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Abstract

In this paper we study a rather novel parametrization for state-space systems: data

driven local coordinates (DDLC) as introduced in [10]. We provide some insights into

the geometry and topology of the DDLC construction and show a number of results for

this parametrization which are also important for actual computations using DDLC.

1 Introduction

In this paper a novel parametrization for classes of linear systems is analyzed: Data driven

local coordinates (DDLC) have been introduced by [10] and are claimed to be advanta-

geous from a numerical point of view. Similar ideas can be found in [13] in an LFT-type

parametrization setting. We will provide a theorem stating the main topological and geomet-

rical results for this parametrization. This will be in the spirit of [5] and [11], summarizing

and extending the investigation given in the above mentioned papers.

We will be concerned with linear, time invariant, discrete-time stochastic state-space sys-

tems of the following form

xt+1 = Axt +But +Kεt

yt = Cxt +Dut + εt (1.1)

Here, xt is the n-dimensional state vector which is not directly observed in general, and

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
s×n, D ∈ R

s×m and K ∈ R
n×s are parameter matrices; yt

and ut are the observed s-dimensional outputs and the m-dimensional exogenous inputs,

respectively. In addition, (εt) is a s-dimensional white noise process, i.e. Eεt = 0 and

Eεsε
′
t = δs,tΣ, Σ > 0 for all s, t ∈ Z.

The impulse reponse of the linear system (1.1) is given by the sequence of so called Markov

parameters

(Lj, Kj)j∈N = ((D, I), C(B,K), CA(B,K), CA2(B,K), . . . )

The corresponding transfer function from (ut, εt) to yt is given by

(l(z), k(z)) = C(z−1I − A)−1(B,K) + (D, I) (1.2)
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where z denotes a complex variable. For |z| sufficiently small, (l(z), k(z)) coincides with

its power series expansion
∑∞

j=1CA
j−1(B,K)zj + (D, I). Usually, we will assume k(z) to

be stable and strictly minimum phase, but the results of this paper do not depend on this

assumption.

1.1 Spaces of transfer functions

Let UA be the set of all rational and causal s× (m+ s) transfer functions of the form (1.2)

for arbitrary state dimension n. UA is endowed with the so called pointwise topology which

corresponds to the relative topology in the product space (Rs×(m+s))N for the coefficients

((Lj, Kj)|j ∈ N).

UA is infinite dimensional and may be broken into finite dimensional bits Uα, α ∈ I, say.

Usually these bits are described by a subset of an Euclidean space (to be more precise, by

the set of free parameters). We will consider the case where the sets Uα are subsets of the

class M(n) of rational and causal s× (m+ s) transfer functions of fixed McMillan degree n.

Clearly, M(n) ⊂ UA = ∪i∈NM(i).

It is well known that M(n) is a real analytic manifold of dimension 2ns + m(n + s); see

e.g. [7]. M̄(n) denotes the closure of M(n) in UA and satisfies: M̄(n) = ∪i≤nM(i).

Note that M(n) consists of n+1 pathwise connected components in the SISO case (s = 1,

m = 0) and is pathwise connected otherwise; see [2] and [6]. Finally, note that the same

holds true if we restrict ourselves to stable systems (see [8]) or to stable and strictly minimum

phase systems (see [4]).

1.2 Spaces of state-space realizations

The set of all state-space systems (A,B,C,D,K) for fixed m and s, but variable n is de-

noted by SA. If n is fixed too, we denote the corresponding set of state-space systems

(A,B,C,D,K) by S(n) ⊂ SA. In the following, we always identify (A,B,C,D,K) with








vec(A)

vec(B̃)

vec(C)

vec(D)








where B̃ = (B,K) and vec(.) stacks the first, second, etc. column of the matrix argument

on top of each other. Note that for m = 0, i.e. in the case where no exogenous inputs are

present and the state-space system is given by (A,K,C, I), this embedding degenerates to

(vec(A)′, vec(K)′, vec(C)′)′.

S(n) is endowed with the Euclidean norm for (A,B,C,D,K).

Finally, we introduce the set Sm(n) = {(A,B,C,D,K) ∈ S(n)|(A,B,C,D,K) is minimal }.
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1.3 The mapping π

By π the mapping attaching transfer functions to state-space matrices is denoted:

π : Sn → UA

(A,B,C,D,K) 7→ C(z−1I − A)−1(B,K) + (D, I) n ∈ N

Note that π is actually a family of mappings because the domain of definition is different

for different n. However, we will neglect this fact in the sequel and speak of π as one mapping

for some (arbitrary) n ∈ N. It is evident that π is continuous.

It is well known that for every (l, k) ∈ M(n), the (l, k)-equivalence class of minimal systems,

i.e. the inverse image π−1(l, k) in Sm(n), is of the form

{

(TAT−1, T B̃, CT−1, D), T ∈ GL(n)
}

(1.3)

where GL(n) denotes the set of non singular n × n matrices and (A,B,C,D,K) is any

minimal realization of (l, k), i.e. π(A,B,C,D,K) = (l, k). This set constitutes a n2 dimen-

sional real analytic manifold consisting of two disconnected components; see [11]. Using the

relation

vec(XY Z) = Z ′ ⊗Xvec(Y ) where X ⊗ Y =






X11Y . . . X1qY
...

...

Xp1Y . . . XpqY




 (1.4)

with X ∈ R
p×q and Y ∈ R

r×s, the vectorized form of (1.3) becomes














T−1′ ⊗ T 0 0 0

0 Im+s ⊗ T 0 0

0 0 T−1′ ⊗ Is 0

0 0 0 Im ⊗ Is








︸ ︷︷ ︸

Tvec∈Rn2+2ns+m(n+s)×n2+2ns+m(n+s)

·








vec(A)

vec(B̃)

vec(C)

vec(D)







, T ∈ GL(n)







(1.5)

Note that Tvec has full rank for all T ∈ GL(n) as rk(A⊗ B) = rk(A) · rk(B).

1.4 A few basics in real algebraic geometry

An algebraic subset of R
d is the set of zeros of some polynomial set B ⊂ R[x1, . . . , xd], where

R[x1, . . . , xd] denotes the polynomial ring with coefficients in R. Semi-algebraic subsets of

R
d are subsets of R

d of the form ∪k
i=1 ∩

rk

j=1 {x ∈ R
d|fi,j ∗i,j 0} where fi,j ∈ R[x1, . . . , xd] and

∗i,j is either < or =, for all i, j. Clearly, every algebraic subset is also semi-algebraic.

The following result can be found in [1]; see theorem 2.3.6:
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Theorem 1.1. Every semi-algebraic subset of R
d is the disjoint union of a finite number of

semi-algebraic sets, each of them being semi-algebraically homeomorphic to an open hypercube

(0, 1)l ⊂ R
l for some l ∈ N (with (0, 1)0 being a point).

The dimension dim(A) of a semi-algebraic set A can be defined algebraically. From the

theorem above we know that each semi-algebraic subset A of R
d can be written as A = ∪p

i=1Ai

where each Ai is semi-algebraically homeomorphic to an open hypercube (0, 1)li. It can be

shown that the dimension dim(A) coincides with max(l1, . . . , lp); see corollary 2.8.9 in [1].

Moreover, if the semi-algebraic set is a real analytic submanifold of R
d of dimension r (with

the usual definition of dimension for real analytic manifolds, i.e. for each point on the real

analytic manifold there exists an open neighborhood being diffeomorphic to an open subset

of R
r), then the two dimension concepts agree: dim(A) = r; see proposition 2.8.14 in [1].

1.5 Organization of the paper

The paper is organized as follows: In section 2, DDLC is briefly introduced. Section 3

then gives the main theorem together with remarks on their practical relevance. The proof

then comes in section 4. Finally, in section 5 a short summary is given to conclude this

contribution.

2 Data driven local coordinates

A possible approach to parametrize transfer functions in M(n) is the following: Take Sm(n)

as a parameter space, i.e. consider all matrix entries of minimal state-space representa-

tions (A,B,C,D,K) to be free parameters. This ”full state space parametrization” has

certain drawbacks, however: As has been mentioned above, for any given transfer function

(l, k) ∈ M(n), the corresponding (l, k)-equivalence class in Sm(n) is a real analytic manifold

of dimension n2. This in turn means that there are n2 essentially unnecessary coordinates

when using the full state-space parametrization.

The idea now is to avoid this drawback by only considering the 2ns+m(n+s) dimensional

ortho-complement to the tangent space to a certain (l, k)-equivalence class in Sm(n) at

a given (A,B,C,D,K) as a parameter space. Here, (A,B,C,D,K) is obtained by some

initial estimate, and this is the reason for calling the parametrization data driven local

coordinates. Clearly, the parameter space will then be of dimension 2ns + m(n + s) rather

than n2 + 2ns +m(n+ s) and thus has no unnecessary coordinates.

The construction of the tangent space to the n2 dimensional equivalence class (1.3) is

obtained by differentiation. The tangent space is given by (see section 5.6 in [9])

{(ṪAT−1 − TAT−1Ṫ T−1, Ṫ B̃,−CT−1Ṫ T−1, 0), Ṫ ∈ R
n×n} (2.6)

Using (1.4) together with (A⊗ B)(C ⊗D) = (AC ⊗BD), this can be vectorized to yield
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












T−1′

A′ ⊗ In − T−1′ ⊗ TAT−1

B̃′ ⊗ In

−T−1′ ⊗ CT−1

0sm×n2







· vec(Ṫ ), Ṫ ∈ R

n×n







= (2.7)














T−1′ ⊗ T 0 0 0

0 Im+s ⊗ T 0 0

0 0 T−1′ ⊗ Is 0

0 0 0 Im ⊗ Is














A′ ⊗ In − In ⊗A

B̃′ ⊗ In

−In ⊗ C

0sm×n2







︸ ︷︷ ︸

Q

(In ⊗ T−1) · vec(Ṫ ), Ṫ ∈ R
n×n







At T = I, i.e. at the given minimal realization (A,B,C,D,K), (2.6) reduces to

{

(ṪA− AṪ , Ṫ B̃,−CṪ , 0), Ṫ ∈ R
n×n
}

(2.8)

and (2.7) becomes

{

Q · vec(Ṫ ), Ṫ ∈ R
n×n
}

(2.9)

The matrixQ ∈ R
n2+2ns+m(n+s)×n2

has full column rank n2 for any minimal (A,B,C,D,K).

In fact, it is rank deficient if and only if (A,B,C,D,K) becomes both unobservable and

uncontrollable (see [10]). The columns of Q span the tangent space to the equivalence class

at (A,B,C,D,K) and by Q⊥ we denote a matrix the columns of which span the orthogonal

complement to the tangent space given above. Q⊥ can be obtained e.g. from a singular

value decomposition of Q, and the parametrization is then obtained as follows:

Definition 2.1 (Data driven local coordinates (DDLC)). Let a minimal (A,B,C,D,K)

be given. The DDLC are given by the mapping

ϕD : TD → Sm(n) (2.10)

τD 7→








vec(A(τD))

vec(B̃(τD))

vec(C(τD))

vec(D(τD))








=








vec(A)

vec(B̃)

vec(C)

vec(D)








+Q⊥τD

Here, TD ⊂ R
2ns+m(n+s) denotes the parameter space for DDLC, i.e. the set of all τD ∈

R
2ns+m(n+s) such that ϕD(τD) is minimal. Let VD = π(ϕD(TD)).

Remark 2.1. For any fixed minimal (A,B,C,D,K), the mapping ϕD from the parameter

vectors τD to the state-space matrices is affine (and therefore continuous and analytic) as can

be seen from (2.10). Clearly, ϕD(T̄D) = ϕD(TD), and in the sequel we will use the symbol

π(TD) = π(ϕD(TD)) with slight abuse of notation.
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3 Geometry and topology of DDLC

Before we state the main theorem of this section, we want to discuss a special case. This

will be done in order to motivate and (hopefully) clarify the results of the theorem below.

3.1 An illustrative example

Consider the case where n = s = 1 and m = 0. Here, no exogenous inputs are present

and thus l(z) vanishes. Clearly, S(1) = R
3 and Sm(1) = {(a, b, c)′ ∈ R

3|(a, b, c) is minimal }.

Note that for a given (a, b, c) ∈ Sm(1) corresponding to k(z) ∈ M(1), the scalar a is unique

and the corresponding k-equivalence class in Sm(1) is a hyperbola (with two branches) which

is determined by a fixed a and bc = const; see, e.g. the thick line in figure 1. Non minimal

systems (corresponding to the trivial transfer function k(z) = 0) are represented by the

union of the planes b = 0 and c = 0, respectively. Finally, note that M(1) consists of two

pathwise connected components, each of which corresponds to hyperbolae in Sm(1) where

sign(bc) = +1 and sign(bc) = −1, respectively.

Commencing from (a, b, c) ∈ Sm(1) we have Q = (0, b,−c)′ and thus the columns of Q⊥

may be chosen as (1, 0, 0)′ and (0, c, b)′. If we decide to choose a particular orthonormal

basis, the DDLC parametrization is given by





a(τ 1
D, τ

2
D)

b(τ 1
D, τ

2
D)

c(τ 1
D, τ

2
D)



 =





a

b

c



 +






1 0

0 c√
b2+c2

0 b√
b2+c2






(
τ 1
D

τ 2
D

)

(3.11)

Here, TD = {(τ 1
D, τ

2
D)′ ∈ R

2|(a(τ 1
D, τ

2
D), b(τ 1

D, τ
2
D), c(τ 1

D, τ
2
D)) is minimal } and ϕD(TD) is a

subset of the whole affine plane in S(1) given by (a, b, c)′ + Q⊥τD. Starting with an initial

system (a, b, c) = (a, b,±b), ϕD(TD) becomes a subset of the whole plane given by b = ±c.

In the sequel, we will call the affine subspace (plane) containing ϕD(TD) the affine subspace

(plane) corresponding to TD.

From figure 1 the following geometrical and topological properties of DDLC can be seen:

(i) The affine subspace corresponding to TD intersects the planes given by b = 0 and c = 0

yielding two straight lines given by





a(ξ)

b(ξ)

c(ξ)



 =






a+ ξ

b− c2

b

0




 ,





a(ξ)

b(ξ)

c(ξ)



 =






a + ξ

0

c− b2

c




 , ξ ∈ R (3.12)

In case of an initial system of the form (a, b,±b), this intersection becomes the a-axis

only. In any case, TD is seen to be an open and dense subset of R
2.

(ii) There exists a neighborhood T loc
D of (0, 0) ∈ TD (containing the initial system (a, b, c)),

such that each hyperbola entering a (sufficiently small) neighborhood of (a, b, c) in R
3
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Figure 1: Equivalence classes and parametrized manifolds in S(1) = R
3 and projection onto

the (b, c)-plane. On the left hand side, TD is shown for initial systems of the form (a, b, b).

On the right hand side, TD for initial systems (a, b, b) – see the dotted straight line – and TD

for an initial system (a, b, c) with |b| 6= |c| – see the thick straight line – are indicated.

also intersects the affine plane corresponding to TD and the intersection yields one

single point in T loc
D . Moreover, no non minimal system is described in T loc

D .

(iii) The boundary points of TD (which do not belong to TD) represent the trivial transfer

function k(z) = 0: π(T̄D) contains lower degree transfer functions.

(iv) These boundary points of TD are given by the two straight lines in (3.12) or by the a-

axis in case of an initial system of the form (a, b,±b). They constitute one equivalence

class, which is described by the nonlinear equation bc = 0 and another set of linear

equations restricting the points to be in the affine plane corresponding to TD.

Within TD, the k-equivalence classes consist of two elements except for the points

where TD touches a hyperbola which gives a singleton. These touching points – see the

circle on the right hand side of figure 1 – constitute a straight line and are given by:





a(ξ)

b(ξ)

c(ξ)



 =





a

b

c



+





1 0

0 1

0 b
c



 ·

(

ξ

− c2+b2

2b

)

, ξ ∈ R (3.13)

The touching points do not occur if the initial system is of the form (a, b,±b). In any
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case, we have a lack of global identifiability of TD, but every transfer function in VD

has just a finite number of representations within TD.

(v) VD is clearly open in π(T̄D). However, note that VD is not necessarily open in M(1):

The transfer functions corresponding to the points where hyperbolae touch the affine

plane corresponding to TD are boundary points of VD which belong to VD. This is a

direct consequence of the fact that in any neighborhood of such a touching point there

are hyperbolae which do not touch or intersect the affine plane corresponding to TD.

Hence, we can find a sequence of minimal realizations (an, bn, cn) /∈ ϕD(TD), n ∈ N

converging to the touching point and continuity of π shows the statement. Note that

an inner point of TD in this case corresponds to a boundary points of VD and that at

these points local identifiability is also violated.

Remark 3.1. Note that iterating the DDLC construction commencing from an initial (a, b, b),

(e.g. in course of a gradient-type search procedure) leaves VD unchanged. This can be seen

from the dotted straight line on the right hand side of figure 1: For any minimal system in

the affine plane corresponding to TD, the ortho-complement to its equivalence class would

coincide with the ”old” affine plane and therefore we could never leave the first and third

quadrant and would miss all hyperbolae in the second and fourth quadrant. If, however, we

start from an initial (a, b, c) where |b| 6= |c|, then we could reach any hyperbola in the second

step, i.e. by applying the DDLC construction again for some system in the affine plane

corresponding to the ”old” TD. In any case, for an arbitrarily given initial (a, b, c) ∈ Sm(1)

it is guaranteed that we reach any transfer function k(z) in the same pathwise connected

component of M(1) as π(a, b, c) by applying the DDLC construction finitely many times.

Remark 3.2. It is evident that the affine plane corresponding to TD does not intersect

”almost all” hyperbolae. Hence, the corresponding VD leaves out more than just a thin

subset of M(1), i.e. M(1) r VD always contains an open set.

Remark 3.3. Note that VD is strongly dependent on the particular initial system in the

equivalence class where the DDLC construction is performed; VD is smallest for the case of

choosing a representative of the form (a, b,±b) because we miss all hyperbolae corresponding

to systems (a, b, c) with the opposite sign of bc.

3.2 The main theorem

The following theorem holds true for arbitrary n, s and m:

Theorem 3.1. Assume that the initial system (A,B,C,D,K) is minimal. The parametriza-

tion by DDLC as given in (2.10) has the following properties:

(i) TD is an open and dense subset of R
2ns+m(n+s).
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(ii) There exist open neighborhoods T loc
D of 0 ∈ TD and V loc

D of π(A,B,C,D,K) in M(n)

such that T loc
D is identifiable, V loc

D = π(T loc
D ) and the mapping ψloc

D : V loc
D → T loc

D defined

by ψloc
D (π(τD)) = τD is a homeomorphism.

(iii) π(T̄D) contains transfer functions of lower McMillan degree.

(iv) For ”almost every” (l, k) ∈ VD, the (l, k)-equivalence class in TD consists of a finite

number of isolated points.

(v) VD is open (and trivially dense) in π(T̄D), but not necessarily open in M(n).

We give the following remarks:

(i) This means that the parameters are really free in the sense that they are not restricted

to a thin subset of R
2ns+m(n+s). More specifically, ”almost any” point in R

2ns+m(n+s)

corresponds to a transfer function in M(n). Note that this is an important requirement

for many numerical optimization procedures to work properly.

(ii) The set VD contains an open subset V loc
D of M(n) which contains the transfer func-

tion π(A,B,C,D,K). Additionally, (ii) assures bijectivity and continuity of the

parametrization on the piece V loc
D : The estimation problem is locally well posed in

the sense that consistency of the transfer function estimates in V loc
D (coordinate free

consistency; see [7]) implies consistency of the parameter estimates in T loc
D .

(iii) In the closure of the parameter space TD – note that T̄D = R
2ns+m(n+s) by (i) – we can

always describe transfer functions of equal and lower McMillan degree.

(iv) First, note that the set T̄D r TD only consists of parameters corresponding to lower

degree transfer functions (l, k). The corresponding (l, k)-equivalence classes are not

easy to describe. This can be illustrated by considering, e.g. the equivalence class of

the trivial transfer function (l, k) = (D, I). Here, 0 = CB̃ = CAB̃ = · · · = CA2n−1B̃

must hold true, and the corresponding subset of S(n) additionally has to be intersected

with the affine plane corresponding to TD. Clearly, the first restrictions are nonlinear.

For the case of parameters in TD, the corresponding (l, k)-equivalence classes are in

almost any case guaranteed to consist of a finite number of isolated points. For criteria

functions, which are constant along (l, k)-equivalence classes and have a unique mini-

mum, it is thus obvious that this minimum will be attained at any of the corresponding

(finitely many) points in the parameter space. The fact that these points are separated

is of importance, e.g. when using gradient type algorithms, and for aymptotic theory.

(v) states that the set VD is always open in π(T̄D). This is important in connection

with coordinate free consistency: If a sequence of, e.g. maximum likelihood estimates

(lt, kt) ∈ π(T̄D) satisfies (lt, kt) → (l, k) ∈ VD, then (lt, kt) ∈ VD from a certain t ≥ T0

onwards, i.e. for t ≥ T0 the transfer functions (lt, kt) do have representatives within

TD. However, VD need not be open in M(n).
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4 Proof of the main theorem

Before we give the proof of theorem 3.1, let us introduce the mapping

F : GL(n)× TD → Sm(n)

(T, τD) 7→








vec(TA(τD)T−1)

vec(T B̃(τD))

vec(C(τD)T−1)

vec(D(τD))








= Tvec















vec(A)

vec(B̃)

vec(C)

vec(D)








+Q⊥τD








(4.14)

Note that ∂F
∂T

(T, τD) describes the tangent space to the equivalence at (A(τD), B̃(τD), C(τD),

D(τD)) and has already been computed in (2.7). Moreover, ∂F
∂τD

(T, τD) = Tvec ·Q
⊥ is straight-

forward to see. Hence,

∂F

∂(T, τD)
(T, τD) = Tvec·








A(τD)′ ⊗ In − In ⊗ A(τD)

B(τD)′ ⊗ In
−In ⊗ C(τD)

0sm×n2

... Q⊥








︸ ︷︷ ︸

X(τD)

·

(
In ⊗ T−1 0

0 I2ns+m(n+s)

)

(4.15)

Note that F is linear in τD and rational in T , and thus a real analytic function. In fact,

it is a real analytic mapping between real analytic manifolds: Its domain of definition is an

open (and dense) subset of R
n×n × R

2ns+m(n+s) ≡ R
n2+2ns+m(n+s) because the set GL(n) is

open (and dense) in R
n×n and TD is open (and dense) in R

2ns+m(n+s) by statement (i). The

image space Sm(n) can also be shown to be open (and dense) in S(n) = R
n2+2ns+m(n+s).

Trivially, open sets of Euclidean spaces are real analytic manifolds. Note, however, that not

every point in Sm(n) is an image point of some (T, τD); see figure 2.

Let us call a point (T̄ , τ̄D) ∈ GL(n)× TD a regular point if the Jacobian ∂F
∂(T,τD)

(T̄ , τ̄D) has

full rank. We will call b = (vec(A)′, vec(B̃)′, vec(C)′, vec(D)′)′ ∈ Sm(n) a regular value of F

if every point in F−1(b) is regular (and, in particular, if F−1(b) = ∅). Non regular points

and non regular values are said to be singular points and singular values, respectively.

We are now ready to prove theorem (3.1):

Proof. (i) We consider the mapping ∆ : R
2ns+m(n+s) → R attaching det(W n

o (τD)W n
c (τD))

to τD where W n
o (τD) = On(τD)′On(τD) ∈ R

n×n with

On(τD) = On(A(τD), B(τD), C(τD), D(τD), K(τD)) = On(ϕD(τD))

being the corresponding (finite) observability matrix. The Gramian W n
c (τD) is given

analogously. Note that W n
o (τD) and W n

c (τD) have full rank if and only if ϕD(τD) is

10
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Figure 2: The dark area indicates the projection of the image set F (GL(n) × TD) onto

the (b, c)-plane. Clearly, the b-axis and the c-axis are not included in this set. Note that

F (GL(n)× TD) is not open in this case.

a minimal state-space realization. Due to the fact that ϕD is affine, the determinant

of W n
o (τD)W n

c (τD) is a polynomial in the parameters τ i
D, i = 1, . . . , 2ns + m(n + s)

and thus analytic (and trivially continuous). Openness of TD in R
2ns+m(n+s) follows

from the fact that TD = ∆−1(R r {0}) is the inverse image of an open set and ∆

is continuous. Denseness of TD in R
2ns+m(n+s) follows from a well known result for

analytic functions: ∆(τD) = 0 can only hold true on a thin subset of R
2ns+m(n+s) (∆

cannot vanish everywhere in R
2ns+m(n+s)).

(ii) We show that for a sufficiently small open neighborhood T loc
D of 0 ∈ TD the corre-

sponding π(T loc
D ) = V loc

D is a nonvoid open subset of M(n) and the mapping π|T loc
D

is a

homeomorphism. This implies, of course, that ψloc
D =

(

π|T loc
D

)−1

is a homeomorphism

from V loc
D onto T loc

D , too.

A detailed proof of this statement is given in [11]. The main idea is to show local

injectivity of the mapping F in (4.14) at the point (I, 0): The Jacobian of the mapping

F is given in (4.15) and has constant and full rank in a neighborhood of (I, 0). This

is easy to see as ∂F
∂(T,τD)

(I, 0) = [Q
...Q⊥] (which has full rank), the derivative depends

continuously on both T and τD and the determinant is a continuous function of the

matrix entries. Note that π|T loc
D

= π ◦ F |GL(n)×T loc
D

is, independent of the choice of

T ∈ GL(n)

– clearly continuous.
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– an open mapping because both F |GL(n)×T loc
D

and π are open mappings. This is

shown in [11], however, note that F is not globally open as has been erroneously

stated there. Thus π(T loc
D ) = V loc

D is open in M(n).

– bijective when considered as a function from T loc
D to V loc

D because of the injectivity

of F |(GL(n)×T loc
D

).

Hence, π|T loc
D

is a homeomorphism. This is valid for all parametrizations (not necessar-

ily affine ones) around a minimal (A,B,C,D,K) fulfilling the ”constant and full rank

condition” above.

(iii) We have proved in [12] that the trivial system (l, k) = (0, 0) can always be represented

in T̄D. The proof is rather unelegant and lengthy, and is therefore not included here

due to limitations of space.

(iv) Let us consider the mapping F in (4.14).

First, note the following: From a well known result (see, e.g. lemma 5.9 in [3]) we

know that for any regular value b ∈ Sm(n) of F the corresponding set F−1(b) is a real

analytic submanifold of GL(n)× TD of dimension zero. Note that this submanifold is

given by the set of equations F (T, τD)− b = 0 which can be transformed into a set of

polynomial equations by multiplication by det(T ), where det(T ) 6= 0 by assumption.

Thus, F−1(b) is in fact a (semi-) algebraic set, and the dimension is zero. Clearly, from

the discussion in the introductory section (1.4), F−1(b) consists of a finite number of

points in GL(n)× TD.

Second, from Sard’s theorem (see, for instance, theorem 6.1 in [3]) we know that the

set of singular values of F has Lebesgue measure zero in Sm(n). It follows that for

”almost all” points in Sm(n) – and therefore, because of continuity of π, for ”almost all”

(l, k) ∈ M(n) – the (l, k)-equivalence classes in TD consist of (at most) finitely many

points in TD. The set VD is known to contain an open subset of M(n) by statement

(ii), and thus it is also true that the (l, k)-equivalence classes of ”almost all” (l, k) ∈ VD

consist of (at most) finitely many points in TD.

(v) Openness of VD in π(T̄D) follows from the definition of relative openness. Here VD =

π(T̄D)∩M(n) and M(n) is known to be open in M̄(n); see [7], for instance. Denseness

is trivial. The fact that VD need not necessarily be open in M(n) has been discussed

in detail for the special case m = 0 and n = s = 1 in (v) of section (3.1).

5 Conclusions

In this paper a theorem summarizing the main topological and geometrical properties of

DDLC is given and its relevance in connection with actual calculations (and maximum

12



likelihood estimation) using DDLC is discussed in detail.
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