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Abstract

A new discription of multirate systems, called multirate periodic system, is given using the
concept of periodic time-varying input-output spaces. We then de¯ne the º -gap metric of two
multirate periodic systems and study the robust stabilization with this metric. The optimal

robust stabilization margin is explicitly computed and an obsever-form suboptimal controller
is given. The solution amounts to solving two discrete-time algebraic Riccati equations and an
extended Parrot problem.

1 Introduction

Multirate and periodic systems are ¯nding more and more applications in control, communication,

signal processing, econometrics and numerical mathematics. The reason may be due to their
power in modeling physical systems with inherent features like periodic behavior changes, seasonal
operating environment, nonuniform information exchange pattern, multirate sampling, etc., or due

to the fact that they can often achieve objectives that cannot be achieved by single rate LTI systems.
The study of periodic systems can be traced back to [8]. Examples of more recent studies

are [14, 21, 27], the works of an Italian school well re°ected in [2] and computational aspect
surveyed in [30]. The study of multirate systems goes back to late 1950's, see for example [16, 17,

19]. A renaissance of research on multirate systems has occured since 1980 in signal processing,
communication and control communities. The driving force for studying multirate systems in
signal processing comes from the need for sampling rate conversion, subband coding, and their

ability to generate wavelets. Multirate signal processing is now one of the most vibrant areas
of research in signal processing, see recent book [29] and references therein. In communication

systems, blind identi¯cation and equalization call for using multirate sampling [28]. In control
community, two groups of research stand out: using multirate control to achieve what single rate

control cannot as well as the limitation of doing this, see for example [7, 18], and the optimal design
of multirate controllers [5, 10, 20, 23, 26]. We also notice the cross discipline fertilization between
signal processing and control in using H1 optimization to design ¯lter banks [4, 6].

Recently, there has been considerable research devoted to the problem of robust stabilization
[12, 15, 33]. For LTI systems with gap and º-gap metric uncertainty, it is now well-known that

both the optimal robustness bound and the suboptimal controller can be easily obtained without
the so-called °-iteration and the suboptimal controller is an observer form. In this paper, we will

extend these results to multirate periodic systems.
The paper is organized as follows. In section 2, we give the general setup on MP systems and the

lifting technique. We will see that a general MP system can be converted to an LTI system with a

structural constraint due to the causality requirement. In section 3, we introduce the º -gap metric
to MP systems and show that a robust stabilization problem of an MP system with º-gap metric

uncertainty can be converted to a constrained H1 optimization problem. Section 4 deals with the
Nehari problem with structural constraint which is used to solve the robust stabiliztion problem of
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MP systems. The optimal robust stability margin and an observer-based suboptimal controller are
presented explicitly in section 5. Finally, this paper is concluded in section 6.

2 Setup of MP systems

In this paper, we model an MP system by a discrete time system, shown in Fig. 1, with periodic

time-varying input and output spaces. This concept is used in [13] to de¯ne a general periodic
system. Here, we show that various multirate systems can be viewed as special cases of the general

periodic systems de¯ned in [13]. Precisely, we assume that the input sequence u = fu(k)g1k=¡1
takes values in

L1
k=¡1U(k); i.e., u(k) 2 U(k); and the output sequence y = fy(k)g1k=¡1 takes

values in
L1
k=¡1 Y(k); i.e., y(k) 2 Y(k); where U(k) and Y(k) are M-periodic time-varying vector

spaces, i.e., they satisfy U(k + M) = U(k) and Y(k + M) = Y(k): We further make the following
assumptions:

1. Linearity. The system Gmp is a linear operator from
L1
k=¡1 U(k) to

L1
k=¡1Y(k).

2. Periodicity. Let X(k) be vector space valued M-periodic functions. De¯ne the M-step shift
operator SM on

L1
k=¡1 X(k) as

SMf: : : ;x(¡1); jx(0);x(1); : : :g = f: : : ;x(¡M ¡ 1); jx(¡M);x(¡M +1); : : :g:

Then Gmp satis¯es GmpSM = SMGmp: Notices that when M > 1; the 1-step shift S1 is
generally not de¯ned.

3. Causality. Let Pk be a projection operator on
L1
k=¡1 X(k) de¯ned as

Pkf: : : ; x(k ¡ 1); x(k); x(k + 1); : : :g = f: : : ; x(k ¡ 1); x(k);0; : : :g:

Then Gmp satis̄ es PkGmp(I ¡Pk) = 0:

Gmp --u y

Figure 1: A general periodic and multirate system

The general class of MP systems de¯ned here covers many familiar classes of systems as special

cases. An MP system with U(k) = U and Y(k) = Y for all k 2 Z is a usual M-periodic system,
for which there is a vast literature [2]. The multirate feature arises when U(k) and Y(k) are truly

time-varying. If

U(k) =

½ U if mjk
f0g otherwise

; Y(k) =

½ Y if njk
f0g otherwise

;

and M is a multiple of m and n, then such an MP system is a dual rate system considered in [6].
Let M be a multiple of integers mi; i = 1; : : : ; p; and nj ; j = 1; : : : ; q. If

Ui(k) =

½ Ui if mijk
f0g otherwise

; Yj(k) =

½ Yj if nj jk
f0g otherwise
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and

U(k) =

pM

i=1

Ui(k); Y(k) =

qM

j=1

Yj(k);

then such an MP system becomes a general multirate system with uniform synchronized but dif-
ferent sampling in each input or output channel [1, 5, 23, 26, 32]. One advantage of modeling a

multirate system as a periodic system with periodically varying input output spaces is that it better
relates back to the rich theory on the usual periodic system, as surveyed in [2]. Other advantages
are its generality: it allows for nonuniform and asynchronous sampling, and its convenience: the

treatments using this model take similar forms than those using other models, such as the one in
[5, 23].

A standard way for the analysis of such systems is to use lifting or blocking. Let Xl(r) =L(r+1)M+l¡1
k=l+rM X(k): De¯ne a lifting operator Ll :

L1
k=¡1X (k) ! L1

r=¡1Xl(r) by

Ll : f¢ ¢ ¢ jx(0);x(1); ¢ ¢ ¢ g 7!

8
>>><
>>>:

¢ ¢ ¢

¯̄
¯̄
¯̄
¯̄
¯

2
6664

x(l)
x(l +1)

...

x(M + l ¡ 1)

3
7775 ;

2
6664

x(M + l)
x(M + l + 1)

...

x(2M + l ¡ 1)

3
7775 ; ¢ ¢ ¢

9
>>>=
>>>;

:

Then the lifted systems Gl = LlGmpL
¡1
l are LTI systems in the sense that GlS1 = S1Gl ; where S1

is the unit shift on
L1

r=¡1Xl(r): Hence they have transfer functions in the ¸-transform (¸ = 1
z
) :

Ĝl(¸) =

2
64

Ĝl;11(¸) ¢ ¢ ¢ Ĝl;1M(¸)
...

. . .
...

Ĝl;M1(¸) ¢ ¢ ¢ Ĝl;MM (¸)

3
75 :

Assume that dim U(k) = p(k) and dimY(k) = q(k): Then Ĝl takesvalues in the set of
PM+l¡1
k=l q(k)£PM+l¡1

k=l p(k) complex matrices. The LTI system Gl is not an arbitrary LTI system, instead its
direct feedthrough term Ĝl(0) is subject to a constraint that results from the causality of Gmp :

Ĝl;ij(0) = 0 for i < j;

i.e., Ĝl(0) is a block lower triangular matrix. Notice that the form of the causality here is simpler
than that in [5, 23] due to the new form of the model. It can be easily shown that Ĝl are not all
independent. They are related by

Ĝl+1(¸) =

·
0 diag(Iq(l+1) ¢ ¢ ¢Iq(l+M¡1))

¸¡1Iq(l) 0

¸
Ĝl(¸)

·
0 ¸Ip(l)

diag(Ip(l+1) ¢ ¢ ¢ Ip(l+M¡1)) 0

¸
:

Hence, any one of the Gl ; l = 0; : : : ; M ¡ 1; can be de¯ned as the LTI equivalent of the MP system

Gmp. In the rest of this paper, we choose G0 as the LTI equivalent of the MP system Gmp without
loss of generality.

3 º-gap Metric of MP Systems

The ¯rst issue in robust control is the description of the uncertainty. The most natural way to

describe system uncertainty is by using a metric in the set of all systems under consideration and
an uncertain system is then simply a ball de¯ned by this metric centered at a nominal system with
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certain radius. There are several metrics in the literature for this very purpose: gap metric [11],
pointwise gap metric [24], º-gap metric [31]. In this paper, the º-gap metric is studied for MP

systems. We generalize the treatment of [34] to de¯ne the º-gap metric for MP systems because
the treatment in [31] is based on the transfer function, which is not appropriate to extend to MP
systems.

Given two M-periodic MP systems Gmp and ~Gmp, the graphs of Gmp and ~Gmp are de¯ned as

G(Gmp) =

½·
u

Gmpu

¸
;u 2 `2+ and Gmpu 2 `2+

¾
;

G( ~Gmp) =

½·
~u

~Gmp~u

¸
; ~u 2 `2+ and ~Gmp~u 2 `2+

¾
;

respectively. Here `2+ means the direct sum ©1
k=0X (k) with

P1
n=0x

2(k + nM) < 1 for any

k = 0;1; : : : ; M¡ 1: Clearly G(Gmp) and G( ~Gmp) are subspaces of `2+©`2+. A subspace G of `2+©`2+
is called M-shift-invariant if SMG ½ G. It is easy to see that the graph of Gmp is M-shift-invariant.
A subgraph of an M-periodic MP system is de¯ned as an M-shift-invariant subspace of its graph.

We denote the set of all subgraphs as SG(Gmp). To de¯ne the º¡gap between two MP systems, we
need the notion of the index of a subgraph V with respect to G(Gmp), de¯ned as [34]

ind(V) := dim (G(Gmp) ª V) :

The º¡gap between two plants Gmp and ~Gmp is then de¯ned by

±º(Gmp; ~Gmp) = inf
V 2 SG(Gmp)
~V 2 SG( ~Gmp)

ind(V) = ind( ~V)

k¦V ¡¦~Vk

where ¦V and ¦~V are the orthogonal projections from `2+ © `2+ onto V and ~V respectively. The
º-gap metric ball centered at Gmp with radius r is de¯ned by

Bº(Gmp; r) = f ~Gmp : ±º(Gmp; ~Gmp) < rg:
By the following lemma, the º-gap between two M-periodic MP systems can be computed from
that between their equivalent LTI systems, where e±cient methods are available [31].

Lemma 3.1. Let Gmp and ~Gmp be two M-periodic MP systems and their equivalent LTI systems

are G and ~G respectively, that is

G = L0GmpL
¡1
0 ; ~G = L0 ~GmpL

¡1
0 :

Then we have ±º(Gmp; ~Gmp) = ±º(G; ~G).

Proof. Noting that V a subgraph of Gmp if and only if VL =

·
L0 0

0 L0

¸
V is a subgraph of G:

Similar result holds to a subgraph ~V of ~Gmp: Denote

~VL =

·
L0 0
0 L0

¸
~V:

Since the lifting operator L0 is unitary, we then have

±º(Gmp; ~Gmp) = inf k¦V ¡ ¦~Vk = inf
°°°¦VL ¡ ¦~VL

°°° = ±º(G; ~G):

This completes the proof.

4



In the following, we will discuss the robust stabilization problem for MP uncertain systems with
º-gap metric. First, some notation is needed. De¯ne the set of block matrices:

M(Rm£n) :=

8
><
>:

T =

2
64

T11 ¢ ¢ ¢ T1M
...

...

TM1 ¢ ¢ ¢ TMM

3
75 : T 2 Rm£n

9
>=
>;

:

The block lower triangular subset of M(Rm£n); denoted by T (Rm£n); consists of all matrices with
Tij = 0; i < j; and the strictly block lower triangular subset, Ts(Rm£n); consists of matrices with
Tij = 0; i · j:

Gmp

Kmp

¾

-

y u

Figure 2: A general MP feedback control system.

Now consider the feedback system shown in Fig. 2. Here we assume that Gmp and Kmp are

M-periodic MP systems with M-periodic time-varying signal spaces ©1k=¡1U(k) and ©1k=¡1Y(k).

Assume that dim U(k) = p(k) and dim Y(k) = q(k). Denote p =
PM¡1
k=0 p(k) and q =

PM¡1
k=0 q(k).

Let G = L0GmpL
¡1
0 and K = L0KmpL

¡1
0 ; then G and K are LTI and hence have transfer functions

Ĝ(¸) and K̂(¸) respectively. Due to causality constraint, Ĝ(0) and K̂(0) are block lower triangular,
that is, Ĝ(0) 2 T (Rq£p) and K̂ 2 T (Rp£q). For ¯xed Gmp and Kmp, the stability robustness of the
feedback system is given by the following lemma:

Lemma 3.2. ([31, 25]) Given a norminal plant Gmp and a stabilizing controller Kmp. Let G and
K be the LTI equivalence of Gmp and Kmp respectively. For any positive real numbers r1 and r2,
the feedback system with plant ~Gmp and controller ~Kmp is stable for all ~Gmp 2 Bº(Gmp; r1) and all
~Kmp 2 Bº(Kmp; r2) if and only if

arcsin r1 +arcsinr2+ arccos bG;K · 1

2
¼;

where

bG;K = k
·

I

Ĝ

¸
(I ¡ K̂Ĝ)¡1

£
I ¡K̂

¤k¡11 :

The proof is straightforward by slightly modifying the procedure in [31]. The quantity bG;K is
de¯ned as the robust stability margin. The robust stabilization problem is to ¯nd the optimal

robust stability margin
bopt = sup

K; K̂(0)2T (Rp£q )
bG;K (3.1)

for a given G and also ¯nd a K with K̂(0) 2 T (Rp£q); called a suboptimal controller, such that
bG;K ¸ ° for any ° < bopt:

Hence our robust stabilization problem becomes a special discrete-time H1 optimal control
problem. Since the causality of Gmp and Kmp is equivalent to that Ĝ(0) 2 T (Rq£p) and K̂(0) 2
T (Rp£q), we need to respect the structural constraint K̂(0) and possibly to utilize the structural
constraint Ĝ(0) in solving the special discrete-time H1 optimal control problem.
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4 Constrained Nehari Extension Problems

In this section, we study a constrained Nehari extension problem which is used to solve the robust
stabilization problem of MP sytems with º-gap metric uncertainty.

Given G(¸) 2 L1(U; Y) satisfying G( 1¸) 2 H1(U ;Y) and ® > kGkH , where kGkH denotes the

Hankel norm of G; the suboptimal Nehari extension problem is to ¯nd H 2 H1(U ;Y) such that

kG ¡ Hk1 · ®:

Now we put an extra constraint on H that H(0) 2 T (Rq£p). A constructive algorithm is given to
this constrained Nehari extension problem in [10]. Here, we will present an explicit solution. To

this end, let

·
A B

C D

¸
be an anticausal realization for G; that is,

G(¸) = D +C(¸I ¡A)¡1B:

Let P and Q be the solutions of the following Lyapunov equations

P = APA¤ +BB¤ and Q = A¤QA +C¤C:

Note that kGkH is equal to the spectral norm of QP . Choose N1 2 T (Rp£p) and N2 2 T (Rq£q)
such that

N1N
¤
1 = I + B¤(®2I ¡ QP )¡1QB

N¤
2N2 = I + C(®2I ¡PQ)¡1PC¤:

Let A0 be the stable matrix de¯ned by [9]

A0 = (®2I ¡ A¤QAP )¡1A¤(®2I ¡QP):

From Theorem VI. 8.1 in [9], the set of all solutions H is given by

H(¸) = Fl(©(¸); R(¸)) = ©11(¸) + ©12(¸)R(¸)(I ¡ ©22(¸)R(¸))¡1©21(¸) (4.2)

where

©(¸) =

·
©11(¸) ©12(¸)
©21(¸) ©22(¸)

¸

=

2
4

A0 (®2I ¡ A¤QAP )¡1A¤QB (®2I ¡QP)¡1C¤N¡1
2

CPA0 CP(®2I ¡A¤QAP)¡1A¤QB ¡N¡1
2

¡®N¡1
1 B¤ ®N¡1

1 0

3
5

and R(¸) 2 H1(U; Y) with kR(¸)k1 · 1:

Lemma 4.1. The constrained Nehari extension problem is solvable if and only if there exists a

matrix R0 such that kR0k · 1 and 1
®N1©11(0)N2¡R0 2 T (Rq£p). Furthermore, if such R0 exists,

then one solution is given by H(¸) = Fl(©(¸);R0):

Proof. It follows from (4.2) that

H(0) = ©11(0) +©12(0)R(0)©21(0) (4.3)

= ©11(0) ¡®N¡1
2 R(0)N¡1

1 :
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Pre- and postmultiply (4.3) by 1
®N2 and N1 respectively, to get

1

®
N2H(0)N1 =

1

®
N2©11(0)N1¡ R(0):

Therefore H(0) 2 T (Rq£p) if and only if 1
®
N2H(0)N1 ¡ R(0) 2 T (Rq£p) since N1 2 T (Rp£p) and

N2 2 T (Rq£q): If such R(0), denoted as R0, exists, we can choose R(¸) ´ R0 and get one solution
H(¸) = Fl(©(¸); R0).

The problem of ¯nding R0 such that kR0k1 · 1 and 1
®N1©11(0)N2 ¡ R0 2 T (Rp£q ) is called

conractive matrix completion. Various methods exist in the literature [10, 22]. Actually, we can
¯nd the unique central solution of R0 following the method in [22].

5 Robust Stabilization of MP Systems

Now we return to the robust stabilization problem stated in section II: Given a nominal LTI

G resulted from the lifting of Gmp, ¯nd the optimal robust stability margin bopt in (3.1) and a
suboptimal controller K with K̂(0) 2 T (Rp£q) such that bG;K ¸ ° for ° < bopt: To solve this
problem, we need some notation. Assume that G has a stabilizable and detectable state space

realization

·
A B
C D

¸
with D 2 T (Rq£p). Let X and Y be the stabilizing solutions of Riccati

equations

X = A¤XA +C¤C ¡ (A¤XB + C¤D)(B¤XB + I +D¤D)¡1(B¤XA + D¤C) (5.4)

Y = AY A¤+ BB¤ ¡ (AY C¤ +BD¤)(CY C¤+ I + DD¤)¡1(CY A¤+ DB¤): (5.5)

Denote

F = ¡(B¤XB + I +D¤D)¡1(B¤XA + D¤C) (5.6)

L = ¡(AY C¤ +BD¤)(CYC¤+ I +DD¤)¡1: (5.7)

Here (A + BF) and (A +LC) are stable since X and Y are stablilizing solutions. The following

equation [3, 12] gives a relationship between A+BF , A+LC, X and Y , which will be used later.

(A + LC)(I + Y X) = (I + YX)(A + BF ): (5.8)

Using Cholesky factorization, we can get constant matrix S 2 T (Rq£q) satisfying [5],

SS¤ = CY C¤+ I + DD¤: (5.9)

Denote

® = (1 ¡°2)
1
2 : (5.10)

and

W = ®2I + (®2 ¡ 1)Y X: (5.11)

Let N1 2 T (Rq£q) be a constant matrix satisfying

N1N
¤
1 = I + S¡1C(I +Y X)W¡1Y C¤S¤¡1: (5.12)
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Choose matrix N2 =

·
N2;11 N2;12

N2;21 N2;22

¸
with N2;11 2 T (Rp£p); N2;12 2 T (Rp£q); N2;21 2 T (Rq£p)

and N2;22 2 T (Rq£q ) satisfying

N¤
2N2 =

·
I +B¤X(I +Y X)W¡1B ¡B¤X(I +Y X)W¡1L
¡L¤X(I +Y X)W¡1B I +L¤X(I +Y X)W¡1L

¸
: (5.13)

We know that there are normalized left coprime factorizations G = ~M¡1 ~N with ~M(0) 2 T (Rq£q)
and ~N (0) 2 T (Rq£p): One particular realization of such factorization is as follows

£
~N ~M

¤
=

·
A +LC B +LD L

S¡1C S¡1D S¡1

¸
: (5.14)

Now we are ready to present the main results of this paper.

Theorem 5.1. Given a lifted LTI plant Ĝ(¸) =

·
A B

C D

¸
with D 2 T (Rq£p), let X and Y be the

stabilizing solutions of Riccati equations (5.4) and (5.5), and let F; L;S be de¯ned as in (5.6)-(5.9).
Then the optimal robust stabilization margin is

bopt = sup
K;K̂(0)2T (Rp£q)

bG;K

=

8
<
:1 ¡ max

r
k

2
4

¦Ur 0 0
0 ¦Yr 0

0 0 I

3
5¡

·
I ¡¦Yr 0

0 I

¸
k2

9
=
;

1
2

; (5.15)

where

Ur = U(0) © ¢ ¢ ¢ © U(r) (5.16)

Yr = Y(0) ©¢ ¢ ¢ © Y(r) (5.17)

¡ =

2
64

¡D¤S¤¡1 ¡(B¤+ D¤L¤)(X¡1 +Y )¡
1
2

S¤¡1 L¤(X¡1 +Y )¡
1
2

Y
1
2C¤S¤¡1 Y

1
2 (A +LC)¤(X¡1 +Y )¡

1
2

3
75 : (5.18)

Theorem 1 tells us the optimal robust stability margin. The next theorem provides us a subop-
timal controller.

Theorem 5.2. Given a lifted LTI plant Ĝ =

·
A B

C D

¸
with D 2 T (Rq£p) and ° < bopt. Let

X; Y; F; L;S; W;N1 and N2 be de¯ned as in (5.4)-(5.13). Then a suboptimal controller K exists
if and only if there exists a constant matrix R0 2 M(R(p+q)£q) with kR0k1 · 1 such that E1 2
T (Rp£q) and E2 2 T (Rq£q), where

·
E1
E2

¸
= ®¡1(N¤

2N2)
¡1

· ¡D¤

I

¸
S¤¡1N1¡ N¡1

2 R0: (5.19)

Furthermore, if such R0 is found, a suboptimal controller K is given by

K =

·
AK BK
CK H

¸
(5.20)
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where

AK = A + LC + (B + LD)(F ¡ HC ¡HDF)W¡1 (5.21)

BK = BH + LDH ¡L (5.22)

CK = (F ¡ HC ¡HDF)W¡1 (5.23)

H = E1E
¡1
2 : (5.24)

This controller can be written in the following general observer form

x̂(k + 1) = Ax̂(k)+ Bu(k) +L[Cx̂(k)+ Du(k) ¡ y(k)] (5.25)

u(k) = FKx̂(k) + ¹H [Cx̂(k) + Du(k) ¡ y(k)] (5.26)

where ¹H = ¡(I ¡ HD)¡1H and FK = (I ¡ HD)¡1(CK + HC):

Remark 5.1. If there is no causality constraint, we can simply take R0 = 0. Assume the plant G

is strictly proper, it can be shown that

H = B¤X(W + BB¤X)¡1L:

Then the controller is given by

x̂(k + 1) = Ax̂(k)+ Bu(k) +L[Cx̂(k)¡ y(k)] (5.27)

u(k) = [(F ¡HC)W¡1 +HC]x̂(k) ¡ H[Cx̂(k) ¡ y(k)]: (5.28)

This is exactly the same as the controller of (2.5)-(2.6) in [15].

Remark 5.2. The problem to design a strictly proper suboptimal controller for an LTI strictly

proper plant studied in [15] is a special case of Theorem 2. Actually, if there exists R0 such that
E1 = 0, then the suboptimal controller is given by

x̂(k + 1) = Ax̂(k)+ Bu(k) +L[Cx̂(k)+ Du(k) ¡ y(k)] (5.29)

u(k) = FW¡1x̂(k): (5.30)

The above controller is the same as Theorem 5 of [15].

Remark 5.3. The extra burden to design a robust controller for an MP system is to solve a
contractive matrix completion problem. A unique central solution can be obtained following the
method in [22]. In this way, we can get a unique central controller.

To prove the theorems, we need the following lemma.

Lemma 5.1. Given a lifted LTI plant G with Ĝ(0) 2 T (Rq£p), a controller K with K̂(0) 2 T (Rp£q)
satis̄ es bG;K > ° if and only if K has an coprime factorization: K = UV ¡1 for some U; V 2 RH1
with Û (0) 2 T (Rp£q) and V̂ (0) 2 T (Rq£q) satisfying

°°°°
· ¡ ~N ~

~M~

¸
+

·
U
V

¸°°°°
1

· ® (5.31)

where ® is given in (5.10).
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Proof. Assume K is a stabilizing controller with K̂(0) 2 T (Rp£q) satisfying bG;K > °. Then K
has a coprime factorization K = U1V

¡1
1 with Û1(0) 2 T (Rp£q) and V̂1(0) 2 T (Rq£q); an equivalent

coprime factorization is (U;V ) with

·
U

V

¸
= ¡°¡2

·
U1
V1

¸
( ~MV1¡ ~NU1)

¡1

since ( ~MV1 ¡ ~NU1)¡1 2 H1 by internal stability. From the fact that Û1(0) 2 T (Rp£q); V̂1(0) 2
T (Rq£q), ~M(0) 2 T (Rq£q) and ~N(0) 2 T (Rq£p); we have Û (0) 2 T (Rp£q) and V̂ (0) 2 T (Rq£q):
The remaining proof of necessity and proof of su±ciency follow the same discussion of Theorem
4.1 in [12].

Lemma 5.2. Let G = ~M¡1 ~N be a normalized left coprime factorization with ~M(0) 2 T (Rq£q)
and ~N (0) 2 T (Rq£p). Then the optimal robust stability margin is

bopt =

(
1 ¡ inf

Û; V̂
k
· ¡ ~N~

~M~

¸
+

·
Û

V̂

¸
k2

)1
2

(5.32)

where Û ; V̂ 2 RH1 with Û (0) 2 T (Rp£q) and V̂ (0) 2 T (Rq£q):

The proof is similar to that of Theorem 4.2 in [12] since we get Lemma 5.1.

Proof of Theorem 1: We know that G = ~M¡1 ~N is a normalized left coprime factorization, where
~M and ~N are given by (5.14). It is then straightforward to check that

· ¹A ¹B
¹C ¹D

¸
:=

2
4

A¤ + C¤L¤ C¤S¤¡1

¡B¤ ¡D¤L¤

L¤
¡D¤S¤¡1

S¤

3
5 (5.33)

is an anticausal realization of

· ¡ ~N~

~M~

¸
; that is,

· ¡ ~N~

~M~

¸
= ¹D + ¹C(¸I ¡ ¹A)¡1 ¹B:

Let P and Q be the solutions of the following Lyapunov equations

P = ¹AP ¹A¤+ ¹B ¹B¤ (5.34)

Q = ¹A¤Q ¹A + ¹C¤ ¹C: (5.35)

It is shown in [10] that

inf
Û ;V̂ ;Û(0)2T (Rp£q);V̂ (0)2T (Rp£q )

°°°°
· ¡ ~N ~

~M~

¸
+

·
Û

V̂

¸°°°°
1

= max
r

°°°°°°

2
4

¦Ur 0 0
0 ¦Yr 0

0 0 I

3
5

"
¹D ¹CP

1
2

Q
1
2 ¹B Q

1
2 ¹AP

1
2

#·
I ¡¦Ur 0

0 I

¸°°°°°°
;

where Ur and Yr are de¯ned as in (5.16-5.17). Note that P and Q be simple functions of X and

Y de¯ned in (5.4-5.5): P = X(I + Y X)¡1 and Q = Y [12]. The proof is then completed by
Lemma 5.2. ¤
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Proof of Theorem 2: To get the controller, we need to solve the constrained suboptimal Nehari

extension problem (5.31) stated in Lemma 4.1. For the anticausal realization of

· ¡ ~N~

~M~

¸
in (5.33),

we know that the solution of Lyapunov equations (5.34-5.35) is P = X(I + Y X)¡1 and Q = Y:

Now it is easy to obtain that

N1N
¤
1 = I +S¡1C(I +Y X)W¡1YC¤S¤¡1

N ¤
2N2 =

·
I +B¤X(I + YX)W¡1B ¡B¤X(I + YX)W¡1L
¡L¤X(I + YX)W¡1B I +L¤X(I + YX)W¡1L

¸

A0 = (®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤(®2I ¡ QP ):

By Lemma 4.1, the solutions of the suboptimal Nehari extension problem (5.31) are as follows
·

U(¸)
V (¸)

¸
= Fl(©; R0) = ©11 +©12R0(I ¡©22R0)

¡1©¡121

=
£
©11©

¡1
21 +(©21 ¡©11©

¡1
21©22)R0

¤£
©¡121 (I ¡ ©22R0)

¤¡1

where

© :=

·
©11 ©12
©21 ©22

¸

=

2
4

A0 (®2I ¡ ¹A¤Q ¹AP )¡1 ¹A¤Q ¹B (®2I ¡QP)¡1 ¹C¤N¡1
2

¹CPA0 ¹CP(®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B + ¹D ¡N¡1
2

¡®N¡1
1

¹B¤ ®N¡1
1 0

3
5

and kR0k · 1 satisfying 1
®N2©11(0)N1¡R0 2

· T (Rp£q)
T (Rq£q)

¸
: Noting that ©¡121 (I ¡©22R0) is a unit

in H1, then from basic coprime factorization theory, the coprime factors of the controller are also

given by ·
U1(¸)
V1(¸)

¸
= ©11©

¡1
21 +(©21 ¡©11©

¡1
21©22)R0: (5.36)

We need the following claim which is proved in the appendix.

Claim 5.1. Equation (5.36) can be written as

·
U1(¸)
V1(¸)

¸
=

2
4

A + LC (I + YX)W¡1[(B +LD)E1 ¡LE2]·
F

C +DF

¸
(I + Y X)¡1

·
E1
E2

¸
3
5 (5.37)

where

·
E1
E2

¸
is given in (5.19).

After some algebra manipulations, the controller is given by

K = U1V
¡1
1 =

·
AC BC
CC H

¸
(5.38)

where

AC = A + LC + (I + YX)W¡1(L ¡BH ¡LDH)(C +DF)(I + YX)¡1

BC = (I + Y X)W¡1(BH + LDH ¡L)

CC = (F ¡ HC ¡HDF)(I + Y X)¡1

H = E1E
¡1
2 :

11



The remaining thing is to write the controller K of (5.38) to a general observer form using the
state-space transformation. Recall that W = ®2I +(®2¡1)Y X, then it follows from equation (5.8)

that

W(I +Y X)¡1(A +LC)(I +Y X) = (A +LC)W + BF ¡ LC:

So we have

W(I +Y X)¡1AC(I +Y X)W¡1

= W(I +Y X)¡1(A +LC)(I +Y X)W¡1 + (L ¡ BH ¡ LDH)(C + DF )W¡1

= AK; (5.39)

W (I +Y X)¡1BC = BH + LDH ¡L = BK; (5.40)

CC(I + Y X)W¡1 = (F ¡ HC ¡DF)W¡1 = CK: (5.41)

Therefore, the controller is given by (5.20). It is then straightforward to check that the controller

K can be written in the general observer form of (5.25-5.26) by taking that ¹H = ¡(I ¡HD)¡1H
and FK = (I ¡ HD)¡1(CK +HC). This completes the proof. ¤

6 Conclusion

In this paper, we present a state space solution to the robust stabilization problem of discrete-
time periodic and multirate systems. First, we give a general setup of MP systems and show

how the robust stabilization problem of multirate systems with º-gap metric uncertainty can be
converted to a constrained H1 optimal control problem. An explicit solution is presented to the

Nehari extension problem with a structural constraint. The optimal robust stabilization margin is
explicitly computed and an observer form suboptimal controller is presented. The computational
burden is to solve two Riccati equations and an contractive matrix completion problem.

A Appendix

To prove Claim 5.1, we need two important equalities as follows:

B¤X(A +BF) + D¤(C +DF) = F (A.42)

L¤X(I + YX)¡1(A + LC) + (SS¤)¡1C = (C + DF )(I +Y X)¡1: (A.43)

Proof. It is easy to check (A.42) directly. From equation (5.8) and the following form of the Riccati
equation (5.4)

X = A¤X(A +BF) + C¤(C + DF);

we have

L¤X(I + Y X)¡1(A + LC) + (SS¤)¡1C

= L¤X(A +BF)(I + Y X)¡1 +(SS¤)¡1C = (C +DF)(I + YX)¡1:

The last equality comes from (A.42).

12



Proof of Claim 5.1. First it is straightforward to check that

©11©
¡1
21 =

· ¹A¤ (®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B®¡1N1
¹CP ¹A¤+ ¹D ¹B¤ £

¹CP(®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B + ¹D
¤
®¡1N1

¸

©21 ¡©11©
¡1
21©22 =

·
¹A¤ (®2I ¡QP)¡1 ¹C¤N¡1

2
¹CP ¹A¤+ ¹D ¹B¤ ¡N¡1

2

¸
:

Then (5.36) can be written as

·
U1
V1

¸
=

·
¹A¤ (®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B®¡1N1 +(®2I ¡ QP)¡1 ¹C¤N¡1

2 R0
¹CP ¹A¤ + ¹D ¹B¤ £

¹CP(®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B + ¹D
¤
®¡1N1 ¡N¡1

2 R0

¸
:

(A.44)

Note that

¹A¤Q ¹B + ¹C¤ ¹D = (A +LC)Y C¤S¤¡1+ BD¤S¤¡1+ LDD¤S¤¡1+ LS¤¡1 = 0:

So we have

(®2I¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B = ¡(®2I ¡QP + ¹C¤ ¹C)¡1 ¹C¤ ¹D = ¡(®2I¡QP)¡1 ¹C¤(N¤
2N2)

¡1 ¹D: (A.45)

The proof is then completed by direct computation as follows

[ ¹CP(®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B + ¹D]®¡1N1¡ N¡1
2 R0

= [¡ ¹CP (®2I ¡QP)¡1 ¹C¤(N ¤
2N2)

¡1 ¹D + ¹D]®¡1N1¡ N¡1
2 R0

= (N¤
2N2)

¡1 ¹D®¡1N1 ¡N¡1
2 R0

= ®¡1(N¤
2N2)

¡1
· ¡D¤

I

¸
S¤¡1N1¡ N¡1

2 R0; (A.46)

(®2I ¡ ¹A¤Q ¹AP)¡1 ¹A¤Q ¹B®¡1N1+ (®2I ¡QP)¡1 ¹C¤N¡1
2 R0

= ¡(®2I ¡QP)¡1 ¹C¤ £(N¤
2N2)

¡1 ¹D®¡1N1¡ N¡1
2 R0

¤

= (I + YX)W¡1[BE1 + LDE1¡ LE2]; (A.47)

and

¹CP ¹A¤ + ¹D ¹B¤

= ¡
·

B¤+ D¤L¤

¡L¤

¸
X(I + YX)¡1(A +LC) +

· ¡D¤S¤¡1

S¤¡1

¸
S¡1C

=

·
F

C +DF

¸
(I + YX)¡1: (A.48)

Note that equations (A.42-A.43) are used to get (A.48).
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