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Abstract

This paper studies the problem of disturbance attenuation with internal stability via output feedback
for a family of nonlinear systems. Using a feedback domination design which substantially differs from the
separation principle, we explicitly construct a dynamic output compensator attenuating the disturbance’s
effect on the output to an arbitrary degree of accuracy in the L2-gain sense, and achieving global
asymptotic stability in the absence of disturbance.

1 Introduction and Discussion

In this paper we consider a class of single-input single-output uncertain nonlinear systems described by
equations of the form

ż = f0(t, z, y) + g0(t, z, y)w

ẋ1 = x2 + f1(t, z, x, u) + g1(t, z, x, u)w
...

ẋn−1 = xn + fn−1(t, z, x, u) + gn−1(t, z, x, u)w

ẋn = u + fn(t, z, x, u) + gn(t, z, x, u)w

y = x1 (1.1)

where (z, x) ∈ IRm × IRn is the system state, u ∈ IR, y ∈ IR and w ∈ Rs are the system input, output
and disturbance, respectively. The functions f0 : IRm+2 → IRm and g0 : IRm+2 → IRm×s are C1 with
f0(t, 0, 0) = 0 ∀t, while fi : IRn+m+2 → IR and gi : IRn+m+2 → IR1×s are C0 uncertain functions, with
fi(t, 0, 0, 0) = 0 ∀t, for i = 1, · · · , n.

The purpose of this paper is to investigate the problem of achieving an arbitrary small level of distur-
bance attenuation in the sense of L2-gain, via output feedback, for a class of nonlinear systems (1.1) under
appropriate conditions.

The disturbance attenuation problem of this kind has attracted considerable attention since the original
work [12], and there are many interesting results available in the literature. For nonlinear systems, the
problem was first studied in [8], a solution was given in terms of the L∞ induced norm from the disturbance
inputs to the outputs. However, an important issue—internal stability—was not considered in the paper
[8]. The stability issue was addressed later in [9], where a recursive design technique based on adding
an integrator was proposed, resulting in a solution to the global disturbance attenuation problem with
internal stability, for a class of nonlinear systems in a triangular form, i.e., fi(t, z, x, u) = fi(z, x1, · · · , xi)
and gi(t, z, x, u) = gi(z, x1, · · · , xi) in (1.1). The disturbance attenuation result obtained in [9] was later
extended to a larger class of minimum-phase and nonminimum-phase nonlinear systems [4, 2, 3]. Re-
cently, global inverse L2-gain design for nonlinear triangular systems was presented in [3], achieving global
disturbance attenuation together with local optimality.
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Most of the results reviewed so far have been obtained based on the assumption that the system state,
i.e. (z, x1, · · · , xn) in (1.1), is available for feedback design. In the case when only the output information is
measurable, fewer results exist in the literature, which are devoted to the disturbance attenuation problem
by output feedback. One of them is the paper [10], where a polynomial gain disturbance attenuation property
with global stability was achieved by output feedback, for a class of nonlinear systems in the so-called output
feedback form, i.e., the system’s nonlinearities depend on the output only. In the work [5], the problem
of disturbance attenuation characterized in terms of a nonlinear gain was considered for a subclass of
nonlinear systems (1.1) in which fi(t, z, x, u) = fi(z, y) and gi(t, z, x, u) = gi(z, y). The problem was solved
by using the concept of input to state stability (ISS) and the ISS Lyapunov function, together with the
adding an integrator design. There is also an interesting result [1] devoted to the same subject but for a
different class of nonlinear systems which can depend on the output nonlinearly but must be linear in the
unmeasurable states.

In this paper we shall pursue a line of the work started in [1, 10, 5]. Our objective is to find, if possible,
a linear output feedback controller of the form

ξ̇ = Mξ + Ny, M ∈ IRn×n, N ∈ IRn

u = Kξ, K ∈ IR1×n (1.2)

such that

i) when w = 0, the closed-loop system (1.1)-(1.2) is globally asymptotically stable at the equilibrium
(z, x, ξ) = (0, 0, 0), uniformly in t;

ii) for every disturbance w(t) ∈ L2 and given real number γ > 0, the response of the closed-loop system
(1.1)-(1.2) starting from the origin is such that∫ t

0
|y(τ)|2dτ ≤ γ2

∫ t

0
‖w(τ)‖2dτ, ∀t ≥ 0. (1.3)

To solve the disturbance attenuation problem by output feedback, we make the following assumptions
throughout this paper.

H1) There exist a C1 Lyapunov function U0(t, z), class K∞-functions β(·), β(·) and positive constants
a0, b0, c0, satisfying

β(||z||) ≤ U0(t, z) ≤ β(||z||)
U̇0(t, z) ≤ −a0||z||2 + b0y

2 + c0||w||2,

H2) |fi(t, z, x, u)| ≤ c(||z||+ |x1|+ · · ·+ |xi|), ∀i = 1, · · · , n, where c > 0 is a known constant;

H3) ||gi(t, z, x, u)|| ≤ G, ∀i = 1, · · · , n, where G > 0 is a known constant.

Remark 1.1 If one treats (y, w) as an input and z a state of the z-subsystem of (1.1), the assumption
H1) implies that the z−subsystem is input to state stable (ISS) and U0(t, z) is an ISS Lyapunov function
for the z-subsystem of (1.1) [11]. A condition similar to H1) has also been used in [2, 5]. The assumption
H2) requires basically the entire family of uncertain nonlinear systems (1.1) are dominated by a triangular
system satisfying linear growth conditions.

It should be pointed out that the systems (1.1) characterized by the conditions H1)-H3) represent an
important class of uncertain nonlinear systems that are not covered by the work [1, 10, 5]. Indeed, it is
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not difficult to see that the system below

ż = −z5/3 + z2/3(y + w)

ẋ1 = x2 + ln(1 + z2)

ẋ2 = x3 + x2 sinx2 + w cos x1

ẋ3 = u

y = x1 (1.4)

does satisfy H1)-H3) but does not belong to the class of nonlinear systems considered in [1, 10, 5]. As a such,
global disturbance attenuation with stability does not seem to be solvable by any existing output feedback
control scheme. When the system involves uncertainties, the problem becomes even more challenging, as
illustrated by the following example.

ż = −z3 + zy + zw

ẋ1 = x2 +
1
4
z2 + d1(t)x1 sin z +

1
2
(1 + cos(x2z))w

ẋ2 = u + d2(t)
1
3

ln(1 + x4
2)

y = x1 (1.5)

where |d1(t)| ≤ 1 and |d2(t)| ≤ 1 are unknown continuous functions whose bounds are known. For this
system, when d1(t) = d2(t) = 0, disturbance attenuation with global stability can be easily achieved by
output feedback. However, the problem cannot be solved by existing output feedback control schemes
including those in [1, 10, 5] in the presence of uncertain functions d1(t) and d2(t). Nevertheless, it is
solvable by the approach proposed in Section 2.

Inspired by the recent work [6, 7], we shall present in the next section a feedback domination design
method which provides a systematic procedure for the construction of linear dynamic output compensators
(1.2) for a class of nonlinear systems (1.1), achieving global disturbance attenuation with internal stability.
The novelty of our output feedback control scheme is in the explicit design of a dynamic compensator that
is not based on the separation principle. Instead of constructing the observer and controller separately,
we design a high-gain linear observer and a controller simultaneously. This is substantially different from
most of the existing works where the designed observer itself can asymptotically recover the state of the
controlled plant, regardless of the design of the controller, i.e., the controller design is independent of the
observer design—known as the separation principle.

2 Output Feedback Design — A Non-Separation Principle Paradigm

In this section, we prove that the problem of global disturbance attenuation with internal stability can be
solved by output feedback, for a class of nonlinear systems (1.1) under the assumptions H1)—H3). This
will be accomplished by explicitly constructing a dynamic output compensator, via a feedback domination
design method that is motivated by the technique of adding a power integrator [6, 7]. The main result of
this paper is the following theorem.

Theorem 2.1 Under the conditions H1), H2) and H3), there is a dynamic output compensator of the
form (1.2), such that the closed-loop system (1.1)–(1.2) is uniformly globally asymptotically stable when
w = 0 and achieves global disturbance attenuation in the sense of L2-gain, i.e., in the sense of (1.3).

Proof. The proof consists of three steps. First, we design a reduced-order, linear high-gain observer for
partial-states (x1, · · · , xn), without involving the system nonlinearities fi(t, z, x, u) and gi(t, z, x, u), i =
1, · · · , n, which are unknown and not available for the observer design. By doing so, the resulted error
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dynamics contains some extra terms that prevent convergence of the observer. We then construct a set
of dummy output controllers step-by-step, to eliminate the extra terms arising in the error dynamics.
Finally, we obtain a dynamic output compensator as well as a differential dissipation inequality, rendering
the closed-loop system globally asymptotically stable at the origin when w = 0, and attenuating the effect
of the disturbance on the output to an arbitrary degree of accuracy in the presence of w.

We begin by designing the following reduced-order, linear high-gain observer

˙̂x1 = x̂2 + La1(x1 − x̂1)
˙̂x2 = x̂3 + L2a2(x1 − x̂1)
...

˙̂xn−1 = x̂n + Ln−1an−1(x1 − x̂1)
˙̂xn = u + Lnan(x1 − x̂1) (2.1)

for the partial-states (x1, · · · , xn) of (1.1), where L ≥ 1 is a constant gain to be determined later, and
aj > 0, j = 1, · · · , n, are coefficients of the Hurwitz polynomial p(s) = sn + a1s

n−1 + · · ·+ an−1s + an.

Define εi = xi−x̂i
Li−1 , i = 1, · · · , n. A direct calculation yields

ε̇ = LAε +


f1(t, z, x, u) + g1(t, z, x, u)w
1
L(f2(t, z, x, u) + g2(t, z, x, u)w)
...

1
Ln−1 (fn(t, z, x, u) + gn(t, z, x, u)w)

 , (2.2)

where

ε =


ε1

ε2
...
εn

 A =


−a1 1 · · · 0

...
...

. . .
...

−an−1 0 · · · 1
−an 0 · · · 0

 .

Since A is a Hurwitz matrix, there is a positive definite symmetric matrix P = P T > 0 such that

AT P + PA = −I.

Consider the Lyapunov function V0(t, z, ε) = U0(t, z) + (n + 2)εT Pε. Using the assumption H2), it is
easy to show the existence of a real constant c1 > 0 (independent of L), such that

V̇0 ≤ −a0||z||2 + b0y
2 + c0||w||2 − (n + 2)L‖ε‖2 + 2(n + 2)εT P


f1(t, z, x, u) + g1(t, z, x, u)w
f2(t,z,x,u)

L + g2(t,z,x,u)w
L

...
fn(t,z,x,u)

Ln−1 + gn(t,z,x,u)w
Ln−1


≤ −a0||z||2 + b0y

2 + c0||w||2 − (n + 2)L‖ε‖2 + c1‖ε‖
(
||z||+ |x1|+

1
L
|x2|+ · · ·+ 1

Ln−1
|xn|

)
+2(n + 2)εT P

[
g1(t, z, x, u)w,

g2(t, z, x, u)w
L

, · · · , gn(t, z, x, u)w
Ln−1

]T
(2.3)

By H3) and the fact that L ≥ 1, there is a constant c̄0 > 0 (independent of L) satisfying

2(n + 2)εT P

[
g1(t, z, x, u)w,

g2(t, z, x, u)w
L

, · · · , gn(t, z, x, u)w
Ln−1

]T
≤ ||ε||2 + c̄0||w||2. (2.4)

Substituting (2.4) into (2.3), we have

V̇0 ≤ −a0||z||2 + b0y
2 − ((n + 2)L− 1)‖ε‖2 + c1‖ε‖

(
||z||+ |x1|+

1
L
|x2|+ · · ·+ 1

Ln−1
|xn|

)
+ ĉ0||w||2(2.5)
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where ĉ0 := c̄0 + c0 does not depend on L.
Recall xi = x̂i + Li−1εi. It is easy to see that

c1‖ε‖
(
‖z‖+ |x1|+

1
L
|x2|+ · · ·+ 1

Ln−1
|xn|

)
≤ c1||ε||

(
‖z‖+ |x̂1|+ |ε1|+ · · ·+ 1

Ln−1
|x̂n|+ |εn|

)
≤ c1||z||||ε||+

√
nc1||ε||2 + c1‖ε‖

(
|x̂1|+

1
L
|x̂2|+ · · ·+ 1

Ln−1
|x̂n|

)
≤ a0

2
||z||2 +

(
c2
1

2a0
+
√

nc1 +
n

2
c1

)
‖ε‖2 + c1

(
1
2
x̂2

1 +
1

2L2
x̂2

2 + · · ·+ 1
2L2n−2

x̂2
n

)
(2.6)

The last inequality is due to the fact that

c1||z||||ε|| ≤
a0

2
||z||2 +

c2
1

2a0
‖ε‖2,

1
Li−1

||ε|||x̂i| ≤
1
2
||ε||2 +

1
2L2i−2

x̂2
i .

Putting (2.5) and (2.6) together, we have,

V̇0 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 + b̂0y

2 −
(

(n + 2)L− c2
1

2a0
−
√

nc1 −
n

2
c1 − 1

)
‖ε‖2

+c1

(
1
2
x̂2

1 +
1

2L2
x̂2

2 + · · ·+ 1
2L2n−2

x̂2
n

)
, b̂0 :=

(
b0 +

ĉ0

γ2

)
. (2.7)

Initial Step: Construct the Lyapunov function V1(t, z, ε, x̂1) = V0(t, z, ε) + x̂2
1
2 . Then,

V̇1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 + b̂0y

2 −
(

(n + 2)L− c2
1

2a0
− (

√
n +

n

2
)c1 − 1

)
‖ε‖2

+c1

(
1
2
x̂2

1 +
1

2L2
x̂2

2 + · · ·+ 1
2L2n−2

x̂2
n

)
+ x̂1(x̂2 + La1ε1)

Choosing L ≥ 2
(

c21
2a0

+ (
√

n + n
2 )c1 + 1

)
gives

V̇1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 + b̂0y

2 − (n +
3
2
)L‖ε‖2 +

c1

2
x̂2

1

+c1

(
1

2L2
x̂2

2 + · · ·+ 1
2L2n−2

x̂2
n

)
+ x̂1x̂2 +

1
2
La2

1x̂
2
1 +

L

2
ε2
1 (2.8)

Define ξ2 = x̂2 − x̂∗2 with x̂∗2 being the virtual control. Thus,

1
2L2

x̂2
2 ≤

1
L2

ξ2
2 +

1
L2

x̂∗22 .

This, together with the fact that L > c1 and ‖ε‖2 ≥ ε2
1, implies

V̇1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 + b̂0y

2 − (n + 1)L‖ε‖2 + L

(
1
2
a2

1 +
1
2

)
x̂2

1 + c1
1
L2

ξ2
2 + c1

1
L2

x̂∗22

+c1

(
1

2L4
x̂2

3 + · · ·+ 1
2L2n−2

x̂2
n

)
+ x̂1ξ2 + x̂1x̂

∗
2

Clearly, the virtual controller

x̂∗2 = −Lb1x̂1, b1 := n + 1 +
1
2
a2

1 +
1
2
, which is independent of L,

5



is such that

V̇1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 + b̂0y

2 − (n + 1)L‖ε‖2 − ((n + 1)L− c1b
2
1)x̂

2
1

+
c1

L2
ξ2
2 + c1

(
1

2L4
x̂2

3 + · · ·+ 1
2L2n−2

x̂2
n

)
+ x̂1ξ2.

Note that ‖ε‖2 + x̂2
1 ≥ 1

2y2. By letting L ≥ max {2b̂0, 2
(

c21
2a0

+ (
√

n + n
2 )c1 + 1

)
}, we have

V̇1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 − nL‖ε‖2 − (nL− c1b

2
1)x̂

2
1 +

c1

L2
ξ2
2 + c1

(
1

2L4
x̂2

3 + · · ·+ 1
2L2n−2

x̂2
n

)
+ x̂1ξ2.

Inductive Step: Suppose at step k, there exist a set of virtual controllers x̂∗1, · · · , x̂∗k+1, defined by
x∗1 = 0, ξ1 = x̂1 − x∗1 and

x̂∗i = −Lbi−1ξi−1, ξi = x̂i − x̂∗i , i = 2, · · · , k + 1,

with bi > 0 being independent of the gain constant L, and a smooth Lyapunov function Vk(t, z, ε, ξ1, · · · , ξk)
of the form

Vk(t, z, ε, ξ1, · · · , ξk) = V0(t, z, ε) +
k∑

j=1

ξ2
j

2L2(j−1)

such that

V̇k +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 − (n + 1− k)L‖ε‖2 −

k∑
j=1

1
L2j−2

(
(n + 1− k)L− c1b

2
j

)
ξ2
j

+c1

(
1

2L2k+2
x̂2

k+2 + · · ·+ 1
2L2n−2

x̂2
n

)
+

c1

L2k
ξ2
k+1 +

1
L2(k−1)

ξkξk+1. (2.9)

Now construct the Lyapunov function

Vk+1(t, z, ε, ξ1, · · · , ξk+1) = Vk(t, z, ε, ξ1, · · · , ξk) +
1

2L2k
ξ2
k+1, ξk+1 := x̂k+1 − x̂∗k+1.

Since
ξk+1 = x̂k+1 + Lbkx̂k + L2bkbk−1x̂k−1 + · · ·+ Lkbkbk−1 · · · b1x̂1,

it is clear that

d

dt

(
1

2L2k
ξ2
k+1

)
=

1
L2k

ξk+1

(
x̂k+2 + Lk+1ak+1ε1 + Lbk

k∑
i=1

∂ξk

∂x̂i
(x̂i+1 + Liaiε1)

)

=
1

L2k
ξk+1

(
x̂k+2 + Lk+1ak+1ε1 +

k∑
i=1

Lk−i+1bk · · · bi(ξi+1 − Lbiξi + Liaiε1)

)

=
1

L2k
ξk+1

(
x̂k+2 + Lk+1d0ε1 + Lk+1d1ξ1 + Lkd2ξ2 + · · ·+ Ldk+1ξk+1

)
(2.10)

where d0, · · · , dk+1 are suitable constants independent of gain L.
With (2.9) and (2.10) in mind, one has

V̇k+1 +
ĉ0

γ2
y2 − ĉ0||w||2

≤ −a0

2
||z||2 − (n + 1− k)L‖ε‖2 −

k∑
j=1

1
L2j−2

(
(n + 1− k)L− c1b

2
j

)
ξ2
j +

c1

L2k+2
ξ2
k+2 +

c1

L2k+2
x̂∗2k+2

+c1

(
1

2L2k+4
x̂2

k+3 + · · ·+ 1
2L2n−2

x̂2
n

)
+

1
L2k−2

ξkξk+1 +
c1

L2k
ξ2
k+1 +

1
L2k

ξk+1ξk+2 +
1

L2k
ξk+1x̂

∗
k+2

+ξk+1

(
d0

Lk−1
ε1 +

d1

Lk−1
ξ1 +

d2

Lk
ξ2 + · · ·+ dk−1

L2k−3
ξk−1 +

dk

L2k−2
ξk +

dk+1

L2k−1
ξk+1

)
. (2.11)
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By construction, L ≥ c1. Hence

c1

L2k
ξ2
k+1 ≤

1
L2k−1

ξ2
k+1. (2.12)

Using the completion of square, it is straightforward to show that

−L||ε||2 +
d0

Lk−1
ξk+1ε1 ≤

1
4L2k−1

d2
0ξ

2
k+1, − L

L2k−2
ξ2
k +

dk + 1
L2k−2

ξk+1ξk ≤
(dk + 1)2

4L2k−1
ξ2
k+1 (2.13)

− L

L2i−2
ξ2
i +

di

Lk+i−2
ξk+1ξi ≤

d2
i

4L2k−1
ξ2
k+1, i = 1, · · · , k − 1. (2.14)

Substituting (2.12)-(2.14) into (2.11) yields,

V̇k+1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 − (n− k)L‖ε‖2 −

k∑
j=1

1
L2j−2

(
(n− k)L− c1b

2
j

)
ξ2
j +

c1

L2k+2
ξ2
k+2

+
1

L2k
ξk+1ξk+2 + c1

(
1

2L2k+4
x̂2

k+3 + · · ·+ 1
2L2n−2

x̂2
n

)
+

1
L2k

ξk+1x̂
∗
k+2

+
c1

L2k+2
x̂∗2k+2 +

ξ2
k+1

L2k−1

[
d2

0 + d2
1 + · · ·+ d2

k−1 + (dk + 1)2

4
+ dk+1 + 1

]
(2.15)

Then, it follows from the inequality above that

x̂∗k+2 = −Lbk+1ξk+1, bk+1 = n− k +
d2

0

4
+

d2
1

4
+ · · ·+

d2
k−1

4
+

(dk + 1)2

4
+ dk+1 + 1

with bk+1 being independent of L, renders

V̇k+1 +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 − (n− k)L‖ε‖2 −

k+1∑
j=1

1
L2j−2

(
(n− k)L− c1b

2
j

)
ξ2
j

+c1

(
1

2L2k+4
x̂2

k+3 + · · ·+ 1
2L2n−2

x̂2
n

)
+

c1

L2k+2
ξ2
k+2 +

1
L2k

ξk+1ξk+2(2.16)

Using the inductive argument above, we concludes that at the n − th step, there are constants
b1, b2, · · · , bn, all independent of the gain L, such that the linear controller

u = −Lbnξn = −Lbn(x̂n + Lbn−1(x̂n−1 + · · ·+ Lb2(x̂2 + Lb1x̂1) · · ·), (2.17)

(where ξi = x̂i + Lbi−1ξi−1, i = 2, · · · , n) renders

V̇n +
ĉ0

γ2
y2 − ĉ0||w||2 ≤ −a0

2
||z||2 − L‖ε‖2 −

(
L− c1b

2
1

)
ξ2
1 − · · · −

(
L− c1b

2
n−1

)
L2n−4

ξ2
n−1 −

L

L2n−2
ξ2
n (2.18)

where Vn(t, z, ε, ξ1, · · · , ξn) = V0(t, z, ε)+
∑n

i=1
1

2L2(i−1) ξ
2
i . Clearly, by construction and H1), Vn(t, z, ε, ξ1, · · · , ξn)

is positive definite and proper.
Let L > L∗ = max{ c21

2a0
+(

√
n+ n

2 )c1 +1, 2b̂0, c1b
2
1, · · · , c1b

2
n−1}. As a consequence, the right-hand side

of inequality (2.18) is negative definite. Therefore, the equilibrium of the closed-loop system is uniformly
globally asymptotically stable when w = 0.

Moreover, observe that Vn(t, 0, · · · , 0) = 0,∀t and Vn(t, z, ε, ξ1, · · · , ξn) ≥ 0. Then, it is deduced from
the dissipation inequality (2.18) that∫

0

t

|y(τ)|2dτ ≤ γ2
∫
0

t

||w(τ)||2dτ, ∀t ≥ 0, when (z(0), x(0), x̂(0)) = (0, 0, 0).

This completes the proof of Theorem 2.1.
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Remark 2.2 When β(·) and β(·) are quadratic functions, Theorem 2.1 includes Corollary 2 of [5] as a
special case. However, the class of nonlinear systems considered in this paper is much more general than
the one in [5].

Remark 2.3 From the design procedure above, one may notice that the observer gain L and controller
gains bi, i = 1, · · · , n, cannot be small numbers. Therefore, the dynamic output compensator proposed in
this paper is a high-gain controller. This may be a drawback for a practical implementation or application.

Without much effort, one can prove the following result which is an extension of Theorem 2.1.

Corollary 2.4 If H1) and H2) in Theorem 2.1 are replaced by the following conditions:

A1) There exist a C1 ISS Lyapunov function U0(t, z), class K∞-functions β(·), β(·), and class K function
α(·), and positive constants b0, c0, such that

β(||z||) ≤ U0(t, z) ≤ β(||z||)
U̇0(t, z) ≤ −α(||z||) + b0y

2 + c0||w||2,

A2) |fi(t, z, x, u)| ≤ c(α1/2(||z||) + |x1|+ · · ·+ |xi|), ∀i = 1, · · · , n, where c > 0 is a known constant,

then the L2-gain disturbance attenuation problem with global asymptotically stability is still solvable by
output feedback under A1), A2), H3).

The proof of this corollary can be carried out by using an argument similar to the proof of Theorem
2.1 and is therefore omitted for the sake of space.

Remark 2.5 Corollary 2.4 indicates that the condition H1) of Theorem 2.1 can be relaxed, i.e., −a||z||2
in H1) can be replaced by any K∞ function −α(||z||) (e.g. α(||z||) = z4, which is indeed the case when
considering a nonlinear system like (1.5)). As a trade off, H2) must be, however, replaced by a stronger
growth condition such as A2), in which fi(·), i = 1, · · · , n, are dominated by α1/2(||z||) and a linear growth
function (|x1|+ · · ·+ |xi|).

We conclude this section with a simple example which illustrates an interesting application of Corollary
2.4. In particular, we demonstrate how to design a dynamic output controller explicitly, achieving global
disturbance attenuation with internal stability for the uncertain nonlinear system (1.5).

Obviously, system (1.5) fails to satisfy H1) and H2) of Theorem 2.1 but does satisfy A1), A2), H3) of
Corollary 2.4, with U0(z) = z2

2 , α(||z||) = z4

2 , b0 = c0 = 1, G = 1. By Corollary 2.4, the problem of global
disturbance attenuation is solvable by output feedback. Indeed, an output feedback control law that solves
the problem can be constructed step by step, as shown below.

First, design a high-gain observer of the form

˙̂x1 = x̂2 + L(x1 − x̂1)
˙̂x2 = u + L2(x1 − x̂1) (2.19)

where

A =

[
−1 1
−1 0

]
, P =

[
1 −1

2
−1

2
3
2

]
are such that

AT P + PA = −I.
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The error dynamic is given by

ė1 = e2 − Le1 +
1
4
z2 + d1(t)x1 sin z +

1
2
(1 + cos(x2z))w

ẋ2 = −L2a2e1 + d2(t)
1
3

ln(1 + x4
2)

Let ε1 = e1 = x1 − x̂1, ε2 = e2
L = x2−x̂2

L . Then

ε̇1 = Lε2 − Lε1 +
1
4
z2 + d1(t)x1 sin z +

1
2
(1 + cos(x2z))w

ε̇2 = −Lε1 +
d2(t)1

3 ln(1 + x4
2)

L
(2.20)

Consider the Lyapunov function V0(z, ε) = U0(z) + 4εT Pε. Its derivative along the trajectories of
(1.5)–(2.20) is

V̇0 +
9
γ2

y2 − 9w2 ≤ −z4

4

(
1 +

9
γ2

)
y2 − (4L− 40− 16

√
2)||ε||2 + 16

(
x̂2

1

2
+

x̂2
2

2L2

)
where γ > 0 is a given real number.

Next we define

V1 = V0 +
x̂2

1

2
, x̂∗2 = −4Lx̂1, ξ2 = x̂2 − x̂∗2,

and choose the observer gain

L ≥ max{80 + 32
√

2, 2 +
18
γ2
}.

A simple calculation gives

V̇1 +
9
γ2

y2 − 9w2 ≤ −z4

4
− 2L||ε||2 − (2L− 256)x̂2

1 +
16ξ2

2

L2
+ x̂1ξ2.

At the last step, let V2 = V1 + ξ2
2

2L2 . Then, it is easy to show that

u = −(6 +
125
2

)Lξ2

leads to

V̇2 +
9
γ2

y2 − 9w2 ≤ −z4

4
− L||ε||2 − (L− 256)x̂2

1 −
1
L

ξ2
2 .

From the dissipation inequality above, it is concluded that the output feedback controller

u = −(6 +
125
2

)L(x̂2 + 4Lx̂1) (2.21)

with (2.19) solves the problem of global disturbance attenuation for the uncertain nonlinear system (1.5).
Note that the gain L in (2.19)–(2.21) can be any positive constant satisfying L > L∗ = max{256, 80 +
32
√

2, 2 + 18
γ2 }.

3 Conclusion

We have addressed the problem of L2-gain disturbance attenuation with stability by output feedback for
a family of uncertain nonlinear systems, which cannot be dealt with by existing methods. The main
contribution of the paper is a systematic construction of a linear dynamic output compensator in which
the design of the high-gain observer and controller must be coupled in a delicate manner and processed
simultaneously. This is substantially different from existing output feedback control schemes—most of
them are based on the separation principle.
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