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Abstract

Simple adaptive controllers based on high gain output feedback suffer a lack of ro-
bustness with respect to bounded disturbances. Existing modifications achieve bound-
edness of all solutions but introduce solutions that, even in the absence of disturbances,
do not achieve regulation. In this paper a new modification that achieves the desired
robustness without the side-effect of undesirable solutions is proposed. The modifica-
tion features two data-driven stability indicators. Intuitively, the first indicator drives
the ‘closed-loop poles’ to the closed right half plane while the latter provides fine-tuning
that prevents persistent imaginary axis poles and their associated undesired behaviour.

1 Introduction

This paper is a sequel to our earlier work on the robustification of high gain adaptive con-

trollers [5, 6]. The problem that we address is as follows. In simple high gain adaptive

controllers, the scalar adaptive feedback gain, say k, is driven by the integral of the squared

output of the plant (y, with k̇ = y2). It can be shown that for linear system with stable

zeroes and of relative degree one, this is an effective adaptive algorithm that achieves regu-

lation. It is equally clear, however, that the integration causes robustness problems in the

case of measurement errors, noise, or disturbances. A well known fix is the so-called sigma

modification [2, chapter 4], [1]. The sigma modification sacrifices regulation (which is not

feasible anyway in the presence of arbitrary disturbances) to achieve boundedness, because
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of k̇ = −σk + y2. However, disappointingly, it does not maintain the stability properties of

the original high gain adaptive controller in the noise free case. Examples of possible prob-

lems are demonstrated in [6, 4]. In [6] a further modification of the sigma modification is

proposed. Concisely, the feedback gain is prevented from decreasing by forcing its derivative

to be nonnegative, but the growth prevention is maintained k̇ = max(0,−σk + y2). This

already takes away some of the undesirable properties of the standard sigma modification,

indeed it avoids bursting behaviour. However, it does not prevent the feedback gain to

converge to a constant for which the closed loop system has eigenvalues on the imaginary

axis. This enables nonzero limit cycles in the output. To eliminate these limit cycles, we

introduced previously an additional adaptive feedback gain additively combined with the

‘k’. This additional feedback gain follows an enumeration of the rationals between zero and

one. Crucial is that the additional feedback is kept constant over time intervals of increasing

length. This eliminates the possibility of purely imaginary closed loop poles, and hopefully

the associated bounded non-zero solutions. There are at least two problems with this ap-

proach. Firstly, the additional feedback steps at pre-defined time instants. From a control

point of view it would be desirable to let these jump times depend on measurements rather

than on time. Secondly, the proof of stability is limited to first and second order systems,

and there seems to be no obvious way to extend it to higher order systems. The problem be-

ing that it becomes increasingly more complex to exclude the existence of bounded non-zero

solutions in higher dimensions.

In the present paper we propose a measurement feedback based modification that allows

for a natural proof of stability using more or less standard elements of Lyapunov equations.

The idea extends to other types of universal and adaptive controllers.

We use two stability indicators, one based on k̇ = max(0,−σk + y2), and one based on

integrals of the form
∫ .+T
.

y2 over increasingly long intervals T . Each time the latter exceeds

a prescribed limit the integral is reset, and the adaptive feedback gain is adjusted. The

applied adaptive feedback gain consists of two parts. The first part is taken to be equal to

the value of the first stability indicator at the start of each interval during which the second

stability indicator is constant. The second part is the next rational number taken from an

enumeration of all the rationals in (0, 1). The feedback gain is the sum of the two parts. An

interesting feature of this construction is that the feedback gain is piecewise constant. Not

only does this simplify the mathematical analysis significantly, it is also interesting from a

control point of view.

The rationale and intuition behind the construction of the feedback gain as the sum of

a ‘global’ and a ‘local L2’ norm driven stability indicator lie in the fact that asymptotic

stability of a time invariant linear system is equivalent to L2 stability. The global stability

indicator is able to detect instability in that it drives the feedback gain to a value where

at least all closed-loop poles are in the closed right half plane. The local stability indicator

then fine tunes the feedback gain so that no imaginary axis poles can persist.

The paper is organized as follows. In Section 2 the adaptive control problem is stated.
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In Section 3 the undesirable elements in the classical adaptive algorithm are identified and

removed in a step by step process, which illustrates the reasoning and the salient issues.

Section 4 presents the completed algorithm with its analysis. Finally, in Section 5 some final

observations are gathered.

2 Problem statement

Consider SISO systems described by

p(
d

dt
)y = q(

d

dt
)u. (2.1)

The p(ξ), q(ξ) are polynomials with real coefficients. The scalar signals u, y are the system

input and output respectively.

The standing assumptions are:

A1 The polynomial p(ξ) is monic, and the degree of q(ξ) is precisely one less than the

degree of p(ξ).

A2 The system defined by (2.1) is controllable, i.e., p(ξ) and q(ξ) have no nontrivial

common factors (see [7, Chapter 5]).

A3 The system is minimum phase, i.e., q(ξ) has all its roots in the open left half plane.

A4 The high-frequency gain, the coefficient of the leading term of q(ξ) is positive.

Observe that the actual coefficients of the polynomials p(ξ), q(ξ) as well as their degree are

not available for control design.

The control objective is to design a single output feedback law that regulates any one

system in the above class, and which is robust with respect to bounded disturbances.

It is a well established fact that systems like (2.1), under the stated assumptions, can be

stabilized by constant scalar output feedback u = −ky, provided k is sufficiently large.

To ensure that k grows beyond the bound after which the system is asymptotically stable,

k is adapted by the truncated L2 norm of the output via
d

dt
k = y2. See [3, Chapter 6] for a

self-contained analysis of the resulting adaptive control system. An annoying feature of the

adaptation law
d

dt
k = y2 is that the slightest persistent error in the output, e.g. caused by

measurement noise, results in unbounded k . To avoid this, it has been proposed, see e.g.

[2, chapter 4], [1] and the references therein, to incorporate a damping term in the update

law:
d

dt
k = −σk + y2 (2.2)

Here σ is a (small) positive constant. This is usually referred to as the sigma modification.

One effect of this modification is clear: bounded y yields bounded k. Where the unmodified
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algorithm has an infinite number of equilibria, namely (y, k) = (0, k̄) with k̄ arbitrary, the

sigma modification reduces the set of equilibria to at most three. But where the ω limit

set of the unmodified algorithm consists only of equilibria, the modified algorithm has a

much more complicated ω limit set, on which regulation is not achieved. For instance in

the first order case, if the system is unstable, there are three equilibria. Moreover two of

these equilibria (the locally attractive ones) correspond to nonzero output so that even in

the absence of measurement and control errors the output may not converge to zero. In

particular for the case that the controlled system is not asymptotically stable for k = 0,

undesirable behavior may result. Intuitively, for as long as y2 is large, k will grow until it

reaches a value for which the system stabilizes. Consequently y2 will start to decrease. As

soon as −σk dominates y2, k will decrease so far as to destabilize the linear system and y

will grow again. Depending on the balance between the stabilizing effect of the adaptive

gain and the destabilizing effect of the linear plant different solutions may persist. For a

detailed study of the nonlinear behavior of the system (2.1,2.2) the reader is referred to [4].

Essentially the problem with the sigma modification is that the damping factor not only

prevents k from growing unbounded, it is also responsible for a destabilizing effect as soon as

y2 becomes small, and this fuels the existence of non-trivial and undesirable solutions. The

aim of the present paper is to propose a further modification that eliminates these undesirable

solutions while maintaining the robustness properties with respect to measurement errors.

3 Background and motivation

The first step is to remove the destabilizing effect. This is easily achieved by preventing k

to decrease, whilst limiting the growth as before. So instead of (2.2) consider

d

dt
k = max(0,−σk + y2). (3.3)

The effect of the maximization is clear. Since
d

dt
k is always non-negative, k can never return

to a lower and possibly destabilizing, value. Admittedly, k can, due to transients (initial

conditions) become larger than absolutely required or even desired for stabilization. The

above modification disables the possibility of recovering from that effect. It can also be

verified that even when disturbances are present all solutions remain bounded.

Unfortunately, (3.3) does not eliminate all difficulties. Examples illustrating the type

of solutions that may exist can be found in [5]. Although (3.3) simplifies the ω-limit set

considerably, as compared to (2.2), it is not trivial as desired. Indeed if, for some reason, the

output y remains bounded, then the maximization in the update law (3.3) for k enables a

dead zone for k. Suppose for example that k(t) = k∗ constant and such that for this feedback

gain the controlled system has eigenvalues on the imaginary axis. Then y(t) can oscillate

indefinitely if y2(t) < σk∗. Example 1.1 in [5] illustrates this. So (3.3) is useful in that it

simplifies the ω limit set, but a further modification is needed to eliminate these ‘imaginary
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axis eigenvalues’ in the closed loop system. It follows from the analysis that other nonlinear

phenomena are automatically excluded by this further modification.

A further modification to this effect was proposed in [5]. The intuitive idea is as follows.

If the limiting value of the feedback gain would give rise to imaginary axis poles in the

controlled system, then this limiting k value should somehow be perturbed to avoid these.

This is, however, a nontrivial action. For one, it is not feasible to decide when k is close to its

limiting value. Moreover, how does one find out whether the controlled system has (excited)

imaginary axis modes. Finally, perturbing the feedback gain without knowing whether or

not it is desirable could again lead to a potentially unbounded gain in the presence of

disturbances. The idea put forward in [5] is to adjust the feedback gain only during certain

carefully chosen intervals of time. Moreover the perturbation must be sufficiently rich to

be able to eliminate the existence of imaginary axis poles for any system in the whole class

under consideration. This lead to an adaptive feedback law of the following form:

u(t) =

{
(−k(t)− 1)y(t) t ∈ I2j

(−k(t) + 1)y(t) t ∈ I2j+1
, (3.4)

where {Ij}j∈N is a partition of R+. The rationale behind (3.4) is that if k(t) tends to a

limit k̄ for which p(ξ) + (k̄ + 1)q(ξ) has roots on the imaginary axis, then p(ξ) + (k̄− 1)q(ξ)

has no imaginary axis poles. Alternatively, if p(ξ) + (k̄ − 1)q(ξ) has imaginary axis poles,

then p(ξ) + (k̄+ 1)q(ξ) has not. Obviously, this modification can only work for second order

systems. For it could very well happen that in higher order cases that both p(ξ) + (k̄ ±
1)q(ξ) have imaginary axis poles. In fact, if p be a polynomial of order n, the polynomials

p(ξ) + kq(ξ), k ∈ R may have imaginary axis zeroes for at most n distinct values of k. The

following results make this precise.

Theorem 3.1. Let n ∈ N be even and q(ξ) ∈ R[ξ] of degree at most n− 1. Define N = n/2.

Let ωj ∈ R, j = 1, . . . , N , be N distinct nonzero real scalars and k1, . . . , kN be arbitrary real

scalars. There exists a polynomial p(ξ) ∈ R[ξ], monic of degree n such that

p(iωj) + kjq(iωj) = 0 and p(−iωj) + kjq(−iωj) = 0 (3.5)

Proof. With

V =



1 iω1 · · · (iω1)n−1

1 −iω1 · · · (−iω1)n−1

...
...

...
...

...
...

1 iωN · · · (iωN)n−1

1 −iωN · · · (−iωN)n−1


, (3.6)
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the equations (3.5) become:

V



p0

...

...

...

pn−1


=



−(iω1)n − k1q(iω1)

−(−iω1)n − k1q(−iω1)
...
...

−(iωN)n − kNq(iωN)

−(−iωN)n − kNq(−iωN)


(3.7)

Observe that V is by construction a nonsingular Vandermonde matrix so that p(ξ) is uniquely

defined. As replacing the coefficients of p(ξ) by their complex conjugates also yields a

solution, it follows by uniqueness of solutions that the coefficients of p(ξ) must be real.

Theorem 3.2. Let p(ξ) ∈ R[ξ] be monic of degree n and q(ξ) ∈ R[ξ] be a polynomial of

degree n − 1. Assume that there exists no λ = iω, ω ∈ R, such that p(λ) = q(λ) = 0. The

number of distinct values k for which the polynomial p(ξ)+kq(ξ) has zeroes on the imaginary

axis does not exceed n.

Proof. Let λ = iω, ω ∈ R be such that there exists a real k with p(λ) + kq(λ) = 0, and thus

also p(−λ) + kq(−λ) = 0. Because there exists no λ such that p(λ) = q(λ) = 0, k may be

eliminated to obtain the condition p(λ)q(−λ)− p(−λ)q(λ) = 0. Which can be expanded as

(−1)n−12qn−1λ
2n−1 + · · ·+2(p1q0 +p0q1)λ = 0. It follows that λ = 0 yields a possible solution

for k. Furthermore, since by assumption qn−1 6= 0, there can be at most n − 1 conjugate

pairs λ for which p(λ)q(−λ) − p(−λ)q(λ) = 0. Each such pair corresponds to at most one

distinct value for k so that p(λ) + kq(λ) = 0. This proves the statement.

A generalization of (3.4) that works for systems of arbitrary order must therefore involve

an infinite number of variations (rather than just two) of k. At the same time the variations

should be bounded to keep the total feedback gain, k+variations, bounded. One possibility

to achieve this is to use an enumeration of the rationals in a bounded interval, say (0, 1).

So, let {aj}j∈N be an enumeration of the rational numbers between zero and one. Define the

adaptive feedback law as follows:

u(t) = (−k(t)− aj)y(t) t ∈ Ij (3.8)

where again {Ij}j∈N is a partition of R+. The intervals Ij should grow sufficiently fast in

length so as to enable the detection of stability/instability in the controlled system resulting

from u(t) = (−k(tj) + aj)y(t). This was further worked out in [6]. In the next section we

propose a different modification. Instead of (3.8) we take

u(t) = (−k(tj)− aj)y(t) t ∈ Ij. (3.9)

The difference with (3.8) is that during the time interval Ij we use k(tj) rather than k(t).

Also the intervals Ij will be determined by output measurements (feedback) rather than by

off-line determined time instants (open loop).
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4 Main result

Motivated by the discussions in the previous sections we are now ready to present the

algorithm in its final form. For clarity of presentation we repeat some of the earlier formulas.

The system (2.1) is given, in state space form, by

d

dt
x = Ax+ bu y = cx, (4.10)

with (A, c) in standard observable form. Let

t0 = 0

tj+1 = min{t ≥ tj + 1 |
∫ t

tj

y(τ)2dτ ≥ j}

Ij = [tj, tj+1) (4.11a)

d

dt
k = max(0,−σk + y2) (4.11b)

{aj}j∈N an enumeration of Q ∩ [0, 1] (4.11c)

k1(t) = k(tj) k2(t) = aj for t ∈ Ij (4.11d)

u(t) = −(k1(t) + k2(t))y(t) (4.11e)

It is understood that the tj+1 =∞ if the threshold j is never reached. We have the following

preliminary result.

Theorem 4.1. Consider the controlled system (4.10,4.11). For every initial condition

(x0, k0) the solution of (4.10,4.11) with (x(0), k(0)) = (x0, k0) exists for all t ≥ 0, and

is unique. Furthermore x and k1 are bounded.

Proof. The proof of uniqueness and existence of solution is completely analogous to the case

treated in [3, Chapter 6] and is therefore skipped.

Boundedness of k1 is readily obtained by contradiction. Suppose that k1 is unbounded.

Then k1(t)+k2(t) passes the point beyond which any time-varying gain stabilizes the system,

see [3, Chapter 6]. Therefore within finite time −σk(t)+y(t)2 < 0 holds. Hence k is bounded

and k1 is also bounded. Since k1 is monotonically non-decreasing and bounded it converges

to a limiting value, say k̄1.

Boundedness of y also follows by contradiction. Assume that y is not bounded. Since it is

the output of a linear system with bounded coefficients, the total length of the time intervals

during which |y| is above any given positive constant is infinity. Therefore y is not square

integrable. It follows that all switching times tj are finite. As a consequence the adaptive

law (4.11b) drives k to infinity. Since k1(t) = k(tj for t ∈ Ij, and since all switching times tj
are finite, it follows that also k1(t) diverges to infinity. This contradicts the boundedness of

k1, and thus y must be bounded.
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The boundedness of x is achieved as follows. The differential equation (4.10,4.11e) may

be re-written as d
dt
x(t) = (A+ bc(k(tj) + aj))x(t), for t ∈ Ij. Because of observability of

(A, c) and the boundedness of k, there exist vectors `j ∈ R1×n, bounded as a function

of j, such that A + bc(k(tj) + aj) − `jc =: M is a time-invariant Hurwitz matrix. Thus
d
dt
x(t) = Mx(t) + `jy(t) for t ∈ Ij, and thus x is bounded as the state of an asymptotically

stable system with bounded input.

Theorem 4.1 shows that the output and its derivatives are bounded. The next step is, of

course, the proof that x actually converges to zero. To this end we make use of the following

technical Lemma.

Lemma 4.1. Let A = {Ai}i∈N be a bounded set of matrices in Rn×n. Assume that there

exists ε > 0 such that for all i the matrix Ai has no eigenvalues with real part in the interval

(−ε, ε). Consider the systems

d

dt
xi = Aixi, xi(0) = xi,0. (4.12)

Furthermore assume that there exist positive constants Ti, Mi, i ∈ N such that∫ Ti

0

xi(t)
Txi(t)dt = Mi. (4.13)

Suppose that there exists a positive constant K such that for all i and for all t ≥ 0 there

holds

|xi(t)| ≤ K. (4.14)

Then there exists a constant M such that for all i:

Mi ≤M. (4.15)

Proof. Suppose that Mi is not bounded. There exist a bi-bounded1 sequence of nonsingular

matrices Si such that

SiAiS
−1
i =

[
Ai,s 0

0 Ai,u

]
, (4.16)

with Ai,s and −Ai,u Hurwitz. This is can be seen as follows. Firstly, there exist orthonormal

matrices Ui such that UiAU
T
i is a real Schur decomposition:

UiAiU
T
i =

[
Ai,s Ã12

0 Ai,u

]
. (4.17)

Secondly, there exist matrices Wi such that[
I Wi

0 I

]
︸ ︷︷ ︸

Yi

[
Ai,s Ã12

0 Ai,u

] [
I −Wi

0 I

]
︸ ︷︷ ︸

Y −1
i

=

[
Ai,s 0

0 Ai,u

]
. (4.18)

1Recall that a sequence of nonsingular matrices is bi-bounded if it is bounded and if the sequence of
inverses is bounded.
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The Wis satisfy

Ai,sWi −WiAi,u = Ã12. (4.19)

Now, since the sequences {Ai,s} and {Ai,u} are bounded and since the real parts of Ai,s and

−Ai,u are smaller than or equal to −ε, it follows that also the sequence {Wi} is bounded. Of

course, Si is now defined as Si = YiUi.

There exist positive definite matrices Pi,s, Pi,u such that

AT
i,sPi,s + Pi,sAi,s = −I AT

i,uPi,u + Pi,uAi,u = I (4.20)

Define Pi = diag(Pi,s, Pi,u) and zi = Sixi. Then

zi(Ti)
TPizi(Ti)

=zi(0)TPizi(0)

+

∫ Ti

0

zi,u(t)Tzi,u(t)− zi,s(t)Tzi,s(t)dt

=zi(0)TPizi(0)

+

∫ Ti

0

zi(t)
Tzi(t)− 2zi,s(t)

Tzi,s(t)dt

Define ∫ Ti

0

zi(t)
Tzi(t)dt = M̃i. (4.21)

By the relation between xi and zi, the boundedness of the sequence Ai and the sequence

Si it follows that the unboundedness of Mi implies the unboundedness of the sequence M̃i.

From the boundedness of the sequence Ai and the assumption on the spectra of Ai it follows

that the sequence Pi is bounded. Also, the states zi(t) are bounded, uniformly in i. Finally,

due to the uniform (in i) stability of the Ais it follows that the contribution of 2zi,s(t)
Tzi,s(t)

in (4.21) is bounded, again uniformly in i. Therefore the unboundedness of
∫ Ti

0
zi(t)

Tzi(t)dt

as an expression in i implies the unboundedness of zi(Ti)
TPizi(Ti). This is a contradiction

and therefore the sequence Mi is bounded.

We are now ready to state and prove the main result of the paper.

Theorem 4.2. Consider the controlled system (4.10,4.11). Then, for every (x0, k0) the

solution of (4.10,4.11) with (x(0), k(0)) = (x0, k0) exists for all t ≥ 0, is unique and bounded.

Moreover limt→∞ x(t) = 0.

Proof. Existence, uniqueness, and boundedness of solutions were established in Theorem

4.1. Suppose that y is not square integrable on [0,∞). Then for all j there holds tj < ∞
and moreover tj ↑ ∞ as j → ∞. Define Aj = A − bc(k1(tj) + aj). We know that k(tj)

converges, say limj→∞ k1(tj) = k1. From Theorem 3.2 it follows that A − bc(k1 + a) may

have imaginary axis poles for at most n values of a. It follows that there exist ε > 0 and
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sequence {j`}`∈N such that Aj` has no eigenvalues with real parts between −ε and ε. Now,

apply Lemma 4.1 to the collection of matrices Aj` to conclude that x is unbounded, but then

is also y unbounded (as bounded y implies bounded x). This contradicts Theorem 4.1 and

therefore y is square integrable. By standard reasoning, [3, Chapter 6] (see also the end of

the proof of Theorem 4.1) it follows that y and x converge to zero.

5 Conclusions

The main result is that there exists a relatively simply adaptive control law that achieves

robust regulation for the class of linear systems that can be stabilized via static high gain

output feedback. As demonstrated the adaptive algorithm asymptotically stabilizes the

plant, and in the presence of disturbances a bounded response is guaranteed. An important

feature of the proposed algorithm is that it involves a two stage switched feedback gain where

the switching times are generated in true feedback fashion.
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