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Abstract

Two incompatible topologies appear in the study of adaptive systems: the graph
topology in control design, and the coefficient topology in system identification. Their
incompatibility is manifest in the stabilization problem of adaptive control. We argue
that this problem can be approached by changing the geometry of the sets of control
systems under consideration: estimating np parameters in an np-dimensional manifold
whose points all correspond to stabilizable systems. One way to accomplish this is
using the properties of the algebraic Riccati equation. Parameter estimation in such a
manifold can be approached as an optimal control problem akin to the deterministic
Kalman filter, leading to algorithms that can be used in conjunction with standard
observers and controllers to construct stable adaptive systems.

1 Topologies in adaptive control

Two topologies appear in the study of adaptive systems. Relevant for feedback control is

the graph topology, induced by both the gap and graph metrics; it is the coarsest topology

on sets of linear systems for which feedback stability is a robust property [1, 13]. System

identification, on the other hand, makes implicit use of the topology induced by the metric

in which the distance between two systems is given by the Euclidean distance between the

coefficients of their transfer functions. Even on sets of linear systems with dimension not

exceeding a given n, on which both are defined, these topologies are not compatible: one is

neither finer nor coarser than the other, that is, a set open in the graph topology may not

be an open set in the coefficient topology, and vice-versa.

Adaptive controllers are characterized by a double feedback loop: the control and the

adaptation loops. The incompatibility between the topologies underlying the design of the

loops manifests itself in the form of the stabilization problem. In fact, the parameter values

for which the design model, upon which certainty-equivalence control laws are designed, loses

stabilizability, are exactly those for which the operations of addition and multiplication of

transfer functions are discontinuous under the graph topology.

Myriad adaptive algorithms in the literature start by designing certainty-equivalence con-

trollers, and jury-rig alternative feedback signals to be used when the certainty-equivalence
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control laws approach a singularity (see for instance [5] and its references, and [11], where an

analysis similar to that of §5 is carried out). This is generally effected via logic-based hybrid

control or time-varying feedback; but although switched controllers might be desirable for

reasons of performance, there is no clear indication that they are necessary for stabilization.

A second way to deal with this incompatibility is to develop alternative parametrizations

for sets of linear systems, in order to exclude the singular points – those corresponding to

systems that are not stabilizable. Among the few references to this idea in the literature are

[2, 4, 10]. Unfortunately the resulting parameter sets often do not have convexity properties

needed for the use of conventional estimation techniques.

The approach to system identification we advocate is to change the geometry of the tuned

parameter set, and is based on the observation that the set of stabilizable systems can be

identified with the set of matrix pairs for which the algebraic Riccati equation has a positive-

definite solution. Rather than estimating np parameters in Rnp (or some subset thereof),

we can tune them in an np-dimensional manifold comprising a hypersurface in a space that

includes the terms of solution to the matrix Riccati equation, as well as the usual design

model parameters.

An application of these ideas to the control of simple, one-dimensional siso systems has

been presented in [12]. Here they are generalized to higher-dimensional siso processes. In

§2 we set up the framework of the adaptive control problem that we wish to solve. Relevant

geometric properties of the Riemannian manifold whose points correspond to stabilizable

design models are studied in §3. Posing parameter estimation on this manifold as an opti-

mal control problem akin to the Kalman filter permits the development of two algorithms,

presented in §4. The analysis of an overall adaptive system constructed according to our

recipes is given in §5. Some facts from optimal control gather informally in Appendix A.

2 Framework

We are concerned with designing an adaptive controller with basis on the siso design model

ẋD(t) = (A + dc)xD(t) + buD(t)

yD(t) = cxD(t).
(ΣD)

Here xD ∈ Rn, uD, yD ∈ R, the matrix pair (c, A) is observable and fixed with A stable, and

d, b ∈ Rn are vectors of design model parameters. The transfer function of ΣD is

c(sI − A− dc)−1b =
c(sI − A)−1b

1− c(sI − A)−1d
, (2.1)

a fact that can be verified either by direct matrix manipulation or by rewriting ΣD as

ẋD = AxD + buD + dyD. Because of observability there is enough freedom to assign the

poles of ΣD via suitable choice of d, and the zeroes via choice of b; moreover the pole-zero

cancellations that correspond to eigenvalues of A in (2.1) are stable, therefore ΣD is adequate
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for designing adaptive controllers for processes about which there is a considerable amount

of uncertainty, provided we have reason to believe that they can be effectively controlled

using a design based on an n-dimensional model. The existence of values of b, d for which

(A + dc, b) is not stabilizable, and there are unstable cancellations in (2.1), is the origin

of the stabilization problem we wish to avoid altogether. We shall defer making specific

assumptions about the process itself until they are needed for analysis in §5; suffices to say

informally that we are concerned with classes of processes that could be controlled using a

design based upon ΣD, if we just knew the parameters b and d.

Let T (p) be the invertible change of state variable matrix such that (cT−1, TAT−1, Tp) =

(p, A>, c>) and construct the system

ẋ = AIx + bIu + dIy

x̂ =
[
T (d) T (b)

]
x

eI =
[
d> b>

]
x− y,

(ΣI)

with

AI =

[
A> 0

0 A>

]
; dI =

[
c>

0

]
; and bI =

[
0

c>

]
.

The transfer function of (ΣI) from [ y
u ] to [ d> b> ] x is the same as the transfer function of ΣD

from [ yD
uD ] to yD; in fact if we were to carefully set ΣD’s input y to equal its output [ d> b> ] x

we would obtain precisely ΣD’s transfer function. Because of the preceding we are justified

in calling ΣI an adaptive observer or identifier appropriate for use in conjunction with design

model ΣD. In this application u and y will be set to equal the input and the output of a

controlled process respectively, and 2n-vector-valued signal x may be called a regressor since

it appears as a set of coefficients to the parameters in an affine error equation.

In view of the above, an appropriate regulator to go with ΣI is given by:

uR = fR(b, d)x̂. (ΣR)

Together ΣI and ΣR form a parameterized controller, and fR(b, d) is chosen so that, were it

connected to ΣD as explained above and were uD to be set equal to feedback control signal

uR, the resulting system would be internally stable.

To construct the remaining ingredients of a parameter adaptive control system, namely an

expression for parameterized feedback fR(b, d) and a tuner, usual steps involve borrowing a

linear control design and and estimation algorithm, using the latter to tune estimates (d, b) on

R2n, and finally combining both via some sort of certainty-equivalence. This brings problems

in that, unless restrictive hypotheses are made, the parameter space ends up including points

for which ΣD loses stabilizability. At such points the equations defining f are sure to hit

a singularity. Rather than tackle the stabilizability issue with modifications on standard

tuners or feedback control designs, we question the assumption that the Euclidean space is

the correct set on which to estimate parameters. The following section discusses what the

geometry of an appropriate set might look like.
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3 Geometry of the Riccati manifold

Perhaps the most transparent, general purpose control design paradigm, which may be ap-

plied to any stabilizable, detectable linear system of a known dimension, is linear-quadratic

optimal control. In fact, if b and d are such that ΣD meets those conditions — and the values

of parameters for which it does not are exactly those responsible for the loss of stabilizability

problem in adaptive control — then there exists a symmetric, positive definite solution P to

the algebraic Riccati equation

(A + dc)>P + P (A + dc)− Pbr−1b>P + Q = 0. (3.2)

Here r > 0 and Q > 0 are arbitrary design parameters. Consider that (3.2) defines a 2n-

dimensional manifold as a subset of Rn×n×n2
, uniquely identified by the requirement that

P > 0. We shall denote this manifold, depicted in Figure 1, Ricc. Let θ be a parametrization

of the manifold, in the sense that θ(d, b, P ) is smooth and together with (3.2) and P =

P> forms a smooth bijection. The domain of the parametrization is {θ ∈ R2n : (A +

d(θ)c, b(θ)) stabilizable}; we shall refer to points of R2n outside this domain as the singularity.

We may take θ = [ d
b ], which is in keeping with the idea of indirect adaptive control, and

shall indeed do so in this paper, but not before remarking that other parametrizations may

be of interest for alternative adaptive control designs. Notice also that (3.2) together with

f = −r−1b>P (3.3)

can be viewed as one among many possible choices of feedback controls fR in ΣR.
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Figure 1: The 2-dimensional Ricc manifold

The main goal of this section is to characterize Ricc as a Riemannian manifold by means

of its metric G(θ), which can be written as a matrix or alternatively as a second-rank tensor

with elements gij. We shall consider a metric on Ricc induced by the “natural” inner product

on (d, b, P )-space, namely the Euclidean space Rn×n×n2
, so that

dθ>G(θ)dθ = dd>dd + db>db + trace dP>dP.
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To proceed with the computations, let us rewrite the equations that define the manifold

using index notation:

(Aji + djci)Pjk + Pij(Ajk + djck)− Pijbjr
−1blPlk + Qik = 0 (3.4)

In this expression, we dropped the summation signs, a common act of laziness referred to as

the Einstein summation convention: any repeated index is assumed to be summed over. So,

the only free indices in (3.4) are i and k. Any other indices are summed over, from 1 to n.

To obtain partial derivatives of (3.4) we employ the rules

∂xi

∂x`

= δi` ,
∂xij

∂x`m

= δi` δjm ,

where δij is the Kronecker delta, 1 when i = j, 0 otherwise. We also adopt the convention

that the derivative of a scalar with respect to a column (row) vector is a column (respectively

row) vector. An index preceded by comma denotes differentiation.

For concreteness we now derive an expression of the matrix of the metric G(θ). It is

straightforward to obtain the following expression for the metric by differentiation:

gmn =
∂di

∂θm

∂di

∂θn

+
∂bi

∂θm

∂bi

∂θn

+
∂Pij

∂θm

∂Pij

∂θn

.

Now for the parametrization θ = [ d
b ]

gmn = δmn +

[
∂Pij/∂dm

∂Pij/∂bm

]
·
[
∂Pij/∂dm ∂Pij/∂bm

]
. (3.5)

Now compute the partials with respect to dm in (3.4)

δjmciPjk+(Aji+djci)
∂Pjk

∂dm

+
∂Pij

∂dm

(Ajk+djck)+Pijδjmck−
∂Pij

∂dm

bjr
−1blPlk−Pijbjr

−1bl
∂Plk

∂dm

= 0

from which follows, using fi = −Pilblr
−1 from definition (3.3),

(Aji + djci + bjfi)
∂Pjk

∂dm

+
∂Pij

∂dm

(Ajk + djck + bjfk) + ciPmk + Pimck = 0. (3.6)

Performing analogous calculations with respect to bm gives

(Aji + djci + bjfi)
∂Pjk

∂bm

+
∂Pij

∂bm

(Ajk + djck + bjfk) + fiPkm + Pimfk = 0. (3.7)

Equations (3.6) and (3.7) above can be made a tad more explicit using, for instance, Kro-

necker products. All that matters here is that they are nonsingular linear equations, because

all eigenvalues of A + dc + bf are negative, and thus have a unique solution, which in turn

leaves expression (3.5) for the metric uniquely defined for each value of the parameter θ.

Once a metric has been chosen it alone is enough to define Ricc as a 2n-dimensional

Riemannian manifold, independently of the original embedding in R2n+n2
which motivated

the metric’s definition. This intrinsic point of view is the one taken in the sequel. The

salient feature of Ricc is that points for which ΣD loses stabilizability are “at infinity,” that

is, G(θ) becomes unbounded so that any path on Ricc that tends towards the singularities

of a certainty-equivalence feedback has infinite length.
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4 Estimation algorithms

4.1 An optimal control problem

In order to develop algorithms for parameter estimation on Ricc, we consider the following

optimal control problem with initial cost: minimize∫ τ

σ

(
θ̇>G(θ)θ̇ + (x>θ − y)>Q(x>θ − y)

)
dt +

(
θ(σ)− θ0

)>
S
(
θ(σ)− θ0

)
. (4.8)

Here (θ(t), θ̇(t)) describes a curve on Ricc parametrized by t ∈ [σ, τ ], G(θ) is the matrix

expression of the metric studied in §3, y(t) ∈ Rny and x(t) ∈ R2n×ny are respectively a vector

of data and the regressor as explained in §2, and θ0 is some 2n-vector. Matrices S and Q

are positive-definite design parameters of dimensions 2n× 2n and ny × ny respectively. We

have considered the measurement y to be vector-valued since there is no extra difficulty in

doing so; to consider the single-output case simply set ny = 1 so that y and Q are scalars.

If only the first parcel inside the integral were present, and initial and final conditions were

imposed on θ, the problem would become one of minimizing a measure of the length of the

parametrized curve — and in fact its solution would be the geodesic on Ricc connecting θ(σ)

and θ(τ) (such a curve exists because Ricc is geodesically complete). The parcel weighting

the identification error is more familiar in the estimation literature, and the parcel outside

the integral, which weights the deviation of initial condition from some a priori guess, serves

to regularize the problem.

Both to guide the search for a solution and to further motivate the formulation of the

optimization problem, it is useful to pose it as an equivalent filtering problem: minimize

J(σ, τ, θ) =

∫ τ

σ

(
w>G(θ)w + e>I QeI

)
dt +

(
θ(σ)− θ0

)>
S
(
θ(σ)− θ0

)
(4.9)

subject to

θ̇(t) = w(t) (4.10)

y(t) = x>(t)θ(t)− eI(t). (4.11)

This problem is a particular case of the deterministic Kalman filter with the complication

that the weighting of the input depends on the state θ. An interpretation is that we search

for θ which best explains a linear relationship between data y and x, in the sense that w, eI ,

and θ(σ) are minimized according to functional (4.9). An amount of parameter drift that

would be small (in terms of its effect on feedback design stability) for points far from the

singularity rapidly becomes unacceptable if it leads θ towards values which correspond to

non-stabilizable systems, thus we are less inclined to take into account data that points in

such a direction. This provides a motivation, without recourse to geometry, for the choice

of a θ-dependent input weighting matrix.

In a kind of least-squares estimator often employed in the adaptive control literature,

the matrix G is altogether absent, θ being considered fixed. Such estimators are known to
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converge even in the absence of persistent excitation, however their ability to track parameter

changes such as those caused by model changes or process faults is poor, a fact that is often

dealt with by a number of ad hoc modifications. Explicitly introducing a weighting on

parameter drift, which is discussed for instance in [3], might be preferable in its own right,

besides opening the possibility of introducing geometric considerations.

4.2 Estimation algorithm 1

We now develop two recursive solutions to the equivalent problems (4.8) and (4.9): in the

first we consider some fixed value for θ(σ) and in the second we further optimize with respect

to all possible trajectories of θ. First let us convert (4.9) into a more standard problem by

augmenting θ with the definition θ̄ = [ θ
1 ] so that

J =

∫ τ

σ

(
w>G(θ)w + θ̄>Q̄θ̄

)
dt + θ̄>(σ)S̄(σ)θ̄(σ) (4.12)

subject to
˙̄θ(t) = B̄w(t),

where

B̄ =

[
I2n×2n

02n×1

]
, Q̄ =

[
xQx> −xQy

−y>Qx> y>Qy

]
, and S̄(σ) =

[
S −Sθ0

−θ>0 S θ>0 Sθ0.

]
Notice that the problem assumes a time-varying nature because Q̄ depends on the data.

Following Appendix A, form the Hamiltonian

H(t, θ̄, w, λ) = w>G(θ)w + θ̄>Q̄θ̄ − λ̄B̄w,

whose minimum value is attained for

w = 1
2
G−1(θ)B̄>λ̄>. (4.13)

The differential equation for the row vector of Lagrange multipliers will involve derivatives

of the matrix G, so we revert to index notation:

˙̄λl =
∂H
∂θ̄l

=
∂

∂θ̄l

(
wiGijwj + θ̄iQ̄ij θ̄j − λ̄iB̄ijwj

)
= wi

∂Gij

∂θ̄l

wj + Q̄lj θ̄j + θ̄iQ̄il.

The last two parcels are equal and read, in matrix notation,[
xQx> −xQy

−y>Qx> y>Qy

]
·
[
θ

1

]
=

[
xQx>θ − xQy

−y>Qx>θ + y>Qy

]
,
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and because G does not depend on the last element of θ̄ the expression of λ̄ reduces to

λ̇l = wiGij,lwj + 2(xQeI)l, (4.14)

˙̄λ2n+1 = −y>QeI .

Here λ = λ̄B̄ and Gij,l denotes ∂Gij/∂θl. Together (4.10), (4.13), and (4.14) express an

algorithm, summarized here for ease of reference, for estimation of a parameter we shall

follow fashion in calling θ̂.

Algorithm 1 Choose some initial condition θ̂(σ) (say, θ0) and set parameter estimate θ̂

according to

˙̂
θ(t) = w

λ̇l(t) = wiGij,l(θ̂)wj + 2(xQeI)l

w(t) = 1
2
G−1(θ̂)λ>,

(4.15)

with λ(σ) = 2(θ(σ)− θo)
>S.

Existence and uniqueness of solutions to (4.15) on the interval [σ, τ ] is not a question

provided that G remains nonsingular, its derivative bounded, and that (x, y) are bounded.

Nonsingularity follows from the definition of G and boundedness of Gij,l follows from differen-

tiability, which implies boundedness in any compact subset, together with the fact that any

trajectory for which G becomes unbounded must be on infinite length and thus incompatible

with a finite J .

An alternative characterization of Algorithm 1 can be obtained rewriting (4.13) as

Gkjwj + wiGik = λk,

and then taking derivatives with respect to t and identifying w with θ̇:

Gkj,lθ̇lθ̇j + Gik,lθ̇lθ̇i + Gkj θ̈j + Gikθ̈i = θ̇iGij,kθ̇j + 2(xQeI)k.

Using symmetry of G results

2Gkmθ̈m −Gij,kθ̇iθ̇j + Gkj,iθ̇iθ̇j + Gik,j θ̇iθ̇j = 2(xQeI)k,

or finally

θ̈m + Γm
ij θ̇iθ̇j =

(
Gkm

)−1
(xQeI)k. (4.16)

Here Γm
ij = 1

2
G−1

km

(
Gkj,i + Gik,j − Gij,k

)
are known as the Christoffel symbols and the right-

hand side is the expression of the gradient of e2
I/2 on Ricc. When eI is zero, the second-

order differential equation (4.16) is nothing but the expression of a geodesic on the manifold

of metric G. The relationship of form (4.16) of Algorithm 1 with the second-order tuner

discussed in [7] might be worth exploring.
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4.3 Estimation algorithm 2

While Algorithm 1 defines a recursive procedure for constructing parameter estimates in its

own right, one thing that is still lacking is to optimize with respect to all trajectories. This

is more in keeping with the spirit of Kalman filtering and appears to have some advantages.

To accomplish the minimization, notice that once we have decided to use optimizing law

(4.15) the final condition θ(τ) biunivocally identifies the initial value θ(σ); therefore in order

to optimize with respect to initial conditions one can alternatively minimize the optimal

accumulated cost V (τ, θ̄) with respect to θ̄.

The value ϑ̂ which minimizes the accumulated cost at time τ must satisfy

∂V

∂θ
(τ, ϑ̂) = 0. (4.17)

Along the trajectory which leads to ϑ̂ at time τ , w(τ) = 1
2
G−1(ϑ̂)∂V

∂θ
(τ, ϑ̂)> = 0, an ob-

servation that greatly simplifies the calculations that follow if they are correct — a big if

considering that the deadline for submitting this paper has passed and the second author has

been known since his college days for leaving pieces hanging when playing chess. Although

(4.17) does not provide an explicit formula for ϑ̂, it serves to obtain a recursive expression

as follows. Considering ϑ̂ as a function of τ and differentiating gives

d

dτ

∂V

∂θ
(τ, ϑ̂) =

∂2V

∂τ ∂θ
(τ, ϑ̂) +

˙̂
ϑ>

∂2V

∂θ2
(τ, ϑ̂) = 0. (4.18)

To solve this equation for ϑ̂, first compute

∂2V

∂τ ∂θ
(t, ϑ̂) =

∂2V

∂θ ∂τ
(t, ϑ̂) =

∂

∂θ
(w>G(θ)w + eIQeI)

∣∣∣∣
θ=ϑ̂

= 2xQeI(τ, ϑ̂).

Second define Ψ(τ, ϑ̂) = ∂2V
∂θ̄2 (τ, ϑ̂) and use (A.26) from Appendix A to write

Ψ̇ =
∂2H
∂θ2

−
(

∂w

∂θ

)>
∂2H
∂w2

(
∂w

∂θ

)
= w>∂2

θθG(θ)w + 2xQx> − 2∂θw
>G(θ)∂θw. (4.19)

Here indices were dropped for readability, w>∂2
θθG(θ)w and ∂θw being understood as 2n×2n

matrices. From 2Gijwj = λi follows

2Gik,swk + 2Gij
∂wi

∂θs

=
∂λi

∂θs

= Ψis.

Substituting into (4.19) gives

Ψ̇rs = 2xQx> − 1
2
ΨG−1Ψ.

Inversion of matrix Ψ can be avoided defining Π = 2Ψ−1 so that Π̇ = −2Ψ−1Ψ̇Ψ−1 = 1
2
ΠΨ̇Π,

and solving (4.18) for ϑ results in
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Algorithm 2 Set parameter estimate ϑ̂ according to

˙̂
ϑ(t) = −ΠxQeI(t, ϑ̂),

Π̇(t) = G−1(ϑ̂)− ΠxQx>Π,

with initial conditions ϑ̂(σ) = θ0 and Π(σ) = S.

5 Analysis

The time is now ripe to start making some hypotheses and proving theorems. So far we

have essentially discussed signal processing algorithms with little regard for the origin of the

signals, however stability and other steady-state properties so beloved by control theorists

are eminently noncausal in that they cannot be ascertained with any finite amount of data.

Making statements about stability requires assumptions that bind the future behavior of a

process after a finite amount of measurements. The hypotheses needed for the first theorem

amount to little more than existence of some time interval where all signals are bounded.

Theorem 5.1. Assume that y, x exist and are bounded on the interval [σ, τ ], and moreover

that there exist an instant s ∈ [σ, τ ] and a constant C1 such that∫ s

σ

(
|x(t)|2 + |y(t)|2

)
dt ≤ C1. (5.20)

Further suppose that there exist θ∗ and C2(σ, τ) such that∫ τ

σ

(
x>(t)θ∗ − y(t)

)>
Q

(
x>(t)θ∗ − y(t)

)
≤ C2(σ, τ). (5.21)

Then if θ̂(t) is chosen according to Algorithm 1 or to Algorithm 2 there exists a constant C3

such that ∫ τ

σ

(
˙̂
θ>G(θ̂)

˙̂
θ + e>I QeI

)
dt ≤ C3 + C2(σ, τ). (5.22)

The same holds for ϑ̂ if chosen according to Algorithm 2.

Proof: Pick a time s ∈ [σ, τ ] and consider the following trajectory in θ-space: for t ∈ [σ, s),

θ(t) follows a geodesic on Ricc with θ(σ) = θ0, and for t ∈ [s, τ ], θ(t) = θ∗. Along this

trajectory θ is bounded, so one may choose a constant C4 such that |θ(t)| + 1 ≤ C4. The

distance between θ0 and θ∗ is given by

`(θ0, θ∗) =

∫ s

σ

√
θ̇>(t)G

(
θ(t)

)
θ̇(t) dt.

Further specify the trajectory by choosing θ̇>G(θ)θ̇ constant in the interval [σ, s], so that

`(θ0, θ∗) = (σ − s)
√

θ̇>(t)G
(
θ(t)

)
θ̇(t).
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Thus∫ s

σ

(
θ̇>G(θ)θ̇ + e>I QeI

)
dt

≤
∫ s

σ

(
`(θ0, θ∗)

s− σ

√
θ̇>G(θ)θ̇ + qc4(|x|+ |y|)2

)
dt ≤ `2(θ0, θ∗)

s− σ
+ 2qC1C4 = C2,

where q = maxij |Qij|. Because θ = θ∗ after time s∫ s

σ

(
θ̇>G(θ)θ̇ + e>I QeI

)
dt +

∫ τ

s

e>I QeI dt ≤ `2(θ0, θ∗)

s− σ
+ qC1 + C2(σ, τ).

Now recall that the trajectory defined by Algorithm 1 is optimal among all trajectories

starting from θ0 on the interval [σ, τ ], so the cost J(σ, τ, θ̂) is also bounded by the expression

on the right-hand side of the inequality above. The statement of the theorem now follows

immediately.

We now state a result that concerns the stabilization capabilities of the type of controller

described in this paper.

Theorem 5.2. Suppose that a controller composed of parameterized identifier ΣI and feed-

back regulator ΣR, with the parameters given by Algorithm 1 or 2, is applied to a process ΣP

whose input u and output y are such that

y(t) = ȳ(t) + v(t),

where ȳ is the output of an n-dimensional, linear time-invariant, detectable and stabilizable

siso system whose input is u. Further suppose that there exists a constant γ and a function

ν(·) such that

||v||t ≤ γ||u||t + ν(t)

on any interval [0, t) on which all signals exist and are finite. Then there exist values γ∗ and

ν∗ such that, if γ ≤ γ∗ and ν(t) ≤ ν∗, all signals in the overall adaptive system are bounded

on [0,∞).

Sketch of proof: First argue that the conditions of Theorem 5.1 are met, thus ||eI || ≤
C3 + C2(γ||u||+ ν). Then invoke the certainty-equivalence stabilization theorem [6] to state

that the overall system Σ composed of ΣP , ΣI , and ΣR is detectable through eI . Therefore

there exists an output injection that converts Σ into a parameterized system which is stable

for each fixed value of the parameters, and whose input eI is “small.” Because the parameters

vary “slowly,” stability for each fixed value of them is enough to guarantee stability of the

time-varying system, which in turn implies that all signals remain bounded, at least in the

case γ = 0. To argue stability when γ > 0, that is, the case when higher-order, unmodeled

dynamics may be present, stronger versions of the certainty-equivalence stabilization theorem

and of the nondestabilizing property of slowly time-varying linear systems are needed; such

results can be found in [8, 9].
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A Some facts from optimal control theory

Here some facts from optimal control gather informally. Sufficient smoothness is assumed so

that all relevant derivatives exist and are smooth. All variables in this section are local in

scope, that is, their definition here has no impact on their use elsewhere in the paper.

Consider the initial-cost problem of minimizing the functional

J(σ, τ, x, u) =

∫ τ

σ

q(t, x, u) dt + p(x(σ))

subject to the differential equation

ẋ(t) = f(t, x, u).

The optimal accumulated cost (or Bellman value function) V (t, x) must satisfy

V (s, x) =

∫ s

σ

q(t, x, u∗) dt + p(x(σ))

for the optimal control u∗(t), so that

V̇ (t, x) = q(t, x, u∗).

Since V is a function of t and x only, along the optimal trajectory

∂tV + (∂xV )f(t, x, u∗) = q(t, x, u∗) (A.23)

the Hamilton-Jacobi-Bellman equation for the initial cost problem. Define the appropriate

Hamiltonian

H(t, x, u, λ) = q(t, x, u)− λf(t, x, u).

The optimal control is that which minimizes H with λ = ∂xV (t, x). Now take partial

derivatives with respect to x in (A.23):

∂2V

∂xj∂t
+

∂2V

∂xj∂xi

fi +
∂V

∂xi

∂fi

∂xj

+
∂V

∂xi

∂fi

∂uk

∂uk

∂xj

=
∂q

∂xj

+
∂q

∂uk

∂uk

∂xj

Inverting the order of derivatives and identifying λi = ∂V/∂xi results

∂

∂t
λj +

(
∂

∂xi

λj

)
fi + λi

∂fi

∂xj

=
∂q

∂xj

+

(
∂q

∂uk

− λi
∂fi

∂uk

)
∂uk

∂xj

or

λ̇ + λ ∂xf(t, x, u∗) = ∂xq(t, x, u∗). (A.24)

To obtain the equation above we used the fact that the optimal u∗ must satisfy

∂H
∂u

=
∂q

∂u
− λ

∂f

∂u
= 0, (A.25)
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which in fact together with (A.24) is an expression of Pontryagin’s maximum principle for

the problem under consideration. One way of formally proving that (A.23) is sufficient, and

(A.24) is necessary, for a control to be optimal would be to reverse time, transforming the

problem into a final-cost problem, and applying the usual optimality principles.

We shall also have an occasion to use a recursion on Ψ(t, x) = ∂2
xV that can be obtained

by further computing derivatives with respect to x in (A.24):

∂2λj

∂xk∂t
+

∂2λj

∂xk∂xi

fi +
∂λj

∂xi

(
∂fi

∂xk

+
∂fi

∂ul

∂ul

∂xk

)
+

∂λi

∂xk

∂fi

∂xj

+ λi

(
∂2fi

∂xk∂xj

+
∂2fi

∂xj∂ul

∂ul

∂xk

)
=

∂2q

∂xk∂xj

+
∂2q

∂xj∂ul

∂ul

∂xk

So

∂Ψjk

∂t
+

∂Ψjk

∂xi

fi+Ψji
∂fi

∂xk

+
∂fi

∂xj

Ψik =
∂2q

∂xk∂xj

−λi
∂2fi

∂xk∂xj

+

(
∂2q

∂xj∂ul

−λi
∂2fi

∂xj∂ul

−∂λj

∂xi

∂fi

∂ul

)
∂ul

∂xk

But taking derivatives with respect to xj in (A.25) gives

∂2q

∂xj∂ul

+
∂2q

∂ul∂um

∂um

∂xj

− λi

(
∂2fi

∂xj∂ul

+
∂2fi

∂ul∂um

∂um

∂xj

)
− ∂λi

∂xj

∂fi

∂ul

= 0,

thus

∂2q

∂xj∂ul

− λi
∂2fi

∂xj∂ul

− ∂λi

∂xj

∂fi

∂ul

=

(
λi

∂2fi

∂ul∂um

− ∂2q

∂ul∂um

)
∂um

∂xj

= − ∂2H
∂ul∂um

∂um

∂xj

.

Hence we can write

Ψ̇jk + Ψji

(
∂xf

)
ik

+
(
∂xf

)
ij
Ψik =

(
∂2

xH
)

jk
− ∂um

∂xj

∂2H
∂um∂ul

∂ul

∂xk

, (A.26)

which is the expression we wished to obtain. For instance, in the well-known linear-quadratic

case, where f = Ax + Bu and q = u>Ru + x>Qx, from (A.25) results u = R−1B>λ>/2 and

(A.26) reduces to

Ψ̇ = −A>Ψ−ΨA + 2Q− 1
2

∂λ
∂x

BR−1B> ∂λ>

∂x
,

which reduces to the usual Kalman filtering Riccati differential equation when we substitute
∂λ
∂x

= Ψ = 2P .
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