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Abstract

This paper presents a linear controller for a multifrequency model of a pulse-width-
modulated Ćuk converter. The controller is based on an equivalent discrete-time ver-
sion of the linearized multifrequency model and uses the continuous-time output over
one switching period. Using this combination we determine the duty ratio at the be-
ginning of every switching period. We discuss how this controller, designed for an
arbitrary number of harmonics, can be applied in a realistic situation. Simulations are
given to demonstrate the influence of the controller on the response of the system.

1 Introduction

Analysis of DC-DC converters is often based on their switching behavior. Having a pulse-

width-modulator, the switching points are basically determined by two strategies, namely

fixed pulse-width modulation and running pulse-width modulation. A previous work [1],

using the Boost converter as an example, analyzed the system based on the assumption that

the whole state of the system is known. This is not so realistic in applications since then

the state variables of the system are often not available. Furthermore, in the closed loop

situation the switching points were determined based on a running pulse-width-modulator.

This paper presents a realistic approach to determine a switching point based on the output

at the beginning of every switching period, which is the fixed pulse-width-modulator. We

are inspired by the results of [2], [5] to exploit the behavior of the multifrequency model.

Based on the stationary periodic condition and all the output information we control the

system by computing the duty ratio at the beginning of every switching period. This leads

us to employ the discrete-time aspects of the linearized multifrequency model to design a

linear controller for an arbitrary number of harmonics. Hence, we combine both discrete-

time aspects and continuous-time aspects of the system in every switching period. This

combination may be regarded as a hybrid system. As a result, we control the equivalent

discrete-time version of the linearized multifrequency model by means of an output feedback

to obtain the next duty ratio. Application of the obtained duty ratio to the system provides

the continuous-time output for the next switching period. Our simulations confirm that

the controller can produce responses which are much faster than the open loop responses in

reaching the stationary periodic situation.
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2 A multifrequency model of the Ćuk converter

Consider the Ćuk converter which is depicted in Fig. 1. We assume that all components of
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Fig. 1: Open-loop Ćuk converter.

the Ćuk converter are ideal and the circuit is in continuous conduction mode (CCM). Let

x1(t) = iL1(t), x2(t) = vC1(t), x3(t) = iL2(t), and x4(t) = vC2(t) be the inductor currents

and capacitor voltages. Then a continuous-time model of PWM Ćuk converter is given by

ẋ(t) = A(s)x(t) + b,

y(t) = Cx(t),
(2.1)

with

A(s) =




0 −1−s
L1

0 0
1−s
C1

0 s
C1

0

0 − s
L2

0 − 1
L2

0 0 1
C2

− 1
RC2


 , b =




E
L1

0

0

0


 , C = (0 0 0 1),

where E and R denote the source voltage and load resistor value, respectively. We assume

that E is constant in time. The output of the system is denoted by y and s denotes the

switch of the converter. When the switch is in the ON-position then s = 1 and s = 0 denotes

the switch in the OFF-position. The position of the switch does depend on the time t and

is defined as

s(t) =

{
1 if iT ≤ t < (i + Di)T ,

0 if (i + Di)T ≤ t < (i + 1)T,
(2.2)

where T denotes the switching period and Di, Di ∈ (0, 1), denotes the duty ratio in the ith

switching interval, ∀i ≥ 0. If Di = D, ∀i ≥ 0, where D is fixed, then the switching function

s is periodic with period T . By an open loop situation we mean that system (2.1) has a

fixed duty ratio D, 0 < D < 1.

We recall that on the interval [t − T, t] the real-valued function f can be written as

f(τ) =
∞∑

k=−∞
< f >k (t) ejkωsτ , (2.3)
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where

< f >k (t) =
1

T

∫ t

t−T

f(τ) e−jkωsτ dτ, (2.4)

where ωs = 2π
T

, j2 = −1 and < f >k (t) are the Fourier coefficients of f , assuming

the function to be periodic with period T . In this paper we use also the conventions and

properties of [5] where the reader can find the details. Applying (2.4) to the original system

(2.1) and using the above mentioned conventions and properties, we obtain an infinite set of

differential equations that can be approximated by a finite set of the differential equations,

by neglecting all indexes larger than some chosen nonnegative integer N , where N denotes

the number of ”harmonics” taken into account. Let the vector x̂(t) and ŷ(t) be defined as

follows

x̂(t) =




x̂1(t)

x̂2(t)

x̂3(t)

x̂4(t)


 , ŷ(t) =




< y >−N (t)
...

< y >0

...

< y >N (t)




,

x̂i(t) =




< xi >−N (t)
...

< xi >0

...

< xi >N (t)




, i = 1, 2, 3, 4.

As in [2], with Di = D, ∀i ≥ 0, we use the following notation

Ŵ =




+jNωs . . . 0
. . .

... 0
...

. . .

0 . . . −jNωs




, b̂ =




0
...
E
L1
...

0




,

Ŝ =




< s >0 . . . < s >−2N

. . .
... < s >0

...
. . .

< s >2N . . . < s >0




.
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Then the open loop multifrequency model of the Ćuk converter is given by

˙̂x(t) = Âc x̂(t) + B̂c,

ŷ(t) = Ĉc x̂(t),
(2.5)

with

Âc =




Ŵ − 1
L1

(Î − Ŝ) 0̂ 0̂
1

C1
(Î − Ŝ) Ŵ 1

C1
Ŝ 0̂

0̂ − 1
L2

Ŝ Ŵ − 1
L2

Î

0̂ 0̂ 1
C2

Î Ŵ − 1
RC2

Î


 ,

B̂c =




b̂

0̂

0̂

0̂


 , Ĉc = (0̂ 0̂ 0̂ Î),

where the index ”c” indicates the continuous-time version of the model. For n = 2N + 1, Âc

is a (4n×4n)-matrix, B̂c is a (4n×1)-matrix, Î is a (n×n) identity matrix and 0̂ represents

zero matrix (vector) with suitable dimensions. The stationary state of (2.5), denoted X̂, is

obtained by setting the derivative of (2.5) is equal to zero. Given the number of harmonics

N and the stationary periodic duty ratio Dsp, the stationary output of (2.5), denoted Ŷ , can

be obtained. Conversely, if the stationary output Ŷ is known, then the corresponding duty

ratio Dsp can also be computed from the stationary state X̂ of (2.5), since the only unknown

parameter is Dsp.

In the open loop situation we can easily prove that system (2.5) is observable and asymp-

totically stable [2]. It follows that the system is also detectable.

3 Linearized of the multifrequency model

By assuming the duty ratio D acts as a time-varying parameter, we define small deviations

from the stationary periodic values X̂, Ŷ and Dsp by ∆x, ∆y and ∆D, respectively, i.e.

∆x̂ = x̂ − X̂,

∆ŷ = ŷ − Ŷ ,

∆D = D − Dsp.

(3.6)

Then the linearized multifrequency model is given by

d
dt

∆x̂(t) =
ˆ̂
Ac ∆x̂(t) +

ˆ̂
Bc ∆D(t),

∆ŷ(t) =
ˆ̂
Cc ∆x(t),

(3.7)

where
ˆ̂
Ac = Âc|Dsp ,

ˆ̂
Bc = ∂Âc

∂D
|DspX̂ and

ˆ̂
Cc = Ĉc.

It follows that (3.7) is observable and asymptotically stable. Note that (3.7) is a linear

system and can be proved to be reachable.
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4 Equivalent discrete-time linearized multifrequency

model

We restrict our interest by letting t = iT, i ∈ {0, 1, 2, . . . }. In fact, i = 0 indicates that the

model is at the initial condition with the duty ratio D0 given. The situation of our interest is

depicted in Fig. 2. At the beginning of the (i+1)th switching interval, i.e. [(i+1)T, (i+2)T ),

we start to compute the duty ratio Di+1 using Di and output y on the interval [iT, (i+1)T ).

We may control the system so that the duty ratio Di converges to Dsp for i −→ ∞. This

leads us to work for only one switching period in every computation step and to work with
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Fig. 2: Situation of the duty ratio at the (i + 1)th switching interval.

the so-called discrete-time version of the system (3.7). Then we may replace (3.7) by the

equivalent discrete-time version of the model of the form

∆x̂i+1 =
ˆ̂
Ad ∆x̂i +

ˆ̂
Bd ∆Di,

∆ŷi =
ˆ̂
Cd ∆xi,

(4.8)

where
ˆ̂
Ad = e

ˆ̂
AcT ,

ˆ̂
Bd =

ˆ̂
A

−1

c (e
ˆ̂
AcT − Î)

ˆ̂
Bc,

ˆ̂
Cd =

ˆ̂
Cc, ∆xi = ∆x(iT ), ∆yi = ∆y(iT ) and

∆Di = Di − Dsp.

The index ”d” indicates the discrete-time version of the model. It is realistic to assume

that the state x in (2.1) is unknown and the output y is constantly measured. Then we

have enough information to compute the Fourier coefficients of the output y at time instant

t = (i + 1)T , from the output y over the interval [iT, (i + 1)T ), with

< y >k ((i + 1)T ) =
1

T

∫ (i+1)T

iT

y(τ)e−jkωsτdτ. (4.9)
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5 A linear controller based on the output feedback

Consider

∆x̂i+1 =
ˆ̂
Ad ∆x̂i +

ˆ̂
Bd ∆Di,

∆ŷi =
ˆ̂
Cd ∆x̂i,

(5.10)

and we want to obtain the gain-matrix K such that the control law

∆Di = −K∆x̂i (5.11)

minimizes the criterion

JK =
∞∑
i=0

(
∆x̂T

i QK∆x̂i + (∆Di)
2

)
, (5.12)

where QK = QT
K ≥ 0.

Taking into account that only the output y can be measured, a state observer has to be

employed so that we may accurately reconstruct all unmeasured state components. We use

the well-known Kalman filter to obtain such a reconstruction. This filter has the following

form

∆x̂e
i+1 =

ˆ̂
Ad ∆x̂e

i +
ˆ̂
Bd ∆Di + L(∆ŷi − ∆ŷe

i ),

∆ŷe
i =

ˆ̂
Cd ∆x̂e

i ,
(5.13)

where ∆x̂e
i denotes an estimate of the state ∆x̂i. The gain-matrix L, which is associated

with the dual of system (5.10) of the form

∆ẑi+1 =
ˆ̂
A

T

d ∆ẑi +
ˆ̂
C

T

d ∆vi,

∆ŵi =
ˆ̂
B

T

d ∆ẑi,
(5.14)

such that the associated state feedback minimizes the criterion

JL =
∞∑
i=0

(
∆ẑT

i QL∆ẑi + ∆vT
i RL∆vi

)
, (5.15)

where QL = QT
L ≥ 0 and RL = RT

L > 0. The control law ∆Di = −K∆x̂i will be replaced by

∆Di = −K∆x̂e
i . (5.16)

The control situation is depicted in Fig. 3. Note that RL used in (5.15) is a (n × n) real

matrix. The symmetric weighting matrices QK and QL may be chosen based on design rules

for the linear-quadratic-regulator (LQR) techniques for discrete-time systems.
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Fig. 3: The block diagram of the combined model.

6 Simulation

In our simulations, we used the parameters L1 = L2 = 100 µH, C1 = C2 = 25 µF, R = 12

Ω, E = 1.5 Volt, fs = 10 kHz, Dsp = 0.5, x(0) = (0, 0, 0, 0)T, the number of harmonics

N = 5 and RL = Î, the n × n identity matrix. The weighting matrices QK and QL are

chosen so that the converter with the controller behaves in a desired way

The responses of the system with and without the linear controller are depicted in Fig.

4. In Fig. 4(a) the open loop response has not reached the stationary periodic solution in

30 periods. In fact, it requires for the open loop response about 170 periods to coincide

with the stationary periodic solution. In contrast to the open loop response, the closed loop

response of the system is shown in Fig. 4(b) which already coincides with the stationary

periodic solution after 10 periods. Therefore, our simulations demonstrate that the response

using the linear controller is much faster in reaching the stationary periodic solution.

7 Conclusions

We have described a realistic approach of designing a linear controller for a PWM Ćuk

converter. The controller design is based on the discrete-time version of the linearized mul-

tifrequency model and knowledge of the output of the converter. The controller is to be

applicable for any number of harmonics of the multifrequency model. From our simulations,

the response using the linear controller is much faster in reaching the stationary periodic

solution than the response in open loop situation. Finally we note that the approach of this

paper can also be applied to other converters.

7



0 10 20 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
v C2

 [V
olt

]

 t/T 
(a)

0 10 20 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

v C2
 [V

olt
]

 t/T 
(b)

Fig. 4: Comparison of the responses of the system with and without the linear controller.

(a) The open loop response. (b) The response of the system using the linear controller.
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