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Abstract

A nonsingular performance comparison between two standard robust adaptive con-
trol designs based on the dead-zone and projection modifications is given. A worst
case transient cost functional penalising the L∞ norm of the state, control and control
derivative has been chosen as the criterion of comparison. If a bound on the L∞ norm
of the disturbance is known, it is shown that the dead-zone controller outperforms the
projection controller when the a-priori information on the unknown system parameter
is sufficiently conservative. For clarity of the presentation, the result is restricted to
scalar systems and the generalisations are only briefly discussed.

1 Introduction

Parameter drift is a known undesirable phenomenon in adaptive control design. It can hap-

pen even when small input disturbances are present. Dead-zone and projection modifications

are two standard techniques to overcome such a problem.

Both methods require some a-priori knowledge and have their own advantages and draw-

backs. For example, dead-zone modifications require a-priori knowledge of the disturbance

level, and only achieve convergence of the output to some pre-specified neighbourhood of the

origin (whilst keeping all signals bounded). In particular if the disturbance vanishes, then

the dead-zone controller does not typically achieve convergence to zero: the convergence

remains to the pre-specified neighbourhood of the origin. On the other hand, projection

modifications generally achieve boundedness of all signals, and furthermore have the desir-

able property that if no disturbances are present, then the output converges to zero, however,

an arbitrarily small L∞ disturbance can completely destroy any convergence of the state.



This illustrates that in the case of asymptotic performance, there are some known char-

acterisations of ‘good’ and ‘bad’ behaviour. However, there are many situations in which

we cannot definitively state whether a projection or dead-zone controller is superior even

when only considering asymptotic performance. Furthermore, the known results, as with

most results in adaptive control, are confined to non-singular performances, ie. without any

consideration of the control signal.

Following our previous work [7], we aim to compare dead-zone and projection based adap-

tive controllers with respect to transient performance. Furthermore, the transient perfor-

mance measure will be nonsingular (ie. penalise both the state (x) and the input (u) of the

plant); specifically we will consider cost functionals of the form:

P = ‖x(·)‖L∞ + ‖u(·)‖L∞ + ‖u̇(·)‖L∞ .

We will identify circumstances in which the dead-zone controller is superior to the projection

controller w.r.t. P.

2 System Description and Control Design

Consider the following class of SISO nonlinear system:

Σ(θ, φ, d(·)) : ẋ(t) = θφ(x(t)) + u(t) + d(·) x(0) = x0, (2.1)

where x(·), u(·), θ ∈ R are the state, the control, and unknown constant parameter respec-

tively. φ(·) ∈ R is a known basis, which is taken to be locally Lipschitz, and d ∈ D is a

bounded disturbance. It is well known that the controller

Ξ : u(t) = −ax(t)− θ̂(t)φ(x(t))

˙̂
θ(t) = x(t)φ(x(t)), θ̂(0) = 0

(2.2)

stabilises system (2.1) when D = {0} and a > 0. This can be easily proven by defining the

Lyapunov function V (x(t), θ̂(t)) = x(t)2/2+(θ− θ̂(t))2/2 and observing that V̇ (x(t), θ̂(t)) =

−ax(t)2 ≤ 0. We say θ̂(·) is the adaptive estimator of θ.

It has been shown that even a small L∞ disturbance may cause a drift of the parameter

estimates θ̂(·), see eg. [1]. In following we briefly describe two common robust adaptive con-

trollers based on modifying the adaptive law, namely dead-zone modification and parameter

projection modification. More details can be found in most adaptive control text books (see

e.g. [5]). Let
˙̂
θ(t) = τ(x(t), θ̂(t)), θ̂(0) = 0 (2.3)

be the unmodified adaptation law. The idea of dead-zone [1, 5, 6] is to modify the parameter

estimator so that the adaptive mechanism is ‘switched off’ when system trajectory x(·) lies

inside a region Ω0 where the disturbance has a destabilising effect on the dynamics. In scalar



case, the dead-zone region Ω0 is defined by Ω0 = [−η, η] and the modified adaptive law is

taken to be
˙̂
θ(t) = D[−η,η](x) τ(x(t), θ̂(t)), θ̂(0) = 0, (2.4)

where

D[−η,η](x) =

{
0, |x| ≤ η

1, |x| > η
(2.5)

The size of the disturbance is necessary a-priori knowledge in order to define the region

[−η, η]. Let dmax > 0 be the upper bound on disturbance d(·), and define the dead-zone

controller

ΞD(dmax) : u(t) = −ax(t)− θ̂(t)φ(x(t))

˙̂
θ = D[−η,η](x) x(t)φ(x(t)) θ̂(0) = 0, η =

dmax

a
.

(2.6)

It has been shown (see e.g. [5]) that the closed loop (Σ(θ, φ, d(·)), ΞD(dmax)) is stable in the

sense that all loop signals are bounded and x(t)→ Ω0 as t→∞.

The projection modification [1, 3] is an alternative method to eliminate parameter drift by

keeping the parameter estimates within some a priori defined bounds. The general definition

of the projection can be found in e.g. [4]. A simplified version of parameter projection can

be obtained by defining Π = [−θmax, θmax] where θmax > 0 is an upper bound of |θ|, and

modifying the adaptive law as follows

˙̂
θ = Proj (τ), θ̂(0) = 0, (2.7)

where

Proj (τ) =

{
τ, |θ̂| < θmax or θ̂ τ ≤ 0

0, |θ̂| = θmax and θ̂ τ > 0.
(2.8)

Consequently the projection controller ΞP (θmax) is defined as follows:

ΞP (θmax) : u(t) = −ax(t)− θ̂(t)φ(x(t))

˙̂
θ(t) = Proj (x(t)φ(x(t))) θ̂(0) = 0

(2.9)

In the presence of bounded disturbances, the projection controller (2.9) guarantees the

boundedness of all signals in the closed loop (Σ(θ, φ, d(·)), ΞP (θmax)) (see e.g. [?]).

3 Statement of the Main Result

The goal of this paper is to establish a comparison between dead-zone and projection meth-

ods. We will compare the performances of the controllers with respect to the following worst

case non-singular transient cost functional P(Σ(θ, φ, d(·)), Ξ)

P(Σ(θ, φ, d(·)), Ξ) = sup
‖d(·)‖L∞≤ε

sup
|θ|≤δ

(‖x(·)‖L∞ + ‖u(·)‖L∞ + ‖u̇(·)‖L∞) , (3.10)



where δ > 0 . We also let φ to be taken such that


a) x = 0⇐⇒ φ = 0,

b)
∂φ

∂x

∣∣∣∣
x=0

�= 0.
(3.11)

We are not concerned in this paper with the comparison of asymptotic performance, this

has been studied previously, see eg. [5] and the references therein. The following theorem is

the main result of this paper:

Theorem 3.1. Let φ be such that (3.11) hold. Consider the system Σ(θ, φ, d(·)) defined by

(2.1), and the controllers ΞD(dmax), ΞP (θmax) defined by equations (2.6), (2.9). Consider

the transient performance cost functional (3.10). Then ∀dmax ≥ ε ∃θ∗max ≥ δ such that

∀θmax ≥ θ∗max > 0,

P(Σ(θ, φ, d(·)), ΞP (θmax)) > P(Σ(θ, φ, d(·)), ΞD(dmax)). (3.12)

In order to proof Theorem 3.1, firstly we show that P = ∞ for the basic design (2.2)

From this we can show that the projection modification design, ΞP , has the property that

P → ∞ as θmax →∞. Finally we show that P <∞ for the dead-zone design, ΞD, and P is

independent of θmax. This suffices to establish Theorem 3.1. In fact by this, we will prove

the stronger result that the ratio between the two costs can be made arbitrarily large, i.e

P(Σ(θ, φ, d(·)), ΞP (θmax))

P(Σ(θ, φ, d(·)), ΞD(dmax))
→∞ as θmax →∞, ∀dmax ≥ ε.

The proof of the theorem uses the following propositions:

Proposition 3.1. Suppose φ satisfies (3.11). Consider the closed loop (Σ(θ, φ, d(·)), Ξ) de-

fined by (2.1), (2.2), where d(·) = ε, for some ε > 0. Then

x(t)→ 0 as t→∞⇐⇒ θ̂(t)→∞ as t→∞. (3.13)

Proof. → ) Suppose for contradiction θ̂(t) �→ ∞. Then θ̂(t)→ θ̂∗ <∞ since θ̂ is monotonic

by (3.11). Therefore (x, θ̂) = (0, θ̂∗) is an equilibrium point of the closed loop. It

contradicts the fact that by (3.11-a) the closed loop differential equation system:

−ax(t) + (θ − θ̂(t))φ(x(t)) + ε = 0

x(t)φ(x(t)) = 0,
(3.14)

has no solution. Therefore θ̂(t)→∞ as t→∞.

← ) Defining the Lyapunov function V (x(t)) = x(t)2/2, we have that

V̇ (x(t)) = −ax(t)2 + ε x(t) + γ(t), γ(t) = (θ − θ̂(t))x(t)φ(x(t)). (3.15)



Note that since θ̂(t)→∞ as t→∞, it follows that for sufficiently large t > 0, γ(t) < 0

for all x(t) �= 0 by (2.2) and (3.11). Applying Young’s inequality, we observe that

V̇ (x(t)) ≤ −
(

ax(t)2

2
− γ(t)

)
+

ε2

2a
. (3.16)

Therefore V (x(t)) is non-increasing if

ax(t)2

2
− γ(t) >

ε2

2a
. (3.17)

Now suppose for contradiction x(t) �→ 0, then either 1. lim inf
t→∞

x(t) > 0 or 2.

lim inf
t→∞

x(t) = 0:

1. Suppose lim inf
t→∞

x(t) > 0. Then there exists ε′ > 0 s.t. x(t) > ε′ ∀t. Since

γ(t)→ −∞ as θ̂(t)→∞, It follows by (3.15) that V̇ (x(t))→ −∞ as t→∞, i.e.

∀M > 0 ∃T > 0 s.t. ∀t ≥ T V̇ (x(t)) ≤ −M, (3.18)

which implies that V (x(t)) → −∞. This contradicts the positive definiteness of

V (x(t)).

2. If lim inf
t→∞

x(t) = 0, then there must exists ε′ > 0, and a positive divergent sequence

{tk}k≥1 such that V̇ (x(t)) > 0 and x(tk) > ε′. Since γ(tk) → −∞ as k → ∞, it

follows that (3.17) holds at time tk, hence contradiction.

Therefore x→ 0 as t→∞. Thus completing the proof.

Proposition 3.2. Let φ satisfies (3.11) and consider the closed loop (Σ(θ, φ, d(·)), Ξ) defined

by (2.1), (2.2), where d(·) = ε. Suppose x(t) is bounded and uniformly continuous. Then

x(t)→ 0, θ̂(t)→∞ as t→∞.

Proof. Suppose for contradiction x(t) �→ 0 as t → ∞. So there exists a sequence {tk} for

which x(tk) ≥M for some M > 0 i.e.

∃M > 0 ∃ {tk}k≥1, tk →∞ s.t. |x(tk)| ≥M. (3.19)

Since x(t) is uniformly continuous, choosing ε = M/2, we have that

∃δ s.t. ∀τ ∈ [0, δ], ∀t > 0, |x(t)− x(t + τ)| < M

2
. (3.20)



So |x(tk)− x(tk + τ)| < M/2, and since x(tk) ≥M , we have x(tk + τ) > M/2 i.e.

x(t) ≥ M

2
, ∀t ∈ [ tk, tk + δ ]. (3.21)

It follows by (3.11) and the boundedness of x(·) that

φ(x(t) ≥ α > 0 ∀t ∈ [ tk, tk + δ ] (3.22)

where α > 0. Therefore

∃N > 0 s.t. x(t)φ(x(t)) ≥ N, ∀t ∈ [ tk, tk + δ ]. (3.23)

It follows that ∫ tk+δ

tk

x(τ)φ(x(τ))dτ ≥ Nδ. (3.24)

Now let us define {Sn} as follows:

{Sn}n≥1, S2k−1 = tk, S2k = tk+δ, k ≥ 1, (3.25)

Clearly Sn →∞ as n→∞. By (2.2), we have that

θ̂(t) =

∫ ∞

0

˙̂
θ(τ)dτ =

∫ ∞

0

x(τ)φ(x(τ))dτ =

∫
Sn

x(τ)φ(x(τ))dτ →∞, (3.26)

which by Proposition 3.1, implies that x(t) → 0 as t → ∞; hence contradiction. It follows

that as t → ∞, x(t) → 0, and by Proposition 3.1, θ̂(t) → ∞ , thus completing the proof.

Proposition 3.3. Suppose φ satisfies (3.11). Consider the closed loop (Σ(θ, φ, d(·)), Ξ) de-

fined by equations (2.1),(2.2) and the transient performance cost functional (3.10). Then

P(Σ(θ, φ, d(·)), Ξ) =∞

Proof. For ease of the notation let us denote sup
‖d(·)‖L∞≤ε

sup
|θ|≤δ

by sup
•

and lim sup
t→∞

by lim .

We choose d(·) = ε > 0. Suppose for contradiction P <∞. Consider ẋ(t). There are two

cases either 1. lim ẋ(t) =∞ or 2. lim ẋ(t) <∞:

1. Suppose lim ẋ(t) =∞, i.e. lim (−ax(t) + (θ − θ̂(t))φ(x(t)) + ε) =∞. Therefore either

(a) lim x(t) =∞, which implies that ‖x(·)‖L∞ =∞, hence contradiction, or

(b) lim x(t) <∞, therefore lim θ̂(t)φ(x(t)) =∞. It follows that

sup
•
‖u(·)‖L∞ ≥ ‖u(·)‖L∞ ≥

∣∣∣lim θ̂(t)φ(x(t))− lim x(t)
∣∣∣ =∞, (3.27)

which is a contradiction.



2. Suppose lim ẋ(t) <∞ i.e. x(t) is uniformly continuous. Again there are two possibili-

ties: either a) lim x(t) =∞, or b) lim x(t) <∞:

(a) lim x(t) =∞ implies that sup
•
‖x(·)‖L∞ =∞, hence contradiction.

(b) lim x(t) <∞ implies that x(t) is bounded. Therefore by Proposition 3.2

x(t)→ 0, θ̂(t)→∞ as t→∞. (3.28)

Considering lim u̇(t), and by applying (3.28), we observe that

lim u̇(t) =

(
a + θ̂(t)

∂φ(x)

∂x

) (
θ̂(t)φ(x(t))− ε

)
. (3.29)

Now there are two possibilities: either i) θ̂(t)φ(x(t)) �→ ε (including the possibility

that limt→∞ θ̂(t)φ(x(t)) does not exists), or ii) limt→∞ θ̂(t)φ(x(t)) = ε :

i. Suppose limt→∞ θ̂(t)φ(x(t)) does not exist, or θ̂(t)φ(x(t)) �→ ε. Therefore by

(3.11–b) we have that sup
•
‖u̇(·)‖L∞ =∞; hence contradiction.

ii. Suppose limt→∞ θ̂(t)φ(x(t) = ε. By (3.28) we have that

∀θ̂∗ > 0 ∃T > 0 s.t. ∀t > T θ̂(t) > θ̂∗. (3.30)

Now we choose d2(·) as follows

d2(t) =

{
ε t ≤ T

−ε t > T
(3.31)

Note that d2(t) = d(t) for all t ≤ T . With this choice, by continuity and

causality, we have that

lim
t→T+

x(t) = x(T ), lim
t→T+

θ̂(t) = θ̂(T ), lim
t→T+

φ(x(t)) = φ(x(T ). (3.32)

where limt→T+ denotes limt→T,t>T . It follows that(
lim

t→T+
u̇(t)

)
− u̇(T ) = 2ε

(
a + θ̂(t)

∂φ(x)

∂x

)
. (3.33)

The difference (3.33) can be made arbitrarily large by (3.28), (3.11) and

choosing a suitable θ̂∗. Then either u̇(T ) is large or limt→T+ u̇(t) is large,

therefore sup
•
‖u̇(·)‖L∞ can be made arbitrarily large hence contradiction1 .

Therefore at least one component of (3.10) diverges, hence P =∞.

1Note that the proof of 2b.ii in [7] is erroneous, and the argument given here corrects the proof in [7].



Proposition 3.4. Let φ satisfy (3.11) and consider the closed loop (Σ, ΞP (θmax)) defined by

equations (2.1), (2.9) and the transient performance cost functional (3.10). Then

P (Σ(θ, φ, d(·)), ΞP (θmax))→∞ as θmax →∞.

Proof. It is convenient to define

P[0,T ](Σ, Ξ) =
(
‖x(·)‖L∞ [0,T ] + ‖u(·)‖L∞ [0,T ] + ‖u̇(·)‖L∞ [0,T ]

)
. (3.34)

Now let M > 0. By Proposition 3.3 there exists d(·) ∈ D, ‖d(·)‖L∞ ≤ ε s.t.

P[0,∞)(Σ(θ, φ, d(·)), Ξ) ≥ 2M. (3.35)

It follows that ∃T > 0 s.t. P|[0,T ](Σ(θ, φ, d(·)), Ξ) ≥M and also θ̂(T ) ≥M . Let

θmax = max{M, 2θ̂(T )}. (3.36)

Then the unmodified and the projection design are identical on [0, T ], hence

P[0,T ](Σ(θ, φ, d(·)), ΞP (θmax)) = P[0,T ](Σ(θ, φ, d(·)), Ξ) ≥M. (3.37)

Therefore

P(Σ(θ, φ, d(·)), ΞP (θmax)) ≥ P[0,T ](Σ(θ, φ, d(·)), ΞP (θmax)) ≥M. (3.38)

Since this holds for all M > 0, this completes the proof.

Proposition 3.5. Consider the closed loop (Σ(θ, φ, d(·)), ΞD(dmax)) defined by equations

(2.1), (2.6) and the transient performance cost functional (3.10). Then ∀dmax ≥ ε,

P(Σ(θ, φ, d(·)), ΞD(dmax)) <∞.

Proof. Due to switching nature of the dead-zone, all our differential equations have a dis-

continuous right hand sides, for which the classical definition of solution is not valid, we

therefore consider solutions in a Filippov sense. A complete proof of stability can be found

in [2]. To establish performance bounds, we define the Lyapunov function

V (x(t), θ̂(t)) =
1

2
x(t)2 +

1

2
(θ − θ̂(t))

2
, (3.39)

and we let

V0 =
1

2
max( x2

0, ε
2 ) +

1

2
θ2. (3.40)

It has been shown [2] that

V (x(t), θ̂(t)) ≤ V0 ∀t > 0. (3.41)

Hence by (3.39), x(·) and θ̂(·) are uniformly bounded in terms of V0, θ as follows:

|x(t)| ≤
√

2V0 , |θ̂(t)| ≤ |θ|+
√

2V0. (3.42)



It follows that by (2.1), (2.6) that ẋ(·), u(·) are uniformly bounded in terms of V0, θ. Then

the uniformly boundedness of u̇(·) follows by continuity of φ(·):

u̇(t) = −aẋ(t)− θ̂(t)
∂φ(x

∂x
ẋ(t)−D[−η,η]x(t)φ(x(t))2. (3.43)

Therefore (‖x(·)‖L∞ + ‖u(·)‖L∞ + ‖u̇(·)‖L∞) <∞, thus completing the proof.

We can now prove the main result, which we repeat for convenience of the reader:

Theorem 3.1. Let φ be such that (3.11) hold. Consider the system Σ(θ, φ, d(·)) defined by

(2.1), and the controllers ΞD(dmax), ΞP (θmax) defined by equations (2.6), (2.9). Consider

the transient performance cost functional (3.10). Then ∀dmax ≥ ε ∃θ∗max ≥ δ such that

∀θmax ≥ θ∗max > 0,

P(Σ(θ, φ, d(·)), ΞP (θmax)) > P(Σ(θ, φ, d(·)), ΞD(dmax)). (3.44)

Proof. This is a simple consequence of Proposition 3.4 and Proposition 3.5.

4 Conclusions

This paper has demonstrated an analytical comparison between dead-zone and projection

based robust adaptive control designs. We have shown that if the a-priori knowledge of

the parametric uncertainty level is sufficiently conservative then the dead-zone based design

will out-perform the projection based design. The result of this paper can be extended

to systems in the form of integrator chains and also to minimum phase, relative degree

one, linear systems [8]. Similarly we have developed results to demonstrate the contrary

relationship between the controllers, ie. establishing results which show when the projection

controllers outperform the dead-zone controllers. Establishing whether the same results can

be given for the alternative costs, for example P = ‖x(·)‖L∞ + ‖u(·)‖L∞ , is future work.
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