ∈Θγti
‖F (ϑ, γti)

τ‖ ≤ µ} ≤ T̄ .

Consider the state space representation xt+1 = F (ϑt, σt)xt +C(et +wt+1) of the time-varying

system (3.22) with et viewed as an exogenous input and ϑt given by (3.21). In each in-

terval [ti, ti+1) this system is time invariant and by (3.24) its dynamic matrix F (ϑti , γti)

satisfies ‖F (ϑti , γti)
τ‖ = sup‖x‖6=0

‖F (ϑti ,γti )
τ x‖

‖x‖ ≤ cντ with c := maxγ∈γ cγ. Also, by (3.23)

‖F (ϑti , γti)
ti+1−ti‖ ≤ µ.

If t′, t do not belong to the same dwell-time interval, say 0 ≤ t′ < ti < · · · < tj+1 < t, then,

‖xt‖ = ‖F (ϑtj+1
, γtj+1

)t−tj+1F (ϑtj , γtj)
tj+1−tj . . . F (ϑti , γti)

ti+1−tiF (ϑti−1
, γti−1

)ti−t′xt′‖
≤ ‖F (ϑtj+1

, γtj+1
)t−tj+1‖‖F (ϑtj , γtj)

tj+1−tj‖ . . . ‖F (ϑti , γti)
ti+1−ti‖‖F (ϑti−1

, γti−1
)ti−t′‖‖xt′‖

≤ cνt−tj+1µj+1−icνti−t′‖xt′‖ ≤ c2ν̄t−t′‖xt′‖,

where ν̄ := max{ν, µ1/T̄}. If t′, t belong to the same dwell-time interval, then, ‖xt‖ ≤
cνt−t′‖xt′‖ ≤ c2ν̄t−t′‖xt′‖, which proves the uniform exponential stability of S(ϑt, σt).

By the boundedness of {ti+1 − ti}i=0 and the property that (ϑti − ϑ◦)T
∑ti

s=1 ϕs−1ϕ
T
s−1(ϑti −

ϑ◦) = o(
∑ti

s=1 ‖ϕs−1‖2), a.s. (which follows from (3.21) and Proposition 3.1), we have that

N−1∑
t=0, t/∈QN

e2
t = o(

N−1∑
t=0

‖ϕt‖2 + N), a.s., (3.25)

where QN is a set of instant points which depends on N , whose cardinality is uniformly

bounded: |QN | ≤ k,∀N ([15, Proposition 3.3]).

To prove the theorem, it is convenient to adopt the following representation for (3.22). Fix

N > 0. For all t ∈ [0, N) system (3.22) can be represented as

xt+1 =

{
F ◦(ϑt) xt + Cwt+1, t ∈ QN ,

F (ϑt) xt + C[et + wt+1], t /∈ QN ,
(3.26)

where F ◦(ϑ, γ) = A(ϑ◦) + B(ϑ◦)L(γ), with A(ϑ◦), B(ϑ◦), L(γ) defined in Subsection 2.2.

Since F ◦(ϑ) is a continuous function of ϑ in the compact set Θ, then, ‖F ◦(ϑ̂t)‖ is uniformly

bounded. From this fact and the uniform exponential stability of xt+1 = F (ϑt, σt)xt, it is
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straightforward to show that the xt generated by (3.26) can be bounded as follows: ‖xt‖ ≤
k1{

∑t
i=1 νt−i|wi|+

∑t−1
i=0,i/∈QN

νt−i|ei|}, t ≤ N , where k1 and ν ∈ (0, 1) are suitable constants,

from which we get 1
N

∑N
t=1 ‖xt‖2 ≤ k2{ 1

N

∑N
t=1 w2

t + 1
N

∑N−1
t=0,t/∈QN

e2
t}, where k2 is a suitable

constant, independent of N . By Assumption 2.1 and equation (3.25), 1
N

∑N
t=1 ‖xt‖2 = O(1)+

o( 1
N

∑N−1
t=0 ‖ϕt‖2) a.s. Since 1

N

∑N−1
t=0 ‖ϕt‖2 ≤ 1

N

∑N
t=0 ‖xt‖2, this implies that 1

N

∑N−1
t=0 ‖ϕt‖2

remains bounded, thus concluding the proof.

4 Conclusions

In this paper, we proposed to combine cautious randomized control and switching control so

as to overcome existing difficulties of both methods, while preserving their positive features.

We consider the class of systems described by a linear input-output model affected by Gaus-

sian noise. For these systems, we show that it is possible to conceive a randomized cautious

switching control scheme that is robust in finite time and asymptotically stable. Based on

this stability result, it is possible to obtain also self-tuning properties. For example, if a

dither noise is added to the control input ([23, 12]), then the switching signal converges to

the controller parameter that is optimal for the actual system.

Still, important issues remain open. This includes taking into consideration the presence of

unmodeled dynamics when updating Pt, and studying an easy-to-implement procedure for

the candidate controllers design. These problems represent a stimulus for future research.
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