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Abstract

The Diffie Hellman key exchange and the ElGamal oneway trapdoor function are the basic
ingredients of public key cryptography. Both these protocols are based on the hardness of the
discrete logarithm problem in a finite ring. In this paper we show how the action of a ring on
a module gives rise to a generalized Diffie-Hellman and ElGamal protocol. This leads naturally
to a cryptographic protocol whose difficulty is based on the hardness of a particular control
problem, namely the problem of steering the state of some dynamical system from an initial
vector to some final location.

1 Introduction

The discrete logarithm problem is the basic ingredient of many cryptographic protocols. It asks
the following question:

Problem 1.1. Let G be a fixed group and let g, h ∈ G be arbitrary elements. Find an integer n ∈ N
such that gn = h.

Problem 1.1 has a solution if and only if h ∈ 〈g〉, the cyclic group generated by g. If h ∈ 〈g〉 then
there is a unique integer n satisfying 1 ≤ n ≤ ord(g) such that gn = h. We call this unique integer
the discrete logarithm of h with base g and we denote it by logg h.
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The Diffie-Hellman protocol [4] allows two parties, say Alice and Bob, to exchange a secret key
over some insecure channel. In order to achieve this goal Alice and Bob agree on a group G and
a common base g ∈ G. Alice chooses a random integer a ∈ N and Bob chooses a random integer
b ∈ N. Alice transmits to Bob ga and Bob transmits to Alice gb. Their common secret key is
k := gab.

The ElGamal public key cryptosystem [5] works in the following way: Alice chooses n ∈ N,
h, g ∈ G, where h = gn. The private key of Alice consists of (g, h, n), the public key consists of
(g, h). Bob chooses a random integer r ∈ N and with this he applies the encryption function

ε : G −→ G×G

m −→ (c1, c2) := (gr,mhr)

Alice, who knows n = logg h readily computes m from the ciphertext (c1, c2): m = c2(c1
n)−1. In

order for the protocol to work it is required that multiplication and inversion inside the group G

can be efficiently done and it should be computationally infeasible to compute a discrete logarithm
with base g ∈ G.

In the literature many groups have been proposed as candidates for studying the discrete log-
arithm problem. Groups which have been implemented in practice are the multiplicative group
(Zn)∗ of integers modulo n, the multiplicative group F∗ = F\{0} of nonzero elements inside a finite
field F and subgroups of these groups. In recent time there has been intense study of the discrete
logarithm problem in the group over an elliptic curve [2, 7, 10]. In [3, 12] the discrete logarithm
problem in finite matrix rings have been studied and it has been shown that this necessitates good
examples of finite simple semirings.

In [8, 9] we have shown how the discrete logarithm problem over a group can be seen as a special
instance of an action by a semigroup. The interesting thing is that every group action by an abelian
semigroup gives rise to a Diffie-Hellman key exchange. With an additional assumption it is also
possible to extend the ElGamal protocol. In the next section we explain the results of [8, 9] in more
detail.

In Section 3 we show how to build semigroup actions from actions by semirings on semimodules.
In Subsection 3.3 we describe an interesting semigroup action which in our opinion holds a lot of
promise for implementation as a practical system.

2 The generalized Diffie-Hellman and ElGamal protocols in the

context of group actions

Consider a semigroup G, i.e. a set that comes with an associative multiplication ‘·’. In particular
we do not require that G has either an identity element or that each element has an inverse. We
say that the semigroup is abelian if the multiplication · is commutative.

Let S be a finite set and consider an action of G on S:

ϕ : G× S −→ S

(g, s) 7−→ gs

We will refer to this action as a G-action on the set S. By the definition of a group action we
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require that (g ·h)s = g(hs) for all g, h ∈ G and s ∈ S. We also assume throughout that arithmetic
in G and computation of the G-action can be done in polynomial time.

If the semigroup G is abelian then every G-action gives rise to a generalized Diffie-Hellman Key
Exchange:

Protocol 2.1. (Extended Diffie-Hellman Key Exchange) Let S be a finite set, G an abelian
semigroup and an action of G on S as defined above. The Extended Diffie-Hellman key exchange
is the following protocol:

1. Alice and Bob agree on an element s ∈ S.

2. Alice chooses a ∈ G and computes as. Alice’s secret key is a, her public key is as.

3. Bob chooses b ∈ G and computes bs. Bob’s secret key is b, his public key is bs.

4. Their common secret key is then a(bs) = (a · b)s = (b · a)s = b(as)

As in the situation of the discrete logarithm problem it is possible to construct an ElGamal
one-way trapdoor function which is based on group actions: assume that the set S has in addition
some group structure with respect to some binary operation ◦. We would like to stress that the
group structure of S is unrelated with the binary operation on the semigroup G.

Protocol 2.2. (Extended ElGamal Public Key System) If S is a group with respect to some
operation ◦, then the Extended ElGamal public key system is the following protocol:

1. Alice’s public key is (s, as).

2. Bob chooses a random element b ∈ G and encrypts a message m using the encryption function

(m, b) 7−→ (bs, (b(as)) ◦m) = (c1, c2).

3. Alice can decrypt the message using m = (b(as))−1 ◦ c2 = (ac1)−1 ◦ c2.

One would build a cryptosystem on such a G-action only if the following problem is hard:

Problem 2.1. Semigroup action problem (SAP): Let G be an abelian semigroup acting on a set
S. Given x, y ∈ S find g ∈ G such that gx = y.

For if an attacker, Eve, can find an α ∈ G such that αs = as, then Eve may find the shared
secret by computing α(bs) = (α · b)s = b(αs) = b(as). Although the semigroup G need not be
finite, the finiteness of S is sufficient in order to provide a bound for the size of the data during
the communication. Nevertheless, if the action preserves the “size” of s with respect to some fixed
representation, finiteness of S is not necessary. The traditional Diffie-Hellman key exchange and
ElGamal protocol are special instances of Protocol 2.1 and Protocol 2.2. Note that in the special
case where G is actually a group, the SAP can be solved in a straightforward way with O(

√
|Ox|)

operations, where Ox is the orbit of x. At present, we do not know of any such algorithm for the
general SAP, though prudence suggests we assume that one exists.
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3 Semirings acting on semimodules

In this section we show a way on how to construct semigroup actions on finite sets in a practical
algebraic way. The trapdoor function we obtain will rely on a finite version of a difficult control
problem, namely the problem of steering the state of some dynamical system from an initial vector
to some final location. The setup is general enough that it includes the Diffie-Hellmann protocol
over a general finite group as a special case. It provides on the other hand the flexibility to construct
new protocols where some of the known attacks against the discrete logarithm problem in a finite
group do not work anymore.

Let R be an additively commutative semiring, not necessarily finite. This means that R is a
semigroup with respect to both addition and multiplication and the distributive laws hold. It
is understood that the semiring is commutative with respect to addition but not necessrily with
respect of multiplication. Some authors assume that a semiring has a neutral element with respect
to addition. We will not assume that R has either a zero or a one.

Let M be a finite semimodule over R. With this we mean that M has the structure of a finite
semigroup and there is an action R×M −→ M such that

r(sm) = (rs)m, (r + s)m = rm + sm and r(m + n) = rm + rn

for all r, s ∈ R and m,n ∈ M .
Let Matn×n(R) be the set of all n × n matrices with entries in R. The semiring structure on R

induces a semiring structure on Matn×n(R). Moreover the semimodule structure on M lifts to a
semimodule structure on Mn via the matrix multiplication:

Matn×n(R)×Mn −→ Mn (3.1)

(A, x) 7−→ Ax.

The action 3.1 forms a group-action of the multiplicative group of Matn×n(R) on the set Mn.
In general Matn×n(R) is not commutative with respect to matrix multiplication. However we can
easily define a commutative subgroup as follows:

Let C ⊂ R be the center of R. This is the subset of elements which commutes with respect of
multiplication with every element of R. Let C[t] be the polynomial ring in the indeterminant t and
let A ∈ Matn×n(R) be a fixed matrix. If

p(t) = r0 + r1t + · · ·+ rkt
k ∈ C[t]

then we define in the usual way p(A) = r0In + r1A + · · ·+ rkA
k, where r0In is the n× n diagonal

matrix with entry r0 in each diagonal element.
Consider the semigroup

G := C[A] := {p(A) | p(t) ∈ C[t], A ∈ Matn×n(R)}.

Clearly C[A] has the structure of an abelian semigroup. Protocol 2.1 then simply requires that
Alice and Bob agree on a vector s ∈ Mn. Then Alice chooses a matrix X ∈ C[A] and sends to
Bob the vector Xs, an element of the module Mn. Bob chooses a matrix Y ∈ C[A] and sends to
Alice the vector Y s. The common key is then the vector XY s which both can compute since X

and Y commute.

4



3.1 Systems Theoretic Interpretation

It is possible to give the key exchange a systems theoretic interpretation. For this note that in
order to choose X ∈ C[A] Alice has to choose r0, . . . , rk ∈ C and with this she can compute

Xs = (r0In + r1A + · · ·+ rkA
k)s = r0s + r1As + · · ·+ rkA

ks.

Consider now the linear time invariant system:

xt+1 = Axt + uts, s, xt ∈ Mn, ut ∈ R. (3.2)

Assume further that x0 = 0. (If M has no zero we can simply assume that the system is initialized
through x1 = u0s, xt+1 = Axt + uts for t ≥ 1.) If Alice chooses the input sequence u0 = rk,
u1 = rk−1 . . . , uk = r0 then xk+1, the state vector at time k + 1 is exactly Xs, the public vector to
be computed by Alice.

Once Alice receives from Bob his public key Y s, then she defines b := Y s and by choosing her
input sequence u0, . . . , uk in the system

xt+1 = Axt + utb, (3.3)

she will be able to compute the common secret key XY s.
Eve who wants to find an element X̃ ∈ C[A] such that X̃s = Xs faces the task of finding a

control sequence u0, . . . , uκ which steers the initial state vector x0 into the state vector Xs. This
problem is in general very hard and we will see that it contains some of the hardest known discrete
logarithm problems as a special case. In the special case when R = M = F, a finite field then the
problem is however simply solved by methods of linear algebra. Indeed in the field case the Cayley
Hamilton theorem implies that

F[A] = {p(A) | p(t) ∈ F[t] and deg p ≤ n− 1}.

Eve therefore knows that the vector Xs is in the column space of
[
s,As, . . . , An−1s

]
and she simply

has to solve the system of linear equations:

Xs =
[
s,As, . . . , An−1s

]  r0

...
rn−1

 . (3.4)

The system has always a solution and Eve finds a matrix X̃ ∈ F[A] with X̃s = Xs. But this is
enough to compute the common key XY s = Y Xs = Y X̃s = X̃Y s as explained in Section 2.

In the Section 3.3 we show that this simple linear algebra procedure breaks down if we deal with
more general rings and modules:

3.2 Some considerations

At present, we lack a convincing example of a system based on the previous sections. All of the
examples presently known to the authors have proved to be either insecure or already well-known.
The insecure examples have arisen by generating random finite semirings for base-objects. However,
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if the base-objects are not simple they admit smaller homomorphic images which can often be used
to reduce the problem with a Pohlig-Hellman type algorithm. One may wish to explicitly allow
the security of the system to rest on the difficulty of finding such homomorphisms (via congruence
relations), but we would certainly prefer not to.

Finite simple commutative semirings have been classified in [1] and none lead to a new secure
system. Such semirings without the assumption of commutative multiplication have been ‘almost’
classified in [11], and again seem to yield nothing interesting for our purposes.

Finally, there are some strong results in [6] on simple semimodules over commutative semirings
that might suggest using semimodules over non-commutative (i.e., with commutative addition only)
semirings. More work is needed to determine if there exists such objects that will suit our needs.

3.3 A matrix action on abelian groups

In this subsection take as a ring R = Z, the integers and as a module any finite abelian group
M = H. The group H is a Z module and Matn×n(Z) operates on S := Hn = H × . . .×H via the
formal multiplication:  g1

...
gn

 7−→

 a11 . . . a1n

...
...

an1 . . . ann


 g1

...
gn

 . (3.5)

If l = lcm {|g1|, . . . , |gn|}, and C ∈ Matn×n(Z) is a matrix with all entries congruent to zero modulo
l, then (A + C)g = Ag for all A ∈ Matn×n(Z). Whence, we may simply consider the action of
Matn×n(Zl) on S.

Remark 3.1. If one writes the group operation in a multiplicative way then the jth component in

Hn is given as (A · g)j =
n∏

i=1

g
aji

i . If n = 1 then the action reduces to the action g 7−→ ga, i.e. we

deal with the usual discrete logarithm problem in the cyclic subgroup of H generated by the element
g = g1. In particular when n = 1 Protocols 2.1 and 2.2 reduce to the usual Diffie-Hellman and
ElGamal protocol. If n > 1 we do not know however if a reduction of the general case to a small
number of discrete logarithm problems can be achieved with reasonable complexity.

As before, since Matn×n(Zl) is not commutative and based on the Cayley Hamilton theorem we
will restrict ourself to the abelian sub-semigroup Zl[A] consisting of all sums of the form

∑n−1
i=0 aiA

i.
The question now arises of how one can attack this system.
The problem: Given g,Ag ∈ Hn, find X̃ ∈ Zl[A] with X̃g = Xg is the instance of Problem 2.1

that this system presents. We therefore could try to see if there is once more a linear system of
equation which can solve similar to the situation when R = M = F a finite field.

For this assume once more that X =
∑n−1

i=0 aiA
i. Again we have a system of linear equations, as

in equation (1):  h1

...
hn

 := Xg =
[
g,Ag, . . . , An−1g

]  a0

...
an−1

 . (3.6)

In this system of equations the unknowns are a0, . . . , an−1 ∈ Zl. The coefficient matrix[
g,Ag, . . . , An−1g

]
as well as the entries hi of the vector Xg are elements of the abelian group.
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The question now arises if there is a chance to reduce this system of equations to solving a discrete
logarithm problem in a finite group. There are two special case attacks that must be avoided:

Lemma 3.1. Let A ∈ Matn×n(Zl) and g, h ∈ Hn and suppose that X ∈ Zl[A] is unknown. If
one can construct, in polynomial time, an invertible matrix S ∈ Matn×n(Zl) such that SAS−1 is
diagonal then solving the equation Xg = h polynomial time reduces to solving n discrete logarithm
problems.

We would like to stress that a diagonalization of A over some extension ring Zl[ζ] ⊃ Zl will help
little. Indeed it is not clear how one should interpret the multiplication of an element in H with an
element in Zl[ζ] in general. The above reduction is therefore easily avoided if one chooses a matrix
A whose characteristic polynomial does not factor over Zl. There is another situation where one
can show that the problem reduces to a discrete logarithm problem in a cyclic group. This can
happen when all elements gi are elements of a cyclic group:

Lemma 3.2. If there exists γ ∈ H with gi ∈ 〈γ〉 for all i then solving the equation Xg = h

polynomial time reduces to solving 2n discrete logarithm problems.

Having described the special cases to be avoided, we should also remark that if we define l =
lcm {|g1|, . . . , |gn|}, there exists an obvious Pollard-Rho type birthday attack to solve the problem
with O(l

n+1
2 ) operations. Furthermore, if l = pe1

1 · · · pem
m , there is an obvious Pollig-Hellman type

reduction of the problem to m problems with l1 = pe1
1 , . . . , lm = pem

m . Thus, if pe is the largest
prime power dividing l, the problem can be solved with O(p

en+n
2 ) operations.

Thus, to maximize the difficulty of the problem to be solved relative to the input size, one should
choose the gi so that l = lcm {|g1|, . . . , |gn|} = pk for some prime p.

4 Conclusion

In this article we showed how the discrete logarithm problem over a finite group can be viewed
as an instance of an action by a semigroup. It was shown how the well known Diffie-Hellman key
exchange and the ElGamal protocol do generalize to this framework. Some examples of actions
by semigroups have been given and it was shown that there are some situations that should be
avoided. It remains to find concrete instances of such actions that have high (believed) security
relative to their key sizes.
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