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Abstract

In this article, general scalar linear time-varying systems are addressed. In par-
ticular, canonical realizations with integrators, multipliers and adders are presented.
Essentially, it is shown that the well-known configurations for constant systems can be
generalized to the time-varying context by replacing the conventional eigenvalues by
the earlier introduced dynamic eigenvalues. However, it is also shown that at least one
configuration is not suitable for such a generalization.

1 Introduction

As is well-known, the solution of a (scalar) linear differential equation with constant coeffi-

cients can be simulated at the output of a linear time-invariant (LTI) signal processing filter

with the known right-hand side of the differential equation as input. For such a filter, con-

sisting of integrators, multipliers and adders, different but equivalent canonical realizations

are known [1, 2].

In this article, canonical realizations of linear time-varying (LTV) systems are derived. To

be more precize, possible generalizations of known LTI-configurations to the LTV-context

are studied. It turns out that at least one LTI-configuration is not suitable for such a gen-

eralization. It is also shown that two other LTI-configurations, viz. a direct realization with

the coefficients of the associated differential equation as multipliers, together with the so-

called cascade realization can be generalized indeed. In the latter, the conventional algebraic

eigenvalues have to be replaced by the earlier introduced dynamic eigenvalues [3, 4, 5, 6].

Related results can be found in [7] and [8, 9]. Essentially, these contributions are based on

well-known mathematical methods for the factorization of the associated polynomial differ-

ential system operator (see also [10]).

In contrast, our approach uses the Riccati transformation as described in [11]. Basically, this

transformation effectuates an appropriate order reduction and a subsequent decoupling of

the associated LTV system equations. In the next section, first the original scalar differential

equation is rewritten in a state-space system description. Then, an associated direct filter

realization is easily obtained. As we explained earlier, a successive application of the above
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Figure 1: A canonical direct realization.

mentioned Riccati transformation triangularizes the accompanying LTV system matrix step-

by-step [5, 6, 12, 13].

In Section 3, first an earlier obtained alternative method for the classical Cauchy-Floquet

decomposition is shortly repeated [14]. Then, the cascade realization as described in [15] fol-

lows immediately. In this realization, the dynamic eigenvalues play the role of time-varying

multipliers. As another result, it is shown that any triangularization step produces a next

canonical realization with one extra dynamic eigenvalue as a multiplier of the LTV filter.

Finally, in Section 4 it is shown that an alternative direct realization for LTI systems does

not have a LTV antipode.

2 A direct realization

Consider the inhomogeneous scalar linear differential equation for the unknown x = x(t)

with normalized time-varying coefficients ai = ai(t) (i = 1, . . . , n)

Dnx + anDn−1x + · · · + a2Dx + a1x = f , (2.1)

in which D = d/dt and f = f(t) is a known function, respectively. By introducing the new

variables {x1, x2, . . . , xn} as

x1 = x, x2 = ẋ1, x3 = ẋ2, . . . , xn = ẋn−1 , (2.2)

where the dot stands for a time-derivative, we obtain from (2.1)

ẋn = −anx1 − · · · − a1xn + f . (2.3)

On account of (2.2) and (2.3), the canonical direct realization of Figure 1 is easily recognized.

Next, introduce the n-dimensional column-vector x with x T = [ x1, . . . , xn ] (T denotes the

transpose) and unit vectors e
(n)
j , (1 ≤ j ≤ n), with [e

(n)
j ]T = [ δ1j, . . . , δnj ], where δij denotes

the Kronecker symbol. Moreover, the partitioned n × n companion system row matrix A is

introduced as

A =

[
I+
n−1 e

(n−1)
n−1

−aT (t) −a1(t)

]
, (2.4)
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where I+
k denotes the square shift matrix of size k, given by

I+
k =




0 1 . . . 0
...

. . . . . .
...

...
. . . 1

0 . . . . . . 0


 , (2.5)

while the varying system parameters {a2, a3, . . . , an} are collected in the time-dependent row

vector aT = [ an, . . . , a2 ]. Then, the state-space description of (2.1) follows as

ẋ = A(t)x + e (n)
n f(t) , (2.6)

with read-out equation

x = x1 . (2.7)

As a result, equations (2.6) and (2.7) are realized by the LTV-filter in Figure 1.

3 The cascade realization

As we showed earlier, there exists a lower triangular Riccati transformation matrix R

x (t) = R(t)y(t) (3.1)

by which system (2.6) is transformed into

ẏ(t) =




λ1(t) 1 . . . 0
...

. . . . . . 0
...

. . . 1

0 . . . . . . λn(t)


y(t) + e (n)

n f(t) (3.2)

with yT = [ y1, . . . , yn ], and (2.7) into

x = y1 . (3.3)

Now, it is immediately observed that the original differential equation (2.1) is given by the

Cauchy-Floquet decomposition [14]

(D − λn(t))(D − λn−1(t)) . . . (D − λ1(t))x = f(t) . (3.4)

Secondly, the result (3.4) constitutes the canonical cascade signal processing filter, see Figure

2. Note, that these mulptipliers may be complex valued functions of time. As we explained

earlier [5, 6, 12], each triangularization step needs a paticular solution of a vector Riccati
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Figure 2: The canonical cascade realization.
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Figure 3: A canonical direct realization after one Riccati transformation step.

differential equation. If p1, p2, . . . , pn−1 denote the components of the solution vector of the

first Riccati-equation, it can be shown that the topology depicted in Figure 3 is equivalent to

the LTV filter realization of Figure 1. The matrix in (3.2) indeed confirms that the functions

λi(t) are a kind of eigenvalues. To show this regorously, consider the homogeneous equation

(3.2). This equation is investigated for modal solutions of the form

yj(t) = uj(t) exp

[
t

∫
0
λj(τ)dτ

]
(3.5)

with

uj(t) = [ u1,j(t), . . . , uj−1,j(t), 1, 0, . . . , 0 ]T . (3.6)

Substitution of (3.5) and (3.6) in the homogeneous form (3.2) yields that (3.5) is indeed a

solution, only if uj satisfies

u̇j(t) =







λ1(t) 1 . . . 0
...

. . . . . .
...

...
. . . 1

0 . . . . . . λn(t)


 − λj(t)In




uj(t) , (3.7)

where In is the n-dimensional unity matrix. For a linear time-invariant system, ui(t) and

λi(t) are constants and, as a consequence, the left hand side of (3.7) becomes zero. Hence,

the classical eigenvalue problem results. As we argued earlier, this justifies to call λi(t) a

dynamic eigenvalue and ui(t) a dynamic eigenvector [3, 4].

Now, it is clear that

U(t) = [ u1(t), . . . ,un(t) ] (3.8)
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is a transformation matrix that transforms with

y(t) = U(t)z (t) (3.9)

the homogeneous equation (3.3) into

ż (t) =




λ1(t) 0 . . . 0
...

. . . . . .
...

...
. . . 0

0 . . . . . . λn(t)


 z (t) . (3.10)

Hence, the fundamental matrix Φ of (2.1) is given by

Φ(t) = R(t)U(t)




eγ1(t) 0 . . . 0
...

. . . . . .
...

...
. . . 0

0 . . . . . . eγn(t)


 . (3.11)

4 An alternative configuration

Finally, consider the filter topology of Figure 4.

S S S S

n−b (t) n+1−i−b (t) −bn−i (t) −b1(t)

zzii−1zz1 nzf n−1

Figure 4: An alternative configuration.

We find the set of associated equations as

ż1 = −bnzn + f , (4.1)

żi = zi−1 − bn+1−izn (i = 2, . . . , n) . (4.2)

Equation (4.2) yields after (i − 1) differentations

Dizi = Di−1zi−1 − Di−1(bn+1−izn) (i = 2, . . . , n) . (4.3)

Adding all equations in (4.3), we obtain

Dnzn +
n∑

l=1

Dn−l(blzn) = f . (4.4)
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Since the Leibniz-rule of differentiation gives

Dn−l(blzn) =
n−l∑
k=0

(
n − l

k

)
Dn−l−kblD

kzn , (4.5)

equation (4.4) can be rewritten as

Dnzn +
n−1∑
k=0

[
n−k∑
l=1

(
n − l

k

)
Dn−l−kbl

]
Dkzn = f . (4.6)

We now conclude that if

an−l =
n−k∑
l=1

(
n − l

k

)
Dn−l−kbl (4.7)

and

zn = x , (4.8)

then (4.6) is equalent to (2.1). Finally, it is observed that for LTI systems equation (4.7)

reduces to

an−k = bn−k (4.9)

Then, and only then, the realizations in Figure 1 and Figure 3 are equivalent.
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