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Abstract

We will investigate the stability behavior of quadratic maps in higher dimensions.

To check stability, we will use infinitesimal V -stability of critical points of the map;

since the infinitesimal V -stability of a map at all of its critical points is equivalent to the

stability of the map. We will establish the connection between infinitesimal V-stability

of solutions to the Algebraic Riccati Equations, and the Hamiltonian eigenstructure

of the solutions, by investigating the stability behavior of the corresponding Riccati

map. Infinitesimal V -stability of critical points of the Riccati map is crucially related

to stability of the Riccati map and characterizes the behavior of these solutions under

perturbations of problem data. Gröbner Bases are used to implement the calculations.

1 Introduction

The study of behavior of maps under perturbation arises often in control theory. Often it is

desired to know the effects on the solutions of perturbing the parameters of a system under

study. This can usually be translated to the question of the effects of perturbations on a

specific map. The maps of interest to us are often differentiable and, in fact, often polynomial.

This allows us to use the tools of differential topology, algebraic geometry, and commutative

algebra. Differential topology becomes relevant since the maps are differentiable and because

we are interested in local behavior near critical points. Algebraic geometry and commutative

algebra can be used since many of the maps are polynomial. A number of related notions of

“stability” of maps exist in the differential topology literature [2, 3, 10]. Intuitively, a map

is stable if a small perturbation does not drastically change the topological and differential

properties of the map. Stability is a global property and in general, it is difficult to decide

whether a map is stable. Locally, a differentiable map that does not have any critical points

is differentiably equivalent to the identity map and hence the obstruction to stability is in

the nature of the critical points. We thus turn to local notions of stability of a map at one

of its critical points. One such notion is called the “infinitesimal V -stability” of a map at

a critical point. This notion has its roots in the work of Malgrange, Mather, and Arnold.

We use the formulation of Arnold, Gusein-Zade and Varchenko [2]. The importance of this

notion is two-fold. On the one hand, combining theorems of Mather, Malgrange, Arnold,
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and others we see that under some mild conditions, the infinitesimal V -stability of a map

at all of its critical points is equivalent to the stability of the map. On the other hand,

infinitesimal V -stability is defined in algebraic terms and thus one can use methods from

commutative algebra to decide infinitesimal V -stability of a map at a critical point.

Arnold, Gusein-Zade and Varchenko use ad hoc algebraic arguments to decide whether

specific maps are infinitesimally V -stable. One of our contributions is to use the so-called

Gröbner bases to simplify these arguments. We will show this simplification in an example.

As an illustration of our methods, we will investigate the stability of the “Riccati Map”.

This is a natural map arising from the Algebraic Riccati Equation (ARE) whose zeros are

the solutions to the ARE. Bucy [4] has defined a notion of structural stability of these

solutions. It follows from his work that a solution to the ARE is structurally unstable

if the corresponding zero of the Riccati Map is a critical point. For this reason, we can

further classify the structurally unstable solutions to the ARE. Some such solutions are

infinitesimally V -stable and some are infinitesimally V -unstable. We develop a number

of conjectures relating the eigenstructure of the Hamiltonian matrix arising from ARE,

the infinitesimal V -stability of the structurally unstable solutions, and the properties of the

quadratic differential. We will prove for the 2×2 case that there is direct connection between

the eigenstructure of the Hamiltonian matrix corresponding to that solution, the infinitesimal

V -stability of those solutions, and a differentiable invariant called the quadratic differential.

We will make this algebraic approach very practical by simplifying the calculations using

Gröbner bases. Due to complexity of calculations and dimension-dependence, this approach

has to be carried over one dimension at a time. We will prove our results in R3 i.e., for 2× 2

AREs. However, we will present conjectures that generalize our results to higher dimensions.

This dimension-dependence is not surprising in this kind of problems, as exemplified by

Mather’s “good dimensions” [14]. In this paper we will first give a brief background to

infinitesimal V -stability, quadratic differential and Gröbner bases. This will be followed by

a discussion of stability of quadratic maps, structural stability of solutions to ARE and

Riccati maps. We will then state our theorems in low-dimensions and conjectures in higher-

dimensions and due to space limitation will give proof to some theorems.

2 Infinitesimal V -Stability and the

Quadratic Differential

We need to first introduce some basic definitions. We follow [2] closely, for more detailed

description see [7].

Definition 1 Given a function f : Rn → Rn, x ∈ Rn is a critical point of f if the Jacobian

of f at x, Jxf , is not invertible.

Definition 2 Two differentiable maps are topologically conjugate or differentiably equivalent

if one can transform one map into the other by means of smooth changes of the independent
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and dependent variables.

Definition 3 A differentiable map f is stable if every map sufficiently close to it (in the

Whitney topology) is differentiably equivalent to it.

Definition 4 A differentiable map f is said to be infinitesimally stable if, for any differen-

tiable deformation field u, the equation

u(x) = −∂f

∂x
h(x) + k(f(x))

can be solved for differentiable vector fields h and k.

Stability and infinitesimal stability are global concepts. We now introduce a more easily

tractable local concept.

Definition 5 If two functions agree in some neighborhood of a point x, then we consider

them equivalent. The collection of equivalent functions at the point x is called a map-germ

at the point x.

Definition 6 [2] Let f : Rn → Rm be a differentiable map germ with f(0) = 0. Let

f = (f1, f2, . . . , fm) where each fi : Rn −→ R is a coordinate map of f . Let Ax be the

commutative algebra of formal power series in the variables x1, x2, . . . , xn. Let I be the

submodule of (Ax)
m generated by ∂f

∂xj
and fier for j = 1, . . . n; and i, r = 1, . . .m. The map

germ f is said to be (infinitesimally) V -stable if the images of the basis vectors e1, . . . , em

generate over R the quotient module T = (Ax)
m/I.

The following theorems motivates our interest in infinitesimal V -stability:

Theorem 7 ([2, page 129],[10]) The infinitesimal V -stability of a germ of a differentiable

map is equivalent to its infinitesimal stability.

Theorem 8 (Mather’s Theorem,[2],[10]) Infinitesimally stable maps are stable and vice

versa.

We will further make connections between infinitesimal V -stability and a differentiable in-

variant, the quadratic differential. The quadratic differential is, roughly, the quadratic

part of the Taylor expansion of a map at a point where the linear term vanishes.

Definition 9 Let f : Rn → Rm be a differentiable map with f(0) = 0. The Jacobian of f

at 0 is a linear transformation Jf (0) : Rn → Rm. Let Im denote the image of Jf(0) in Rm.

The quadratic differential of f at 0 is the map

d2f0 : ker(Jf(0)) −→ coker(Jf(0)) = Rm/Im

defined by

d2f0(v) = lim
t→0

f(tv)

t2
/Im ∈ Rm/Im,

for v ∈ ker(Jf(0)).
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If two differentiable germs give rise to distinct quadratic differentials of different rank then

the two germs will not be differentiably equivalent. Now d2f0 is a non-linear map between

equidimensional vector spaces. Thus its image may not (in fact, usually will not) be a

subspace of the cokernel. However, in the case of polynomial maps, the image will be a

variety and hence we can associate with it a dimension (the dimension of a tangent space at

a non-critical point).

Definition 10 If the dimension of the image of d2f0 is less than the dimension of the kernel

of Jf(0), then we say that d2f0 has a rank drop or is singular.

3 Gröbner Bases

In general, it is difficult to check if a differentiable map is stable. Infinitesimal V -stability

provides an algebraic method for deciding the stability of a map. However, it is not easy

to check the infinitesimal V -stability criterion due to complexity of algebraic calculations.

However, the calculations are much simplified by using Gröbner bases. Gröbner bases were

introduced by Bruno Buchberger in 1965. The terminology acknowledges the influence of

Wolfgang Gröbner, his thesis advisor, on Buchberger’s work. We assume that the reader

is familiar with the basic definitions of rings and ideals. Let k be a field (for our purposes

the field is usually the real numbers or the complex numbers) and let k[x] be the algebra of

polynomials in one variable. Let I be an ideal in k[x]. An example of an ideal is the set of

polynomials p(x) such that p(A) = 0 for some given n × n matrix A. Ideals in k[x] behave

very nicely. If f(x), g(x) ∈ k[x], then we can divide f by g and get a unique quotient and

remainder:

f(x) = g(x)q(x) + r(x), with r(x) = 0 or deg(r(x)) < deg(q(x)).

This simple property allows one to answer many questions about ideals easily. Now if we

have a polynomial and we want to know whether it is in the ideal or not we just have to

divide it by the generator. If the remainder is zero then the polynomial belongs to the ideal

and otherwise it does not. Thus answering an ideal membership question is an easy one for

polynomials of one variable. The situation becomes more complicated for polynomials of

several variables. Let k be a field and let k[x1, . . . , xn] be the algebra of polynomials in n

variables over k. If I is an ideal in this ring then it is not necessary generated by one element,

and we do not have an exact analogue of the division algorithm. By the celebrated Hilbert

Basis Theorem, I is generated by a finite number of polynomials. However, not all sets of

generators have the same usefulness in answering questions about ideals. A Gröbner basis is

a special type of a generating set for an ideal that allows us to answer many questions (e.g.,

ideal membership) easily. For a detailed development of this material see [1]. In order to

check the infinitesimal V -stability of solutions to ARE we use Gröbner basis for modules.

In particular, we will find a Gröbner basis for the submodule I generated by ∂f

∂xj
and fier as

was stated in definition 6. We will use Maple to compute Gröbner basis for our examples.
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4 Stability of Quadratic Maps

It is often hard to show that a map is stable. The stability of real valued differentiable

functions from Rn to R is well understood by Morse theory [15]. However, other than

real valued differentiable maps, only some other special classes of maps have been classified

according to their stability. Whitney [18] solved the problem for maps from a two dimensional

manifold to a two dimensional manifold. For control theory interpretation and our particular

interest on Riccati maps we are interested in quadratic maps between equi-dimensional spaces

from Rn to Rn. In this section we give number of theorems and conjectures that we have

for quadratic maps from Rn to Rn. For n > 3, it is hard to find stable classes of maps

in n-dimensional manifolds, since as mentioned earlier, stable maps are not dense in higher

dimensions. We will find a class of stable quadratic maps in Rn. In this paper, we are

particularly interested in quadratic maps in higher dimensions, since the Riccati map is a

quadratic map and we would like to study it in high dimensions. The following theorems,

and conjectures represent different forms of quadratic Riccati maps from Rn to Rn.

Theorem 11 Let f : Rn −→ Rn, be defined by:

f(



















x1

x2

...

xn−1

y



















) =



















a11x1 + . . . + a1n−1xn−1 + b1y
2

a21x1 + . . . + a2n−1xn−1 + b2y
2

...

an−11x1 + . . . + an−1n−1xn−1 + bn−1y
2

by2



















.

Let

F =









a11 . . . a1n−1

...

an−11 . . . an−1n−1









and assume b 6= 0 and F is invertible. Then f is infinitesimally V -stable with a non-singular

quadratic differential.

Theorem 12 Let f : Rn −→ Rn, be defined by:

f(



















x1

x2

...

xn−1

y



















) =



















a11x1 + . . . + a1n−1xn−1

a21x1 + . . . + a2n−1xn−1

...

an−11x1 + . . . + an−1n−1xn−1

by2



















.

Assume b 6= 0 and F is invertible and assumed to be as in theorem 11. Then f is infinitesi-

mally V -stable with a non-singular quadratic differential.
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Conjecture 1 Let f : Rn −→ Rn, be defined by:

f(



















x1

x2

...

xn−1

y



















) =



















a11x1 + . . . + a1n−1xn−1 + b1y
2 + Q(x1, x2, . . . , xn−1, y)

a21x1 + . . . + a2n−1xn−1 + b2y
2 + Q(x1, x2, . . . , xn−1, y)

...

an−11x1 + . . . + an−1n−1xn−1 + bn−1y
2 + Q(x1, x2, . . . , xn−1, y)

by2 + Q(x1, x2, . . . , xn−1, y)



















.

Let Q(x1, x2, . . . , xn−1, y) be any quadratic polynomial. Assume b 6= 0 and F is invertible

and assumed to be as in theorem 11. Then f is infinitesimally V -stable with a non-singular

quadratic differential.

Conjecture 2 Let X =













x1

x2

...

xn













, and f : Rn −→ Rn, be defined by:

f(X) = Jf(0)X +













XT K1X

XT K2X
...

XTKnX













;

where Ki is any quadratic term and the linear term Jf(0) is the Jacobian matrix of the map

f at 0;

Jf =









∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn









.

Let 0 be the critical point of f , and rank(Jf(0)) = n − 1.

Assume Ker(Jf(0))⊕ Im(Jf(0)) = Rn. Let a =













α1

α2

...

αn













be a basis for Ker(Jf(0)).

If













atK1a

atK2a
...

atKna













6∈ Im(Jf(0)), then f is infinitesimally V -stable with a non-singular quadratic

differential.

Conjecture 3 Let f : Rn −→ Rn, be any quadratic map. If f is infinitesimally V -stable

then the corresponding quadratic differential is non-singular.

Conjecture 4 Let f : Rn −→ Rn, be a quadratic map. Let Jf be the Jacobian matrix of f .

If rank (Jf(0)) < n − 1 then f is infinitesimally V -unstable.

The above theorems, and conjectures represent Riccati maps with different associated

Hamiltonian eigenstructure. We have many examples to support our conjectures.
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5 ARE and Structural Stability

The Algebraic Riccati Equation is

AT P + PA + Q − PBR−1BT P = 0. (5.1)

There are three kinds of symmetric solutions to the ARE. The stabilizing solution P+, the

anti-stabilizing solution P−, and the mixed solutions Pθ with both negative and positive

eigenvalue real parts. All three solution types are needed to know the complete phase

portrait of the Riccati differential equations. Given a symmetric solution for the ARE,

Bucy in [4] calls a solution structurally stable iff it is continuously deformed and keeps the

same closed-loop stability properties (inertia) under data perturbation. It can easily be

shown that P+ and P− are structurally stable. However, Pθ may or may not be structurally

stable depending on how the RHP and LHP eigenvalues of the corresponding Hamiltonian

are combined. Bucy’s main result in [4] relates the invertibility of Jacobian matrix J to the

structural stability of the solutions to ARE:

Theorem 13 (Bucy) A solution P of the ARE is structurally stable if and only if J is

invertible.

Structurally unstable solutions are good candidates for bifurcation. Depending on the

eigenstructure of the associated Hamiltonian matrix, a mixed solution may be structurally

unstable. In fact from Bucy’s work, it can be shown that repeated eigenvalues of the Hamil-

tonian matrix is a necessary condition for the mixed solution of the ARE to be structurally

unstable. Therefore, for these solutions we can define a Riccati map such that the solution

is a critical point of the Riccati map and we can further analyze the solution to decide

its infinitesimal V -stability. That criterion will determine whether that particular mixed

solution bifurcates under data perturbation. Mixed solutions, Pθs, have an application in

smoothing problems when we need to estimate the state of the system using both past and

future measurements. The potential instability of the smoothing solution can be justified

from the fact that smoothing requires a choice (of past and future observations) and that it

might not be possible to make that choice continuously under data perturbation.

6 The Stability of the Riccati map

and the eigenstructure of the Hamiltonian matrix:

Results

Given a solution Psol to the ARE (5.1), let P = P − Psol, M = BR−1BT , F = AT − PsolM.

Define the matrix Riccati map as Ric(P ) = −PMP
T

+FP
T −PF T . Ric is a map on the set

of n×n symmetric matrices with a linear part (FP
T −PF T ) and a quadratic part (−PMP

T
).

Ric(0) = 0 corresponds to P = Psol. Rewriting Ric in vector format and considering only the
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entries on or above the diagonal we get the Riccati map f : R
n(n+1)

2 −→ R
n(n+1)

2 . Now, by

Bucy’s work [4], 0 is a critical point of the Riccati map if and only if Psol is a structurally un-

stable solution of the ARE. The Riccati map captures all the information about the ARE

and hence understanding the nature of its behavior near zero amounts to understanding

the behavior of the solution to the ARE. What allows us to proceed and develop detailed

theorems in low dimensions and conjectures in higher dimensions about the stability and

infinitesimal V -stability of solutions to ARE is the fact that much information about the

stability of solutions to ARE can be gleaned from the eigenstructure of the Hamiltonian ma-

trix. Here we will briefly discuss the connection between infinitesimal V -stability of solution

to ARE and the Hamiltonian eigenstructure of that particular solution. Define the Hamil-

tonian of the ARE as H =

[

A −M

−Q −AT

]

. H can be written in terms of its eigenvectors and

eigenvalues, H = V DV −1. We pick V to be a symplectic matrix of generalized eigenvectors

of H, and D is either a diagonal matrix of eigenvalues of H or a Jordan matrix, depending

on the structure of the Hamiltonian matrix [13]. Let J =

[

0 I

−I 0

]

. Since we chose V to

be symplectic we have V −1 = −JV T J and therefore H = V DV −1 = −V DJV T J . Using

this we can proceed to write M, F (and thus the linear and quadratic part of the matrix

Riccati map) in terms of eigenvalues and eigenvectors of H. Having rewritten the Riccati

map in terms of the eigenstructure of the Hamiltonian matrix, we can proceed to analyze

the stability of this Riccati map and relate it to the quadratic differential of the map. Due

to complexity of calculations, this approach is conducted on a dimension by dimension basis.

However, we will present conjectures that generalize our results to higher dimensions. We

will prove our conjectures in R3 i.e., for 2 × 2 AREs. The results are as follows: if the as-

sociated Hamiltonian matrix H is diagonalizable with multiple eigenvalues then the Riccati

map has a singular quadratic differential and moreover, the critical point is infinitesimally

V -unstable. On the other hand when char(H) = min(H)(char(H) and min(H) are respec-

tively the characteristic and minimal polynomials of the Hamiltonian matrix), the quadratic

differential is nonsingular and the critical point is infinitesimally V -stable. Here, we will

present the theorems that we have for f : R3 → R3 relating the quadratic differential and

infinitesimal V -stability of the Riccati map to the eigenstructure of H.

Theorem 14 Let f : R3 → R3 be a Riccati map. Assume H the associated Hamiltonian

matrix has same repeated eigenvalues, zero is not an eigenvalue of H, and H is diagonalizable.

Let Psol be a mixed solution to the ARE constructed by the Hamiltonian construction and

from eigenvalues λ,−λ of H. Then the quadratic differential of the Riccati map is singular,

furthermore, the mixed solution is structurally unstable and infinitesimally V -unstable.

Theorem 15 Let f : R3 → R3 be a Riccati map. Assume H the associated Hamiltonian

matrix has same repeated eigenvalues, zero is not an eigenvalue of H, and min(H)=char(H).

Let Psol be a mixed solution to the ARE constructed by the Hamiltonian construction and
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from eigenvalues λ,−λ of H. Then the mixed solution is structurally unstable and infinites-

imally V -stable, furthermore, the quadratic differential of the Riccati map is non-singular.

Sketch of the Proof: For brevity, we will only show the first part of the proof for theorem

(15). For the proof of the other part and other theorems in this paper we refer the reader to

[6], [7]. The proof has two parts; we first show that the map Ric is infinitesimally V -stable

and then we prove that the quadratic differential map is non-singular. We know by Bucy’s

result that when H has repeated real eigenvalues then the mixed solutions to the ARE are

structurally unstable and therefore 0 is a critical point of the associated Riccati map.

Part I Proof: First we will show the mixed solutions to the ARE are infinitesimal V -

stable. We will prove directly using infinitesimal V -stability criterion. The key feature,

which generalizes to higher dimensions, is that the Hamiltonian eigenstructure provides a

canonic form for the map f endowing the Gröbner basis with an identifiable structure.

We will first define H in terms of its eigenstructure. Let V =

[

v11 v12 v13

v21 v22 v23

]

be any

matrix of eigenvectors of H. V can be chosen so that it is symplectic and therefore, V −1 =

−JV T J. We know that H = V JdV
−1, where Jd =

[

Jd1 0

0 Jd2

]

, where Jd is a Jordan

form and Jd1 = −Jd2
T and λ is the eigenvalue of H, using the result in [13] we have;

Jd1 =

[

−λ 0

1 −λ

]

, Jd2 =

[

λ −1

0 λ

]

. Let Psol = v22v
−1
12 be the mixed solution to the ARE.

We can rewrite the Riccati map in terms of the eigenstructure of the Hamiltonian matrix.

Rewriting the original map, using the result in [7], we have the following:(with M being the

quadratic part and F being the linear part of the map) M ∼ M =

[

αλ 1

1 γλ

]

for α, γ, λ ∈ R,

and F ∼
[

−λ 0

0 λ

]

.

Ric : Sym2×2 −→ Sym2×2.

By further work, with α, γ to be any constant and λ being the eigenvalue of the Hamiltonian

matrix, we can show that,

Ric :







x

y

z






→







αλx2 + γλy2 + 2xy − 2λx

y2 + αλxy + xz + γλyz

γλz2 + αλy2 + 2yz + 2λz






.

The Jacobian matrix is:

J =







2αλx + 2y − 2λ 2x + 2γλy 0

αλy + z αλx + 2y + γλz x + γλy

0 2αλy + 2z 2y + 2γλz + 2λ





 .
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Clearly J(0) = 0 and therefore 0 is a critical point to the above Riccati map. Let I denote

the submodule generated over R[[x,y,z]] by the columns






αλx2 + γλy2 + 2xy − 2λx

0

0





 ,







0

αλx2 + γλy2 + 2xy − 2λx

0





 ,







0

0

αλx2 + γλy2 + 2xy − 2λx





 ,







y2 + αλxy + xz + γλyz

0

0





 ,







0

y2 + αλxy + xz + γλyz

0





 ,







0

0

y2 + αλxy + xz + γλyz





 ,







γλz2 + αλy2 + 2yz + 2λz

0

0





 ,







0

γλz2 + αλy2 + 2yz + 2λz

0





 ,







0

0

γλz2 + αλy2 + 2yz + 2λz





 ,







2αλx + 2y − 2λ

αλy + z

0





 ,







2x + 2γλy

αλx + 2y + γλz

2αλy + 2z





 ,







0

x + γλy

2y + 2γλz + 2λ





 .

We first find a Gröbner basis for I. The Gröbner basis G, (using Lexicographic ordering

with (x > y > z)) consists of the following:

G = {







0

0

1






,







1

0

0






,







0

z

0






,







0

y

0






,







0

x

0






}.

Hence







0

1

0





 + I generates T = (R[[x, y, z]])3/I over R, and thus the critical point to the

above Riccati map, 0, is infinitesimally V -stable. Therefore, the mixed solution to the ARE

is infinitesimally V -stable when char(H) = min(H).

Now we will state our conjectures about Riccati maps in higher dimensions:

Conjecture 5 Let f : R
n(n+1)

2 → R
n(n+1)

2 be a Riccati map. Assume H the associated

Hamiltonian matrix has same repeated eigenvalues, zero is not an eigenvalue of H, and

H is diagonalizable. Let Psol be a n × n mixed solution to the ARE constructed by the

Hamiltonian construction and from eigenvalues λ1, . . . , λn of H. Assume there is a pair

(i, j) with λi + λj = 0. Then Psol is a structurally unstable and infinitesimally V -unstable

mixed solution for the ARE.

Conjecture 6 Let f : R
n(n+1)

2 → R
n(n+1)

2 be a Riccati map. Assume H the associated

Hamiltonian matrix has same repeated eigenvalues, zero is not an eigenvalue of H, and

char(H) = min(H). Let Psol be a n × n mixed solution to the ARE constructed by the

Hamiltonian construction and from eigenvalues λ1, . . . , λn of H. Assume there is a pair

(i, j) with λi + λj = 0. Then Psol is a structurally unstable mixed solution and under some

condition for the quadratic term of the Riccati map, Psol is infinitesimally V -stable mixed

solution for the ARE.
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7 Example

As an illustration of the above, we will give an example. In this example, H has repeated

eigenvalues and H is diagonalizable which results in family of solutions for ARE. The mixed

solution is structurally unstable and therefore 0 is a critical point of the Riccati map. Here,

we will look at the quadratic differential of the associated Riccati map and we will show that,

it has a rank drop. Furthermore, we will use Arnold’s criteria for infinitesimal V -stability

combined with Gröbner bases techniques to show that the mixed solutions are infinitesimally

V -unstable and therefore by Mather’s theorem, the Riccati map associated with any of these

mixed solutions is unstable.

Consider the 2 × 2 Riccati equation P 2 = I, where

A = AT =

[

0 0

0 0

]

, Q =

[

1 0

0 1

]

, M = BR−1BT =

[

1 0

0 1

]

.

The stabilizing solution is I, the antistabilizing solution is −I, and the mixed solutions form

a continuum, Pθ =

[

cos θ sin θ

sin θ − cos θ

]

. The existence of the continuum of mixed solutions can

easily be seen from the eigenstructure of the Hamiltonian matrix, H =













0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0













.

This Hamiltonian matrix has repeated eigenvalues at 1, -1. There are two eigenvectors associ-

ated to each repeated eigenvalue and therefore H is diagonalizable or char(H) > min(H). The

symplectic V, matrix of eigenvectors for H is V =













1 0 −.5 0

0 .5 0 1

1 0 .5 0

0 −.5 0 1













and D =

[

d1 0

0 d2

]

,

where d1 =

[

−1 0

0 1

]

, d2 = −d1. We have H = V DV −1, V T JV = J , for J =

[

0 I

−I 0

]

. Let

P =

[

0 1

1 0

]

be a mixed solution.

The closed loop matrix F (P ) = AT − PM =

[

0 −1

−1 0

]

has eigenvalues at 1, and -1. This

linear part of the Riccati map is similar to d2. Under an arbitrarily small perturbation of

the coefficient matrices the set of mixed solutions goes from a continuum to a finite set. We

define x, y, y′, and z, where

P =

[

0 1

1 0

]

+

[

x y

y′ z

]

and we focus our analysis on a neighborhood of this particular mixed solution. According

to Bucy’s result, the mixed solution is structurally unstable since JP f is singular and under

perturbation of the coefficient matrices the mixed solution will bifurcate. Consider the

11



following perturbation of the coefficient matrices where, A and BR−1BT are as before and

Q =

[

1 + ε 0

0 1

]

. For ε > 0, we see that number of mixed solutions (Pθ) will decrease:

P+ =

[ √
ε 0

0 1

]

, P− =

[

−√
ε 0

0 −1

]

, Pθ1 =

[

−√
ε 0

0 1

]

, Pθ2 =

[ √
ε 0

0 −1

]

,

and for ε < 0 there will be no solution. We now reinterpret these odd features in the context of

infinitesimal V -instability of the Riccati map P 7→ P 2−I. In the (x, y, z) variables(enforcing

symmetric y = y′ property) , the Riccati map becomes









x

y

z









7→









x2 + (y + 1)2 − 1

xy + x + zy + z

(y + 1)2 + z2 − 1









.

The Jacobian of the Riccati map is

Jf =









2x 2(y + 1) 0

y + 1 x + z y + 1

0 2(y + 1) 2z









.

This Jacobian is clearly rank deficient at (x, y, z) = (0, 0, 0). As stated and proved by

theorem 14 we can show that the H-map which in this case is identical to the quadratic

differential of the above Riccati map is singular.

Ker(Jf(0)) = {







x

0

−x






| x ∈ R}, Im(Jf(0)) = {







x

y

x






| x, y ∈ R}.

The quadratic differential is:

d2f0(







x

0

−x





) = lim
t→0







t2x2

t2

0
t2x2

t2





 /Im(Jf(0)) =







x2

0

x2





 /Im(Jf (0)) =







0

0

0





 /Im(Jf(0)).

Thus the quadratic differential is singular. Now our concern is infinitesimal V -stability of the

above map around 0 7→ 0. Let I denote the submodule generated over the ring R[[x, y, z]]

by the columns









x2 + (y + 1)2 − 1

0

0









,









0

x2 + (y + 1)2 − 1

0









,









0

0

x2 + (y + 1)2 − 1









,









0

xy + x + zy + z

0









,









xy + x + zy + z

0

0









,









0

0

xy + x + zy + z









,









0

0

(y + 1)2 + z2 − 1









,









0

(y + 1)2 + z2 − 1

0









,
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







(y + 1)2 + z2 − 1

0

0









,









2x

2(y + 1)

0









,









(y + 1)

x + z

(y + 1)









,









0

2(y + 1)

2z









.

To check stability of the Riccati map, we have to check whether T = (R[[x, y, z]])3/I is

generated over R by the images of the basis vectors of R3. We first find a Gröbner basis for

I. The Gröbner basis G, (using Lexicographic ordering with (x > y > z)) consists of the

following:

G = {









1

0

1









,









0

−z2 + 1

zy + z









,









0

0

y2 + 2y + z2









,









0

y + 1

z









,









0

0

x + z









,









0

x + z

0









}.

By closer observation, we can show that T is not generated over R by the images of the basis

vectors of R3. Therefore the Riccati map is infinitesimally V -unstable at 0 and as we stated

in our theorem the mixed solutions will bifurcate under perturbation of coefficient matrices.

8 Conclusion

We have investigated the stability of quadratic maps in higher dimensions using infinitesimal

V -stability criterion. We have further classified the structurally unstable solutions to the

ARE into infinitesimal V -stable and infinitesimal V -unstable solutions. The latter are known

to bifurcate under data perturbation. There is a direct connection between the eigenstructure

of the corresponding Hamiltonian matrix and stability of the corresponding Riccati map. The

implementation to check infinitesimal V -stability of the critical points of the Riccati map can

be substantially simplified by means of Gröbner bases. It can be observed that dimension

plays an important role on stability of above Riccati maps.
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