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Abstract

For a given system defined by the matrix triple (A,B,C), which polynomials are
characteristic polynomials of A + BKC as K varies? When is this set of polynomials
dense in the space of all monic polynomials of degree n? We show that a polynomial
occurs as a characteristic polynomial of A + BKC for some matrix K if and only
if it occurs as a characteristic polynomial of A′+B′K′C′ for some matrix K′, where
(A′,B′,C′) is related to (A,B,C) via an equivalence relation. Regarding the question
of the density of the set of characteristic polynomials, our approach allows previously
known necessary (and generically sufficient) conditions to be rewritten in terms of the
following two conditions on the matrices B and C: (rank B)(rank C) ≥ n, and CB is
not the zero matrix.

1 Introduction

Each matrix triple (A,B,C), with A in kn×n, B in kn×m, and C in kv×n, k a field, defines

a time-invariant linear system with output:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

Output feedback refers to application of an input of the form u = Ky + u′, with K in km×v,

thereby replacing the triple (A,B,C) with the triple (A + BKC,B,C).

For pole placement, we wish to identify the characteristic polynomials of the matrices

A + BKC as K varies. In Section 2, we show that this set of characteristic polynomials

remains unchanged under many transformations of the triple (A,B,C). That is, a poly-

nomial p(x) is the characteristic polynomial of A + BKC for some m × v matrix K if and

only if it is the characteristic polynomial of A′+B′KC′ for some matrix K, where the triples

(A,B,C) and (A′,B′,C′) have certain properties in common. In Section 3, we relate these

results to the work of Helten, Rosenthal and Wang in [1]. The results in this paper are
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based on ideas developed in M. Schilmoeller’s dissertation [2], which focuses on equivalence

of linear systems under output feedback.

2 A Simplification of the Problem

We begin by noting that the characteristic polynomial of A + BKC remains unchanged

under state space change of basis. Hence, without loss of generality, we may replace a given

matrix triple (A,B,C) with (TAT−1,TB,CT−1) where the transformation T represents a

change of basis. We choose an ordered basis (x1, . . . , xn) for kn as follows:

{x1, . . . , xp+q} spans kerC

{xp+1, . . . , xp+q} spans kerC ∩ imB

{xp+1, . . . , xp+q+r} spans imB

where q = dim(kerC∩ imB), r = rankB− q, and p = n− rankC− q. Let s = n− (p+ q + r).

Under this change of basis, the matrices B and C have the following form:

B =




0

B2

B3

0




}p
}q
}r
}s

(2.1)

and

p︷︸︸︷ q︷︸︸︷ r︷︸︸︷ s︷︸︸︷

C = [ 0 0 C3 C4 ]

(2.2)

where B has rank q + r and C has rank r + s. For the remainder of the paper, we assume

that B and C are in this form, which we call (p, q, r) block forms.

With the matrices B and C in (p, q, r) block form, the matrix BKC has the form

p︷︸︸︷ q︷︸︸︷ r︷︸︸︷ s︷︸︸︷

p {
q {
r {
s {




0 0 0 0

0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0




(2.3)

Proposition 2.1. Let B and C be in (p, q, r)-block form and let S be an n × n matrix of

the form (2.3). Then there is an m × v matrix K such that S = BKC.
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Proof. Since S has the form (2.3),

S =




0 0 0 0

0 0 S23 S24

0 0 S33 S34

0 0 0 0




Let K′ be the m × v matrix given by

K′ =




0 S23 S24

0 S33 S34

0 0 0




Using a matrix G ∈ km×m to column reduce B and a matrix H ∈kv×v to row reduce C, we

have:

BG =




0p×q 0 0

Iq×q 0 0

0 Ir×r 0

0 0 0s×(m−q−r)




and

HC =




0(v−r−s)×p 0 0 0

0 0r×q Ir×r 0

0 0 0 Is×s




For K = GK′H, we obtain:

BKC = (BG)K′(HC)

=




0p×q 0 0

Iq×q 0 0

0 Ir×r 0

0 0 0s×(m−q−r)







0 S23 S24

0 S33 S34

0 0 0







0(v−r−s)×p 0 0 0

0 0r×q Ir×r 0

0 0 0 Is×s




= S

From Proposition 2.1, we see that the pole placement problem is reduced to identifying

characteristic polynomials of matrices A + S, where S varies over the set S of matrices of the

form (2.3). Furthermore, the set of characteristic polynomials is unchanged if A is replaced
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with TAT−1, for any invertible n×n matrix T that fixes the set S. It is easy to verify that

the invertible matrices which fix the set S under conjugation are those of the form

p︷︸︸︷ q︷︸︸︷ r︷︸︸︷ s︷︸︸︷

T =




T11 0 0 T14

T21 T22 T23 T24

0 0 T33 T34

0 0 0 T44




} p

} q

} r

} s

We denote the set of invertible matrices of this form by Tp,q,r.

Definition 2.1. Let p(x) be a monic polynomial of degree n. We say that (A,B,C) pro-

duces p(x) if there is an m × v matrix K such that

p(x) = det(xI − A − BKC)

Let PA,B,C denote the set of polynomials that are produced by (A,B,C). That is,

PA,B,C = {det(xI − A − BKC)|K ∈ km×v}

The following theorem is an immediate consequence of the remarks above.

Theorem 2.1. Let the matrices B ∈kn×m and C ∈kv×n be in (p, q, r) block form. If the

matrix triple (A,B,C) produces the polynomial p(x), then (A,B′,C′) also produces p(x) for

all pairs (B′,C′) in (p, q, r) block form. Furthermore, the triple (TAT−1,B,C) produces the

same polynomials as (A,B,C) if T ∈Tp,q,r. In other words, PA,B,C = PTAT−1,B′,C′ if the

pairs (B,C) and (B′,C′) are both in (p, q, r) block form and T ∈Tp,q,r.

Using the convention that B and C are in (p, q, r) block form, we see that the set PA,B,C

depends only on the Tp,q,r-conjugacy class of A and on the invariants p, q, r.

3 Relationship to Known Results

In the paper [1], Helton, Rosenthal, and Wang consider the pole placement problem over

the field of complex numbers C. Identifying the set of degree n monic polynomials with the

affine space C
n, they give two conditions on the vector space {BKC | K ∈C

m×v} that are

necessary for the set PA,B,C to be a dense subset of C
n:

1. dim{BKC | K ∈C
m×v} ≥ n, and

2. There exists a matrix K ∈C
m×v such that BKC has nonzero trace.

From the previous section and using the convention that the matrices B and C are in

(p, q, r) block form, we know that the vector space {BKC | K ∈C
m×v} depends only on the

triple of non-negative integers (p, q, r).
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Definition 3.1. For a triple of non-negative integers (p, q, r) such that p+ q + r ≤ n, define

Mp,q,r = {A ∈C
n×n | PA,B,C is dense in C

n for some pair (B,C) in (p, q, r) block form}

The main result of the paper [1] is that, for a given pair (B,C) satisfying the two conditions

above, the set Mp,q,r is a dense subset of C
n×n. Using the (p, q, r) block representation, we

have a nice interpretation of the two conditions:

Theorem 3.1. Let B be an n × m matrix over C and let C be an v × n matrix over C .

Then

1. dim{BKC | K ∈C
m×v} ≥ n if and only if (rankB)(rankC) ≥ n

2. There exists a matrix K ∈C
m×v such that BKC has nonzero trace if and only if imB

does not lie in kerC.

Proof. It suffices to consider matrix pairs (B,C) of the form (2.1) and (2.2). Proposition

2.1 states that the vector space {BKC | K ∈C
m×v} consists of all n×n matrices of the form

(2.3). Consequently, this vector space has dimension (q + r)(r + s). Since q + r is rankB

and r + s is rankC, the conclusion (1) follows. By inspection, the set of matrices of the

form (2.3) fails to contain a matrix with non-zero trace only when r = 0. But r = 0 if and

only if the image of B lies entirely inside kerC.
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