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Abstract

A two stage adaptive or self-tuning control algorithm applicable to systems de-

scribed by transition maps that are polynomial in state, input and parameter variables

is discussed. The feedback is defined only on the basis of past input and output mea-

surements. In a first finite time stage the system to be controlled is identified together

with its state trajectory. In a second stage a local observer, is used in conjunction

with a receding horizon control scheme to effectuate the control objective. We discuss

briefly the computational complexity aspects of this approach to adaptive or self-tuning

control.

1 Introduction

It is common in mass manufactured products that certain characteristics vary from product

to product. For example, the resonance frequency of a piezo-electric actuated read/write

head for use in a hard disk drive varies by as much as 20% over a whole batch. Other

examples may be derived from automotive engine systems. Control algorithms used in such

environments are either designed based on a robustness or a self-tuning philosophy. In the

robust methodology, the control is designed in such a way as to allow for the variation in

system properties by rendering the desired performance objective insensitive to the expected

variation. In the self-tuning framework, the control algorithm is tuned to the particulars of

the plant on the basis of a measurement period, prior to its actual deployment.

In this paper we consider a self-tuning control approach applicable to systems modelled

(but perhaps not governed) by difference equations of the following form:

x(t + 1) = f(θ, x(t), u(t)),

y(t) = h(θ, x(t), u(t)).

(1.1)

Here x is the state, u the input, y the output variable. It is assumed that f and h are

polynomial in their arguments. The parameter θ represents the possible variation in system

behaviour. The input and output are measurable, but the state and the parameter are not

directable measurable.
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A self-tuning strategy would proceed as follows. In a first stage observe the output

y(1), · · · , y(T ) as produced by a ‘probing’ input u(1), · · · , u(T ) over a window of obser-

vation of length T . For sufficiently large T , under conditions that are generically statisfied

by polynomial maps, it is possible to recover the state trajectory x(1), · · · , x(T ) and the

parameter θ. In a second phase this information can then be exploited to tune a control law.

Finally, once the control law is implemented, the behaviour could be continually monitored

to verify if it achieves and maintains the desired performance.

In this context, let us observe that in practice the integration of diagnostics with control

is typically one of the strongest selling points on which modern control technology can be

introduced.

The ideas in the paper are a natural sequel to [1]. In that paper we essentially discussed the

first phase only. The combination of finite time observers with control ideas is also discussed

in [3]. The latter is developed in continuous time setting, for which no tight computational

complexity bounds are available to date. In our setting the theory expounded in [2] enables a

conservative, yet effective treatment of computational complexity. Nevertheless this paper is

focused primarily on the algorithm itself, robustness and computational complexity (which

are very much related through condition numbers [2]) are discussed elsewhere.

Our setting is such that the distinction between an ‘adaptive’ and a ‘non-adaptive’ problem

is in a natural way artificial. Indeed, we may rewrite (1.1) as follows

x(t + 1) = f(θ(t), x(t), u(t)),

θ(t + 1) = θ(t),

y(t) = h(θ(t), x(t), u(t)).

(1.2)

which allows a ‘parameter free’ interpretation. Obviously the ‘θ’ partial state is not con-

trollable, but this is hardly an issue in a control setting, as the control objective can be

formulated on the basis of the controllable states alone.

The important distinction between the problems of this kind is thus to be seen in the

nature of the functions f and h and the number of variables we are dealing with. This

computational complexity distinction is pursued here.

The paper is organized as follows. In Section 2 we describe an algorithm for the tuning

and control phase. In section 3 this is more precisely worked out based on a global Newton

algorithm for locating zeroes of multidimensional polynomial equations. Next we consider

the computational complexity cost associated with the algorithm, using the theory from [2].

In particular we focus our attention on the difference between a so-called adaptive and a non-

adaptive problem. Then we illustrate the algorithm using an example based on controlling

a system defined based on the Hénon map. This allows us to probe robustness issues. We

conclude by indicating where further development is required.
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2 An in principle algorithm

Denote by x[i,j] the sequence x(i), x(i + 1), · · · , x(j). Consider a dynamical system, a model

for the measurements, of the form

x(t + 1) = f(x(t), u(t)),

y(t) = h(x(t), u(t).

(2.3)

Assume that f, h are polynomials in all their arguments.

Furthermore, define the positive, scalar valued functions

R(x[1,T ], u[1,T ], y[1,T ]) =

T−1
∑

i=1

‖x(i + 1)− f(x(i), u(i))‖2
2

+ r
T

∑

i=1

‖y(i)− h(x(i), u(i))‖2
2, (2.4)

and

C(x[`,`+H], u[`,`+H−1)) =

`+H
∑

i=`

‖Ax(i)‖2
2

+ c

`+H−1
∑

i=`

‖u(i)‖2
2. (2.5)

Here r and c are positive scalars and A is a matrix selecting a linear combination of the

state x of interest for control. The function R is used as a criterion indicating the quality of

reconstruction of a state trajectory given the input sequence u[1,T ] and measurements of an

output sequence y[1,T ] over an observation horizon T . Similarly the function C is used as a

criterion indicating the cost of regulating the partial state Ax to zero over a control horizon

of length H. The regulation task, i.e. to achieve Ax(` + H + 1) = 0 is the ultimate goal, C

measures the cost of doing so.

The problem is to construct an input sequence u(1), u(2), · · · such as to regulate the partial

state Ax to zero, using minimal effort. The input at time t, u(t) may only depend on past

inputs and outputs. Rather than trying to make the problem statement more precise, we

present an in principle algorithm. The algorithm makes clear what the aim is.

Observer/control algorithm outline

Step 1 Select an integer T > ddim(x)/ dim(y)e. Select an integer H > ddim(x)/ dim(u)e.

Step 2 Initialise t = 1.
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Step 3 Select an input sequence u(t), · · · , u(t+T −1) apply it to the system (1.1) and observe

the output sequence y(t), · · · , y(t + T − 1).

Step 4 For the given input and output sequence minimize R(x[t,t+T−1], u[t,t+T−1], y[t,t+T−1]).

The minimizer is denoted x̂[t,T+t−1]. It is the estimate for the state trajectory.

Step 5 Given x̂(t + T − 1), consider the minimization of C(x[t+T,T+H], u[t+T,T+H−1)) under the

constraint x(k + 1) = f(x(k), u(k)) for k = t + T − 1, · · · , t + T + H − 1 with initial

condition x(t + T − 1) = x̂(T + t − 1) and terminal constraint Ax(t + 1 + H) = 0.

Denote any global minimizer as u∗[t+T,t+T+H−1]. Apply the input u(t + T ) = u∗(t + T )

(if multiple global minimiser co-exist, select the one with the smallest norm). Observe

y(t + T ).

Step 6 Set t = t + 1, go to Step 4.

Some remarks are in order:

• Each stage in the algorithm is in principle feasible under generic conditions. However,

whether or not the in-principle algorithm will remain feasible indefinitely, or better will

provide a good control response when indefinitely iterated is not at all clear. This is

directly linked to the feasibility of the control task, which will require assumptions on

the dynamics linked with the criteria. If the control objective is feasible, the algorithm

will most likely provide an acceptable solution. To highlight but one condition linking

dynamics with the criteria, observe that for example boundedness of the solutions

may not be guaranteed, in view of the fact that only part of the state is penalized.

Boundedness requires observability of the state from the Ax output.

• The definitions of the criteria R and C reflect particular choices. For example the

reconstruction criterion views the model as approximate in both state transition as

well as output equation. It does not impose a strict transition according to x(t + 1) =

f(x(t), u(t)), it only tries to find a sequence of x(t) which approximates this transition

as close as possible in a least square sense. A similar observation holds for the output

equation contribution to the criterion. Alternatively, if we had more faith in our model,

R could have been defined as R
′

(x[1,T ], u[1,T ], y[1,T ]) =
∑i=T

i=1 ‖y(i) − h(x(i), u(i))‖2
2.

The reconstruction would then be based on minimizing R
′

under the constraint that

x(t + 1) = f(x(t), u(t)) over the entire reconstruction horizon. This is not pursued

here.

• Similarly the control criterion with terminal constraint makes minimal use of prior

knowledge. In particular, it does not make use of knowledge about possible equilibria.

Such information could be used to advantage to ensure that regulation was exactly

achieved.
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• The control input that minimises C, even with the terminal constraint, will in general

not lead to an input that will achieve regulation exactly, but only approximately.

Typically, the smaller c > 0, i.e. cheap control, the better the regulation will be

approximated.

• The selection of the observation horizon and the control horizon is affected by a num-

ber of considerations. The suggestions in the above algorithm are indicative of what

is (under generic conditions) minimally required to be able to reconstruct the state

trajectory or to be able to achieve (near dead beat) regulation (for the model). In

the presence of disturbances, it is clear that a longer observation horizon provides the

ability to average out disturbances. Equally a longer control horizon typically allows

us to achieve regulation with less effort, but this must be tempered by the fact that

longer prediction horizon lead to less certainty and thus may require more conservative

control. Also, it is natural to expect that the computational complexity of finding the

state estimate and control input grows with increasing T and H.

• The initial input sequence u(1), · · · , u(T ) should be selected to assist the unique re-

construction of the state trajectory from the output measurements. In the context

of polynomial systems this reconstruction task is generically feasible [5]. Given f, h

it is conceivable to optimize the input sequence as to ensure that the minimization

of R(x[1,T ], u[1,T ], y[1,T ]) yields a unique minimum, or failing this a well defined global

minimum, well separated from local minima. However, this input selection task is not

well posed, as it depends on the unknown initial condition x(1). This is the inevitable

difficulty in any identification problem. In order to proceed, some assumption on the

distribution of the initial condition may be imposed, allowing one to formulate an opti-

mization task like the expected effort to reconstruct, where the expectation is over the

initial condition’s distribution. This is not pursued here. Furthermore this initial input

sequence should not unduly affect the control task. A larger state may be beneficial

for identification, but will be penalised by the control criterion. This difficult, dual

control problem is not addressed here.

• In the case of no measurement errors or any disturbances in the state transition map,

the minimiser to be obtained in Step 4 is of course the ideal state trajectory, which

zeroes R. In the presence of disturbances, the best achievable situation is to find a

global minimum of R, which should be a good approximation of the ideal trajectory

in the presence of small disturbances, for the algorithm to make sense.

• As in the identification task, the minimization of the control criterion C need not yield

a unique (global) minimum. If regulation is to be achieved, the system model needs

to satisfy the following condition 0 = f(0, u) has at least one real solution. Given that

this is a polynomial in u multiple solutions are possible.
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• The control problem in Step 5 is well posed, as the dynamics are entirely defined, as well

as the initial condition. In principle it can be solved using a dynamic programming

approach through the cost-to-go functional (a different method is suggested in the

sequel). The answer that will be obtained would be the ideal control input provided

the initial condition estimate x̂(T + t−1) were accurate. Any discrepancy in the initial

condition results in a suboptimal input sequence. Given that initial condition errors

may be amplified along the state trajectory, it makes little sense to select H much larger

than what is required to steer the state to the origin. The trade-off is that shorter H

may require more control effort than longer horizons. This can be investigated by

analyzing the value function (or cost-to-go from the dynamic programming approach)

as a function of the horizon H.

• In the above control algorithm there is a distinct difference between finding the min-

imisers for the first time, and for subsequent times. The first time either the recon-

struction or the control law is computed, we are effectively without a reasonable initial

guess. The search for a global minimum is thus truly a global search. However, ev-

ery subsequent time significant computational savings can be realized as the previous

minimizers provide very good initial conditions for the new minimization task. This

will be exploited.

• The in principle algorithm distinguishes two phases. In the first stage, the initial state

trajectory is recovered from some input and output measurements. In the subsequent

stage, this state trajectory is used as a seed for control implementation. The process

is repeated, with the state reconstruction stage and the control stage repeated consec-

utively shifted by one sample period, maintaining the same reconstruction and control

horizons. As in the first phase the plant is effectively in open loop, it must be assumed

that the open loop behaviour (for the particular input sequence) is acceptable over an

horizon of length T . Such an assumption is inevitable in the context of self-tuning

control.

• Alternative algorithms based on for example a parameterized control law of the form

u(t) = g(x(1), y(t − 1), · · · , y(t − m)) (remember x can play the role of θ) are not

pursued here.

3 Adaptive control algorithm

The minimization stages from the in principle algorithm of the previous section are now

worked out in some more detail. A purely numerical approach is pursued.

We are guided by the following two observations:

• Observe that the in principle algorithm requires the minimization of two polynomial

criteria. This minimization can be reduced to solving a set of polynomial equations,
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to identify the critical points, followed by verification of the criterion’s value at the

critical points. Solving a set of polynomial equations can be effectively executed using

a global Newton algorithm [2].

• Next, and as indicated before, we distinguish the first from the subsequent executions

for the minimization tasks. The main difference between the first and the subsequent

execution of the minimization is in the starting points for the global Newton algorithm,

and the particular form the homotopy takes. Both are adapted as to exploit the

prior solutions maximally, without sacrificing the ability of coping with large changes,

perhaps due to disturbances.

3.1 Global Newton algorithm for reconstruction

3.1.1 Phase I, t = 1

In the first phase, t = 1, the search is for the trajectory x[1,T ] that minimizes R(x[1,T ], u[1,T ], y[1,T ])

given the input and output sequences u[1,T ], y[1,T ]. This is achieved as follows.

Select an initial condition xo(1) and define an initial guess over the horizon t = 1, · · · , T

through the iteration:

xo(t + 1) = f(xo(t), u(t)); yo(t) = h(xo(t), u(t)). (3.6)

Further, define

H(x[1,T ]) = D1R(x[1,T ], u[1,T ], y[1,T ]), (3.7)

and for s ∈ [0, 1]

Hs(x[1,T ]) = H(x[1,T ])− sH(xo
[1,T ]). (3.8)

Let sk = 1 − k/N , for some integers k ≤ N and N > 0. Observe that for s = 1, the initial

guess xo
[1,T ] is an exact zero of H1(x[1,T ]).

Consider the iteration for k = 0, 1, · · · , N

xk+1
[1,T ] = xk

[1,T ] −
(

DH(xk
[1,T ])

)

−1
Hsk

(xk
[1,T ]). (3.9)

For a generic choice of xo(1), there exists a finite N , such that xN
[1,T ] is an approximate zero1

of H(x[1,T ]). Denote this estimate as x∗[1,T ]. The iteration number N is of the order of the

square of a condition number and the square of the highest degree appearing in f, h. (See

[2].) (All zeroes can be found in this manner, but in our situation there is generically but

one.)

1Approximate zero as defined in [2], a vector such that continued iteration of a simple Newton algorithm

provides guaranteed convergence to an exact zero.
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3.1.2 Phase II, t > 1

The main difference is of course that for t > 1 we have a much better initial condition than

the random selection proposed for Phase I. It is possible to make use of this, to adjust the

homotopy in such a manner as to exploit this prior information. Moreover, as the input in

this Phase is defined as to achieve regulation, this modification is critically important, as

regulation may well prevent reconstruction in general.

Define as the initial guess for x[t,t+T−1], the sequence xo
[t,t+T−1] = [x∗[t,t+T−2], f(x∗(t + T −

2), u(t+T−2)], which consist of our best estimate to date, augmented with a one step ahead

prediction to account for the step forward. Now consider the criterion (s ∈ [0, 1])

Gs(x[t,t+T−1]) = (3.10)

R(x[t−1,t+T−2], u[t−1,t+T−2], y[t−1,t+T−2])

+ (1− s)‖x(t + T − 1)− f(x(t + T − 2), u(t + T − 2))‖2
2

+ (1− s)r‖y(t + T − 1)− h(x(t + T − 1), u(t + T − 1))‖2
2

+ s‖x(t + T − 1)− f(x∗(t + T − 2), u(t + T − 2))‖2
2

+ sr‖h(x∗(t + T − 1), u(t + T − 1))−

h(x(t + T − 1), u(t + T − 1))‖2
2.

Where by omitting arguments in the Gs expression, we indicate that all other variables

are considered constant during this process. Now, with some abuse of notation, define the

equations of interest as

Hs(x[t,t+T−1]) = DGs(x[t,t+T−1]). (3.11)

Clearly for s = 1 the initial choice xo
[t,t+T−1] is optimal by construction. Which allows us to

consider the same recursion as before to find the update. The important difference being,

that the number of Newton iterations we need to consider is significantly reduced, as the

initial guess should be very close to a global minimiser (for all values of s ∈ [0, 1]). If the

model/plant mismatch is large, the benefit of this modification will be severely eroded.

The update equation in Phase II is then, with k = 1, · · ·M , and sk = 1− k/M ,

xk+1
[t,t+T−1] =xk

[t,t+T−1] (3.12)

−
(

DHsk
(xk

[t,t+T−1])
)

−1
Hsk

(xk
[t,t+T−1]).
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In the adaptive situation, it may be advised not to re-identify the parameters during the

control phase. Indeed if regulation is achieved this is almost certainly going to lead to a

non-informative input and output sequence, making full identification impossible. In Phase

II these variables are simply fixed inside the reconstruction criterion. If re-identification is

deemed essential, the control objective may have to be altered in order to achieve a sufficiently

informative input and output sequence. There is no generally accepted way of achieving this.

3.2 Global Newton algorithm for control

A completely similar situation applies to the control phase of the algorithm. The above

outline can be reproduced mutatis mutandis.

3.3 Comments about computational complexity

The computational complexity scales with the square of the highest degree in f or h, and

with the square of a condition number [2, 1]. The latter is an inherent characterization of

the problem at hand, indicating in a precise sense how well posed the problem actually is.

The number of variables, significantly affected by the horizon over which the optimization is

performed is at first sight absent from this computational complexity estimate. The number

of variables does affect the condition number. In general the condition number may scale with

the Bezout degree of the set of polynomials to be solved, which would indicate an exponential

increase in complexity as the horizon is increased. However, the actual condition number is

more related to the number of different zeroes the polynomial equations possess, and this

number is typically substantially smaller than indicated by the Bezout degree.

4 Simulation example

Consider the Hénon map-inspired dynamics as an example system to be controlled. The

plant is given by

xr,1(t + 1) = 1− 1.4x2
r,1(t) + xr,2(t),

xr,2(t + 1) = 0.3xr,1(t) + u(t) + µ(t),

y(t) = x1(t).

(4.13)

The sequence µ represents an input disturbance. The input u is a scalar valued sequence, y

is the scalar valued output. The numbers are chosen such that the map exhibits a chaotic

attractor under zero input and zero disturbance conditions.

The (parametrized) model, used to approximate the measurements and to develop the
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control law, is given by

x1(t + 1) = 1− θ1(t)x
2
1(t) + x2(t),

x2(t + 1) = θ2(t)x1(t) + u(t),

θ1(t + 1) = θ1(t),

θ2(t + 1) = θ2(t),

ŷ(t) = x1(t).

(4.14)

In the subsequent simulations, the control objective is to steer the output to zero, without

using too much control effort.

We first verify if the reconstruction and control tasks are indeed reasonable.

Observe that given if the parameters are known, it would be straightforward to compute

a regulating input sequence (using the predictor form of the model) as follows:

y(t + 2) = 1− θ1y
2(t + 1) + θ2y(t) + u(t)

y(t + 2) = 1− θ1(1− θ1y
2(t) + θ2y(t− 1)

+ u(t− 1))2 + θ2y(t) + u(t)

(4.15)

The unique control law that achieves dead beat regulation is given by

u(t) = −1− θ2y(t) + θ1(1− θ1y
2(t) + θ2y(t− 1) + u(t− 1))2. (4.16)

Strictly speaking one has to replace y(t) by 1−θ1y
2(t−1)+θ2y(t−2)+u(t−2), its expression

involving only past outputs and inputs, as we insisted that u(t) would only depend on past

inputs and outputs.

An alternative state space control law could be u(t) = −1−θ2x1(t)+θ1(1−θ1x
2
1(t)+x2(t))

2,

where x1(t) and x2(t) are replaced by their estimates from the identification step.

The discussed adaptive algorithm takes on a different form, and approximates the dead

beat control as c → 0. In general minisation of R and C will not lead to dead beat control,

as can be clearly seen from the simulations.

Regulating the output leads to an equilibrium which is unique in this case with (x1, x2) ≡

(0,−1). It is achieved with constant input u ≡ −1.

This demonstrates that the control task of output regulation can be achieved over any

horizon H > 1. A unique control input sequence will be found in the control step.

It can also be verified that the (model’s) state (x1, x2, θ1, θ2) can be reconstructed from

output and input measurements under generic conditions. Unless the output is constant2

x1(t), x2(t), θ1 and θ2 are directly identifiable from y(t), · · ·y(t + 3) given u(t), u(t + 1).

It is clear that in this case output regulation renders the (complete) reconstruction task

unfeasible. Nevertheless, the partial state x1(t), x2(t) remains observable from y(t), y(t + 1)

because x1(t) = y(t) and x2(t) = y(t + 1)− 1 + θ1y
2(t).

From the above discussion, we conclude that the proposed algorithm will indeed be feasi-

ble, provided in Phase II we do not reconstruct the whole state but only the partial state

x1(t), x2(t).

2More precisely, identifiability requires that y2(t + 2)y(t) 6= y3(t + 1).
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Figure 1 summarises a typical simulation result. The simulation situation is determined

by zero state initial conditions and zero parameter conditions for the model, for the actual

plant the initial conditions are (0.1, 0.7), with parameters as above. The input is set to zero

for both model and plant over the first identification horizon u(t) = 0, t = 1, · · · , 20. The

noise µ is an i.i.d. uniformly distributed over (−0.05, 0.05), which represents roughly 5%

input error. The identification horizon is T = 20 and the control horizon is H = 5. The

identification criterion weight r = 1, the control input weight in the control criterion is set

at c = 0.1. Figure 1 shows the time responses of the system states and the corresponding

estimated state sequence. The overall behaviour is quite acceptable, with the output nearly

regulated at zero, it is of the order of the input disturbance. In general it was found that

the proposed identification and control algorithm is very robust with respect to both model,

and signal perturbations.

5 Concluding comments

We have presented an in-principle algorithm for control of non-linear systems described by

polynomial maps. Both adaptive and non-adaptive problems are approached in the same

framework.

The characterization of the condition number of the set of polynomial equations to be

solved in the reconstruction/control phase would provide us with a clear indication of the

difficulty a particular problem poses. This is under investigation.

Equally clear is that the reconstruction/control task needs some form of supervision to

avoid ill conditioning. The information about how well posed the task at hand really is,

is implicitly available during the minimization stages. How to exploit this information to

advantage is an open question.

One of the important difficulties exhibited by polynomial systems, and that is not present

in linear systems, is the issue of choice in the input calculations (this problem was avoided

in the example). Several, equally acceptable from the minimization perspective, and thus

competing control actions may co-exist. Which one should be implemented? As illustrated

in [4] not every choice is guaranteed to lead to a well posed control problem ad infinitum.

This must be further investigated.

We presented an in-principle approach to self-tuning control for a large class of nonlinear

systems described by polynomial maps. We believe it provides us with a framework to

analyse feasibility and well-posedness as well as giving us the opportunity to classify problems

according to computational complexity.

6 Acknowledgement

Most of this work was completed when Iven Mareels was visiting the Technical University

of Twente, Enschede, The Netherlands. He acknowledges the hospitality of his host Dr.

11



5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

state 1
state 2

Control period Control free period 

Figure 1: Controlled system response

Jan Willem Polderman, the Department of Applied Mathematics, the Technical University

Twente, as well as support received by the NWO (Dutch Fund for Scientific Research) that

enabled the visit.

References

[1] Iven Mareels, “Complexity Issues in Synchronisation”, Proc 40 th IEEE Conference on

Decision and Control, Orlando, USA, Dec 2001. ISBN-0-7803-7063-5

[2] Blum, L., Cucker, F., Shub, M. & Smale, S. [1998] Complexity and real computation,

Springer, New York, Berlin.

[3] Moraal, P. & Grizzle, J.W. [1995] “Observer design for nonlinear systems with discrete-

time measurements”, IEEE Trans on Aut Cont, 40, (3), 395-404.

[4] G. Bastin, F. Jarachi, I.M.Y. Mareels, “Output deadbeat control of nonlinear discrete-

time systems with one-dimensional zero dynamics: global stability conditions”,IEEE

Trans Aut Cont , June 99, Vol.44, No 6, pp 1262-1266.

[5] J. Stark, 1999, “Delay Embeddings of Forced Systems: I Deterministic Forcing”, J.

Nonlinear Sci., Vol 9, 255-332.

12


