
A Nehari theorem for Continuous-time FIR systems

Gjerrit Meinsma

Fac. of Applied Mathematics

University of Twente

7500 AE, Enschede

The Netherlands

g.meinsma@math.utwente.nl

Leonid Mirkin

Fac. of Mechanical Engineering

Technion – IIT

Haifa 32000, Israel

mirkin@tx.technion.ac.il

Qing-Chang Zhong

Imperial College

London, UK

zhongqc@ic.ac.uk

Abstract

Explicit formulae are derived for Nehari extensions of continuous time FIR systems.

q−(t) q+(t)

t = h
t →

Figure 1: Nehari extension

1 Introduction

The Nehari problem is a problem in operator theory about optimal extension of functions

or operators. The idea is depicted in Fig. 1. Given a function q−(t) for t < h the problem is

to extend q(t) over t > h in such a way that the convolution operator

u 7→ q ∗ u, (q ∗ u)(t) =

∫ ∞

−∞
q(t − τ)u(τ) dτ (1.1)

has smallest possible L2(−∞,∞)-induced norm

‖q‖ind = sup
u 6=0

‖q ∗ u‖L2(−∞,∞)

‖u‖L2(−∞,∞)

. (1.2)

The standard lower bound for this induced norm is obtained by considering in the convolution

(1.1) only t < h and τ > 0. Indeed in that case t − τ < h so that the convolution mapping

(1.1) is determined by the given q−. Restricting t < h and τ > 0 means that we only consider
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the “past” of (q ∗ u)(t) and the “future” of u(τ). A lower bound for the induced norm (1.2)

hence is the induced norm ‖Γq‖ of the operator restricted to this past and future,

Γq : L2(0,∞) → L2(−∞, h), Γq(u) = q ∗ u.

This operator is known as the Hankel operator and the famous Nehari theorem states that

the lower bound ‖Γq‖ can be attained, i.e., an extension q+ exists such that ‖Γq‖ = ‖q‖ind,

see (Nehari, 1957; Partington, 1988; Young, 1988).

For finite dimensional systems q−(t) = CeAtB there is a well developed theory about Ne-

hari extensions and the results are constructive, see e.g. (Glover, 1986; Green and Limebeer,

1995; Zhou et al., 1995). For general infinite dimensional systems however it is hard to come

up with computable formulae for the optimal Nehari extension q+(t) and the suboptimal ex-

tensions q+(t) (these are extensions q+(t) for which ‖q‖ind < γ for some given bound γ > 0,

assuming any exist, i.e. assuming γ > ‖Γq‖ind).

In this note we derive explicit formulae for the suboptimal extensions q+(t) for the case

that q−(t) is a matrix function of compact support of the form

q−(t) = Ce−AtB 1[0,h](t) (1.3)

with A, B, C ∈ R
·×· of appropriate dimensions. Nehari extension problems of this type have

turned up in recent results on H∞ control problems for systems with delays, see Mirkin

(2000). It is these results that motivated this research.

2 Preliminaries

This section introduces some notation and conventions that we use in this note.

For transfer matrices P (s) we use P∼(s) to denote its adjoint P∼(s) = [P (−s̄)]∗. The

right conformal mapping Cr(G, U) is defined as Cr(G, U) = (G11U + G12)(G21U + G22)
−1.

From the context it will be clear what partitioning of G =
[

G11 G12
G21 G22

]
is meant.

A partitioned matrix with vertical and horizontal lines separating the entries, denotes

the Schur complement of that matrix with respect to its upper-left block. So
�

P Q

R S

�
=

S − RP−1Q. This notation has proved useful. In particular we have that
�

A − sI B

C D

�
=

C(sI − A)−1B + D.

Borrowing from (Mirkin, 2000) we define the truncation and completion operators τh

and πh. These are operators that act on causal systems. The truncation operator truncates

the system’s impulse response beyond a given positive time-delay h. For finite dimensional

causal systems with transfer matrix P (s) = C(sI − A)−1B + D the truncation operator

equals

τh(P ) =

[
A − sI B

C D

]
− e−sh

[
A − sI eAhB

C 0

]
.

The completion operator πh “analytically completes” the impulse response of an h-delay

system to a 0-delay system. The “analytic completion” for delayed systems of the form
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e−shP (s) := e−sh(C(sI − A)−1B + D) is defined formally for h > 0 as

πh(e
−shP ) =

[
A − sI B

Ce−Ah 0

]
− e−sh

[
A − sI B

C D

]
.

For finite dimensional P , the sum of e−shP an its completion πh(e
−shP ) is again finite

dimensional with the same state dimension as that of P .

3 A Nehari theorem for FIR systems

From now on we assume that q−(t) is given by (1.3) for some given h > 0 and matrices

A, B, C ∈ R
·×· of appropriate dimensions. We can see q− as the truncation of the finite

dimensional system P (s) = C(sI − A)−1B. Because q− has a finite impulse response (FIR)

it follows that the Hankel norm ‖Γq−‖ equals the induced norm over the finite interval [0, h],

‖Γq−‖ = sup
u∈L2(0,h)

‖q− ∗ u‖L2(0,h)

‖u‖L2(0,h)

,

in which (q−∗u)(t) =
∫ h

0
q−(t−τ)u(τ) dτ . This norm has been studied in detail in the sampled

data and dead-time literature, see e.g. Green and Limebeer (1995); Chen and Francis (1995);

Gu et al. (1996) and by now there are various ways to express this norm in a more explicit

form. For our purposes the following such form is important.

Theorem 3.1. Let q−(t) = CeAtB 1[0,h](t). Then ‖Γq−‖ind < 1 if and only if Σ22(t) is

nonsingular for every t ∈ [0, h]. Here Σ22(t) is the lower-right block of the symplectic matrix

Σ(t) defined as

Σ(t) :=

[
Σ11(t) Σ12(t)

Σ21(t) Σ22(t)

]
:= exp

([
A BBT

−CTC −AT

]
t

)
. (3.4)

The following theorem characterizes all suboptimal Nehari extensions. This theorem is

formulated in frequency domain, that is we seek Q+ ∈ H∞ such that ‖Q− + e−shQ+‖H∞ <

1. Now Q− is the truncation of the causal P := C(sI − A)−1B + D. Therefore ‖Q− +

e−shQ+‖H∞ < 1 has a solution Q+ ∈ H∞ iff ‖P + e−shK+‖H∞ < 1 has a causal solution K+.

We use the latter formulation.

Theorem 3.2 (All suboptimal extensions). Let P (s) = C(sI − A)−1B and suppose

h > 0. There exist causal K+ such that ‖P + e−shK+‖H∞ < 1 if and only if ‖Γτh(P )‖ < 1.

In this case all suboptimal extensions K+ are given by

K+ = Cr

([
I 0
∆ I

]
Zr, U

)
(3.5)

where U satisfies ‖U‖H∞ < 1 but otherwise arbitrary. Here ∆ is the FIR system defined as

∆ = πh(e
−sh(P∼P − I)−1P∼)
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and Zr is the finite dimensional system

Zr =


 A − sI Σ−T

22 (h)ΣT
12(h)CT Σ−T

22 (h)B

−C I 0

−BTΣT
21(h) 0 I


 .

A proof is given in Section 4. It is interesting to see that Zr is well defined precisely if

Σ22(h) is invertible. The symplectic matrix Σ also shows up in the formulae for the FIR

system ∆. Indeed, from the proof it follows that

∆ = πh


e−sh


 A − sI BBT 0

−CTC −AT − sI CT

0 BT 0





 =


 A − sI BBT 0

−CTC −AT − sI CT

−BTΣT
21(h) BT(ΣT

11(h) − e−shI) 0


 .

Example 3.1. Suppose the given part of q is the indicator function with support [0, h].

That is, q−(t) = 1[0,h](t). To find the Nehari extension we use that q−(t) = CeAtB 1[0,h](t),

with (A, B, C) = (0, 1, 1). With this data the symplectic matrix defined in (3.4) becomes

Σ(t) = exp

([
0 1

−1 0

]
t

)
=

[
cos(t) sin(t)

− sin(t) cos(t)

]
.

Now Σ22(h) = cos(h) and it follows from Thm. 3.1 that ‖Γq−‖ < 1 iff h < π/2. In that case

we may continue with Thm. 3.2 and we find for ∆ and Zr,

∆(s) =
sin(h) + (cos(h) − e−sh)s

s2 + 1

and

Zr =


 −s tan(h) 1

cos(h)

−1 1 0

sin(h) 0 1


 =

[
1 − tan(h)

s
− 1

cos(h) s
sin2(h)
cos(h) s

1 + tan(h)
s

]
.

(Note that the impulse response of ∆ is cos(t − h)1[0,h](t).) The “central extension” K+ =

Cr(
[

1 0
∆ 1

]
Zr, 0) then is

K+(s) =
− 1

cos(h)
1
s

− 1
cos(h)

1
s
∆(s) + 1 + tan(h)1

s

= − s2 + 1

cos(h)s3 + sin(h)s2 + se−sh
. (3.6)

Although Theorem 3.2 is about sub-optimal extensions only, it is readily seen that (3.6)

remains valid for the optimal case h = π/2. In that case the above K+ is the optimal Nehari

extension, and it proves to be of an interesting form:

Q(s) := P (s) + e−s π
2 K+(s) =

1

s
− e−s π

2
s2 + 1

s2 + se−s π
2

=
1 − se−s π

2

s + e−s π
2

=
1

s
+

∞∑
k=1

(−1)k s2 + 1

sk+1
e−k s π

2 . (3.7)
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Equation (3.7) shows that Q is inner (as may be expected) and it also shows that the

corresponding impulse response q(t) is the causal solution of the delay-differential equation

q̇(t)+q(t−π/2) = δ(t)−δ(1)(t−π/2). Alternatively we may determine the impulse response

as the inverse Laplace transform of the last expression of Eqn. (3.7),

q(t) = 1(0,∞)(t)−δ(t− π

2
)−(t− π

2
)1(π

2
,∞)(t)+

∞∑
k=2

(−1)k
[(t − k π

2
)k−2

(k − 2)!
+

(t − k π
2
)k

k!

]
1(k π

2
,∞)(t).

The result is depicted in Fig. 2. Note that the optimal Nehari extension is smooth at all t

except at multiples of π
2
. At t = π

2
the function has a delta-function component, at t = π

the function is discontinuous, at t = 3π
2

it is continuous but not differentiable, etcetera.

1

0 π
2

π 3π
2

Figure 2: Optimal Nehari extension 1/s + e−s π
2 K+

4 Appendix: proof

This section describes a proof of Theorem 3.2. (The technical state space formulae are

collected Subsection 4.1.) The aim is to find all causal K+ for which Q := P + e−shK+ is

stable and contractive. First realize that Q equals

Q = Cr(G, K+) for G :=

[
e−shI P

0 I

]
. (4.8)

In Subsection 4.1 we construct a bicausal solution W of the equation G∼JG = W∼JW with

the properties that lims→∞ W (s) = I and such that Mh := GW−1 is entire. (Here J is

defined as J =
[

I 0
0 −I

]
with the partitioning compatible with that of G.) By construction we

then have that ‖Q‖L∞ < 1 iff ‖U‖L∞ < 1 for U defined as

U := Cr(W, K+). (4.9)

Now this U is causal iff K+ is causal by the fact that lims→∞ W (s) = I. Yet the set of causal

operators in L∞ is in fact H∞, (Curtain and Zwart, 1995, A6.26.c, A6.27). So if K+ solves

Thm. 3.2 then necessarily ‖U‖H∞ < 1. This condition on U is also sufficient as we shall now

see. The thing to note is that

Mh := GW−1
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is not only stable and J-unitary (i.e., M∼
h JMh = J) but in fact J-lossless (meaning that in

addition Mh,22 is bistable). Indeed, from M∼
h JMh = J it follows that Mh,22Mh,22 ≥ I, and

as the Mt that we construct (see Subsection 4.1) is stable and is continuous as a function

of t ∈ [0, h], and Mt,22

∣∣
t=0

= I it follows that Mh,22 is bistable. It is well known that for

J-lossless Mh we have that Q = Cr(Mh, U) is stable for any ‖U‖H∞ < 1, see, e.g., (Meinsma

and Zwart, 2000, Thm. 6.2). Hence any ‖U‖H∞ < 1 yields a solution. Now (4.9) is invertible,

K+ = Cr(W
−1, U)

and the W constructed below is of the form W = Wr

[
I 0

−∆ I

]
so that

K+ = Cr(
[

I 0
∆ I

]
Zr, U) where Zr := W−1

r .

4.1 State space formulae

The rest of the subsection documents the more gory state space details.

To find a suitable W we first extract the infinite dimensional part from

G∼JG =

[
I eshP

e−shP∼ P∼P − I

]
.

To this end define the FIR system ∆ := πh(e
−sh(P∼P − I)−1P∼). Then Θ defined as

Θ :=

[
I ∆∼

0 I

]
G∼JG

[
I 0

∆ I

]
(4.10)

is rational

Θ =

[
I − P (P∼P − I)P∼ + R∼(P∼P − I)R R(P∼P − I)

(P∼P − I)R P∼P − I

]
.

Given a realization of P (s) = C(sI −A)−1B + D and with G defined in (4.8) we get the

realization

G∼JG =




A − sI 0 0 eshB

−CTC −AT − sI −CT 0

C 0 I 0

0 e−shBT 0 −I


 . (4.11)

The construction of a realization of Θ requires several steps. A first step is to associate with

G∼JG the equation
[

y1
y2

]
= G∼JG

[
u1
u2

]
. This equation may be rearranged as

[
y1

−u2

]
=

[
I − P (P∼P − I)−1P∼ eshP (P∼P − I)−1

e−sh(P∼P − I)−1P∼ −(P∼P − I)−1

]
︸ ︷︷ ︸

Ω

[
u1

y2

]
.
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This defines Ω. Rearranging the realization of G∼JG similarly gives a realization of Ω:

Ω =




A − sI BBT 0 −eshB

−CTC −AT − sI −CT 0

C 0 I 0

0 −e−shBT 0 I


 .

Looking at the lower left block of Ω we see that

∆ := πh(e
−sh(P∼P − I)−1P∼) = πh Ω21 = πh


e−sh


 A − sI BBT 0

−CTC −AT − sI −CT

0 −BT 0







Consequently

R := ∆ + e−sh(P∼P − I)−1P∼ =


 A − sI BBT

−CTC −AT − sI
Σ−1

[
0

−CT

]
0 − BT 0




Based on this we now combine the various blocks and obtain the realization

[
I − P (P∼P − I)P∼ R∼

R −(P∼P − I)−1

]
=




A − sI BBT

−CTC −AT − sI
Σ−1

[
0

−CT

] −B

0[
C 0

]
Σ I 0

0 − BT 0 I




As a final step we associate with this the equation[
y1

y2

]
=

[
I − P (P∼P − I)P∼ R∼

R −(P∼P − I)−1

] [
u1

u2

]
and we rewrite it as[

y1

u2

]
=

[
I − P (P∼P − I)P∼ + R∼(P∼P − I)R R(P∼P − I)

(P∼P − I)R P∼P − I

]
︸ ︷︷ ︸

Θ

[
u1

−y2

]
.

Here we recognize Θ. In terms of state space manipulations we similarly obtain

Θ =




A − sI 0

−CTC −AT − sI
Σ−1

[
0

−CT

]
B

0[
C 0

]
Σ I 0

0 BT 0 −I


 . (4.12)

Then

Θ−1 =


 Σ−1

[
A − sI BBT

0 −AT − sI

]
Σ ?

? ?



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With Θ and Θ−1 in this form there is a standard procedure to find a factorization W∼
r JWr =

Θ: Let X be any solution of the Riccati equation

[−X I
]
Σ−1

[
A − sI BBT

0 −AT − sI

]
Σ

[
I

X

]
= 0.

Then

Wr =


 A − sI

[[
I 0

]
Σ−1

[
0

−CT

]
B

]
J

[[
C 0

]
Σ[

0 BT
]] [

I
X

] [
I 0

0 I

] 


does the job. For any X, the poles of Wr are the eigenvalues of A. The freedom in choice of

X may be used to choose the zeros Wr. If we choose X = −ΣT
21Σ

−T
22 , that is, if[

I

X

]
= Σ−1

[
Σ−T

22

0

]
=

[
ΣT

22 −ΣT
12

−ΣT
21 ΣT

11

] [
Σ−T

22

0

]

then

Σ−1

[
A − sI BBT

0 −AT − sI

]
Σ

[
I

X

]
=

[
I

X

]
ΣT

22AΣ−T
22

Therefore the zeros of Wr are the eigenvalues of ΣT
22AΣ−T

22 i.e., of A. The formulae for Wr

and its inverse W−1
r may be simplified to

Wr =


 A − sI ΣT

12C
T B

CΣ−T
22 I 0

BTΣT
21Σ

−T
22 0 I




and then Zr := W−1
r is as in Thm. 3.2.

Now G and W := Wr

[
I 0

−∆ I

]
have the same zeros and poles, and because

[
I ∆∼
0 I

]
G∼JG

[
I 0
∆ I

]
= W∼

r JWr also the directions of these zeros and poles are the same. It therefore follows that

all zeros and poles are canceled in GW−1 = G
[

I 0
∆ I

]
W−1

r . Indeed it may be shown (via

some not very enlightening manipulations) that Mh := G
[

I 0
∆ I

]
W−1

r is entire, in fact it is a

truncation:

M =

[
e−shI 0

0 I

]
+ τh







A − sI BBT 0 B

−CTC −AT − sI Σ−1
22 CT −Σ−1

22 Σ21B

C 0 0 0

0 BT 0 0




 .
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