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Abstract

We study linear Hamiltonian systems using bilinear and quadratic differential forms.
Such a representation-free approach allows to use the same concepts and techniques to
deal with systems isolated from their environment and with systems subject to external
influences, and allows to study systems described by higher-order differential equations,
thus dispensing with the usual point of view in classical mechanics of considering first
and second-order differential equations only.

1 Introduction

This communication aims to give a unified and general treatment of linear Hamiltonian

systems using the formalism of quadratic differential forms introduced in [11]. We consider

both autonomous systems, i.e. systems without external influences, and non-autonomous

ones, in which external inputs are present, and we deal with both cases using the same

techniques and the same concepts. We conduct our investigation in a representation-free way,

thus dispensing with the usual point of view in mechanics and in physics of concentrating on

first order representations in the (generalized) coordinates and the (generalized) momenta.

Such representation-free approach allows to describe systems of different nature using the

same formalism, independent of the domain of application, and it is especially relevant in

view of the potential application of our techniques in the description of (possibly infinite-

dimensional) non-mechanical systems, for example those arising in the theory of fields.

Instead of postulating the existence of a function (the Lagrangian, or the Hamiltonian) on

the basis of physical considerations (conservation of energy, etc.) and deducing from it the

equations of motion, we proceed by assuming that a set of linear differential equations with

constant coefficients describing the system is given, and we deduce the Hamiltonian nature

of the system from such equations, by proving the existence of certain bilinear functionals

of the variables of the system and of their derivatives that satisfy a ”skew-symmetry” and a
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“nondegeneracy” property. Proceeding directly from the equations of motion allows to study

Hamiltonianity also for complex systems (for example those resulting from the interconnec-

tion of many simple subsystems), for which the identification of functionals representing the

”conserved quantities” is not immediate.

In our approach to Hamiltonian systems, the concept of internal force also arises naturally

from the equations describing the system: in this paper we show that generalized internal

forces can be defined which depend on potential functions involving higher-order derivatives

and not only first order ones at most, as happens with ”velocity-dependent potentials” in

classical mechanics.

The communication is organized as follows: in section 2 we define Hamiltonianity for au-

tonomous systems. In section 3 we consider the notion of internal forces, which we propose

to see as latent variables arising naturally from the equations describing an autonomous

Hamiltonian system. The relationship between internal forces and external variables in an

autonomous Hamiltonian system forms the basis for the definition of controllable Hamil-

tonian system proposed in section 4. In section 5 we discuss our results and outline some

directions for future research. In this paper we assume that the reader has a solid back-

ground knowledge of behavioral system theory and of quadratic differential forms; we refer

to [8] and [11] for a thorough exposition of such subjects.

A few words on notation. In this paper we denote the sets of real numbers respectively

with R. The space of n dimensional real vectors is denoted by Rn, and the space of m × n

real matrices by Rm×n. Whenever one of the two dimensions is not specified, a bullet • is

used; so that for example, R•×n denotes the set of complex matrices with n columns and an

unspecified number of rows.

Given two column vectors x and y, we denote with col(x, y) the vector obtained by stacking

x over y; a similar convention holds for the stacking of matrices with the same number of

columns. If A ∈ Rm×n, then AT ∈ Rn×m denotes its transpose. Πx denotes the projection

map on the variable x: Πx(col(x, y)) = x.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted by R[ξ]; the

ring of two-variable polynomials with real coefficients in the indeterminates ζ and η is denoted

by R[ζ, η]. The space of all n×m polynomial matrices in the indeterminate ξ is denoted by

Rn×m[ξ], and that consisting of all n ×m polynomial matrices in the indeterminates ζ and

η by Rn×m[ζ, η]. Given a matrix R ∈ Rn×m[ξ], we define R∼(ξ) := R(−ξ)T ∈ Rm×n[ξ].

We denote with C∞(R, Rq) the set of infinitely often differentiable functions from R to Rq,

and with D(R, Rq) the subset of C∞(R, Rq) consisting of compact support functions.

2 Autonomous Hamiltonian systems

In this section we study Hamiltonianity for linear autonomous systems, i.e. systems with

no inputs, on which no external influence is exerted. We define Hamiltonianity as a prop-

erty arising from the interplay of a skew-symmetric bilinear form and the behavior. Then



we prove the main result of this section, Theorem 2.1, in which a number of equivalent

characterizations of Hamiltonianity are given.

In order to state our definition of autonomous Hamiltonian system, we recall the concept of

nondegeneracy and skew-symmetry of a bilinear differential form. Let Φ ∈ Rq×q[ζ, η] and B ∈
Lq. Then LΨ is skew-symmetric if LΨ(w1, w2) = −LΨ(w2, w1) for all w1, w2. The concept of

nondegeneracy is introduced as follows: observe that the BLDF LΦ induces a bilinear form

on the vector space B by assigning to (v, w) ∈ B × B the real number LΦ(v, w)(0). We

denote such bilinear form by LΦ|B; observe that the rank and the nondegeneracy of such

induced bilinear form are well-defined. In particular, LΦ|B is nondegenerate if for all w ∈ B

we have LΦ(B, w)(0) = 0 ⇔ w = 0.

The definition of autonomous Hamiltonian system is as follows.

Definition 2.1. Let B ∈ Lq be autonomous. B is Hamiltonian if there exists a bilinear

differential form LΨ, such that

(i) d
dt

LΨ(w1, w2) = 0 for all w1, w2 ∈ B;

(ii) LΨ is skew-symmetric;

(iii) LΨ|B is a nondegenerate bilinear form.

In Definition 2.1 no assumption on the number q of external variables of B is made, and

consequently also systems with an odd number of external variables can qualify for Hamilto-

nianity. This point of view is in contrast with the usual definition of autonomous Hamiltonian

system, in which a symplectic structure on the space of the external variables (and conse-

quently, an even number of such variables) is assumed (see for example [1], [2]). The authors

believe that in order to investigate linear, finite-dimensional Hamiltonian systems, Definition

2.1 is a more natural starting point than the classical one. In order to support our claim, we

consider the following example.

Example 2.1. Consider a spring-mass system without friction, with the position of the

mass described by the equation

m
d2w

dt2
+ kw = 0

Define Ψ(ζ, η) = m(ζ−η) and consider the BLDF induced by such two-variable polynomial.

Such BLDF is a skew-symmetric bilinear function of the state of B, namely (w, ẇ), which is

nondegenerate and constant along its trajectories. Indeed, the coefficient matrix (see [11])

of Ψ(ζ, η) is

Ψ̃ =


0 −m 0 · · ·
m 0 0 · · ·
0 0

. . . . . .
...

...
. . . . . .





and has rank 2, equal to the McMillan degree of the system; this is sufficient to conclude

that LΨ|B is nondegenerate (see [9]). Moreover, for every w1, w2 satisfying the equations of

the system LΨ(w1, w2) = mẇ1w2 − mẇ2w1 and consequently d
dt

LΨ(w1, w2) = 0. It follows

that this spring-mass system with only one external variable is Hamiltonian according to

Definition 2.1. It is difficult to understand why in order to study the Hamiltonianity of

such system, where the position of the mass is the only external variable, one should first

transform the natural second-order differential equation description, coming up with a first

order representation in which the position and the momentum are the external variables;

and then study the symplectic structure of the resulting state-space system.

The previous example illustrates one situation in which a representation-free definition

of Hamiltonianity appears to be more natural than the classical one. The argument for a

general definition of Hamiltonianity, independent of the particular representation adopted

for a system, becomes even stronger when considering the very frequent occurrence in ap-

plications, of dynamical systems described by sets of higher order differential equations, for

example because of the elimination of auxiliary variables.

The following theorem consists of a series of conditions on B and on its representations,

equivalent to Hamiltonianity; we omit the proof, which will be given elsewhere.

Theorem 2.1. Let B ∈ Lq be autonomous. Then the following conditions are equivalent:

1. B is Hamiltonian;

2. There exists a kernel representation B = ker(R( d
dt

)) induced by a nonsingular R ∈
Rq×q[ξ], such that any invariant polynomial of R is either even, or it is odd; moreover,

the odd invariant polynomials can be divided in pairs, so that the odd polynomials of

each pair have the root zero with the same multiplicity;

3. For any R ∈ R•×q[ξ] such that B = ker(R( d
dt

)), we have rank(R) = q and any invariant

polynomial of R is either even, or it is odd; moreover, the odd invariant polynomials

can be divided in pairs, so that the odd polynomials of each pair have the root zero with

the same multiplicity;

4. There exists a minimal state space representation ẋ = Ax, w = Cx of B and a

nonsingular skew-symmetric matrix K ∈ Rn(B)×n(B) such that AT K + KA = 0;

5. For any minimal state representation ẋ = Ax, w = Cx of B there exists a nonsingular

skew-symmetric matrix K ∈ Rn(B)×n(B) such that AT K + KA = 0.

Observe that from Theorem 2.1 it follows that any Hamiltonian system has an even McMil-

lan degree. Another consequence of Theorem 2.1 is that the state matrix A of any minimal

state-space representation of an autonomous Hamiltonian system is similar to −AT , with

the similarity induced by a skew-symmetric matrix. Such matrices are called Hamiltonian,

and a thorough investigation of their properties is given in [5] (see also [3] and [4]).

We conclude this section with an example of autonomous Hamiltonian system.



Example 2.2. Consider two masses m1 and m2 attached to springs with constants k1 and

k2. The first mass is interconnected with the second one via the first spring, and the second

mass is connected to a “wall” with the second spring. Considering w1 and w2 as external

variables, we can write down the equation of the system as((
m1

d2

dt2
0

0 m2
d2

dt2

)
+

(
k1 −k1

−k1 k1 + k2

))(
w1

w2

)
= 0

By eliminating w2 from the equations, we take the position w of the first mass as external

variable. The resulting equation is

r(
d2

dt2
)w = m1m2

d4

dt4
w + (k1m1 + k2m1 + k1m2)

d2

dt2
w + k1k2w = 0

Such equation describes an Hamiltonian system, since r(ξ) is even, as it can be seen by

applying statement 2 of Theorem 2.1.

3 Internal forces

Autonomous systems have no external influence exerted on them by the environment: in

mechanics, they correspond to isolated systems on which external forces do not act. When

considering systems of particles, there are forces (for example, gravitational ones) acting on

some particles of the system which are due to all other particles of the system; in classical

mechanics they are called internal forces, because they arise from some potential which is

usually considered to be a function of the configuration variables and of their velocities.

In this section we investigate how internal forces can be accommodated into the framework

we are developing for the analysis of Hamiltonian systems. To begin with, we investigate

special latent-variable representations of Hamiltonian systems. In order to keep the expo-

sition simple, in the rest of this section we consider Hamiltonian systems with only even

invariant polynomials; the general case will be investigated elsewhere. The first result we

present concerns the existence of second-order latent variable representations for higher-order

Hamiltonian systems; keeping up with the traditional notation, we will denote somewhat am-

biguously the latent variable of such representations with the symbol “q”.

Proposition 3.1. Let B be an autonomous behavior with q external variables. Let R( d
dt

)w =

0 be a minimal kernel representation of B, with q even invariant polynomials λi, i = 1, . . . , q.

Define n :=
∑q

i=1 deg(λi)

2
.

Then B is Hamiltonian if and only if there exist Ci ∈ Rq×n, i = 1, 2 and symmetric

matrices M = MT , K = KT ∈ Rn×n with M nonsingular, such that

M
d2

dt2
q + Kq = 0

C1q + C2
d

dt
q = w

q = Q(
d

dt
)w (3.1)



is an hybrid representation Bf of B with latent variable q ∈ C∞(R, Rn).

In classical mechanics, the variable q consists of the position of the masses, and the first

block of equations (3.1) is obtained by writing down Newton’s second law for each of the

masses. Proposition 3.1 generalizes such procedure, showing that an Hamiltonian behavior

described in kernel form by a matrix with only even polynomials, can be always interpreted

as a mechanical system, with q a “generalized position” and q̇ a “generalized velocity”, M

the mass matrix and K the matrix of elastic constants. In the following result we pursue such

analogy one step further, relating the second-order representation (3.1) to the existence of

an “energy” and a “Lagrangian” function. In order to state such result, we need to introduce

two concepts, that of stationarity of a trajectory with respect to a QDF, and that of trimness

of a latent variable.

In order to define stationarity, consider two arbitrary time instants t1 and t2, with −∞ <

t1 ≤ t2 < ∞. Let w ∈ C∞, and take a compact support variation εδ of w, with ε ∈ R,

satisfying the following property: dk

dtk
(w + εδ)(ti) = dk

dtk
(w)(ti), k ∈ N∪ {0}, i = 1, 2. We call

w stationary w.r.t. a QDF QΦ if for all variations δ satisfying the above properties, and for

all t1 ≥ t2, the cost degradation

Jw(εδ, t1, t2) :=

∫ t2

t1

QΦ(w + εδ)−QΦ(w)dt

satisfies limε→0
Jw(εδ,t1,t2)

ε
= 0 in other words, if Jw(εδ, t1, t2) is of order ε2.

The concept of trimness of a variable is as follows. Let B be a behavior described in

hybrid form, with an r-dimensional latent variable q and manifest variable w; we call the

latent variable q trim if for every v ∈ Rr there exists a trajectory (q, w) ∈ B, such that

q(0) = v.

Proposition 3.2. Let B be a system with McMillan degree n(B) = 2r, represented in hybrid

form by the equations (3.1) with M , K r×r symmetric matrices with M nonsingular. Assume

that the latent variable q is trim. Then the following statements are equivalent:

1. q satisfies Mq̈ + Kq = 0;

2. q is stationary with respect to the QDF QL(q) := q̇T Mq̇ − qT Kq;

3. d
dt

(q̇T Mq̇ + qT Kq) = 0.

Assume that any of the above statements hold, and let M ′ and K ′ be two symmetric r × r

matrices with M ′ nonsingular. Then q is stationary w.r.t. QL′(q) := q̇T M ′q̇ − qT K ′q if and

only if

M ′(M−1K) = (M−1K)T M ′

K ′ = M ′(M−1K) (3.2)



If we interpret q as a “position” and q̇ as a “velocity”, then q̇T Mq̇ and qT Kq can be

interpreted respectively as a “kinetic energy” and a “potential energy”. From this point of

view, q̇T Mq̇ + qT Kq is the “total energy” of the system, while QL can be interpreted as the

“Lagrangian” of the system.

The following example provides an illustration of the generalizations of classical mechanics

concepts introduced until now.

Example 3.1. Consider the system presented in Example 2.2. In order to simplify the

notation, define r0 := k1k2, r2 := k1m1 + k2m1 + k1m2 and r4 := m1m2. A second-order

representation (3.1) is obtained with

M :=

(
r2 r4

r4 0

)
and K :=

(
r0 0

0 −r4

)
From Proposition 3.2 it follows that all energy/Lagrangian functions are induced by matrices

M ′ and K ′ satisfying (3.2). Denote the entries of M with mij; then, choosing the values

of m11 := m1 + m2, m12 := m1m2

k1
, and m22 :=

m2
1m2

k2
1

, we obtain M ′ which satisfies the first

equation in (3.2). Such choice yields a matrix K given by the second equation in (3.2), and

consequently the QDF

QΦ(w, ẇ, ẅ, w(3)) =
(

w ẅ
)( k2

k2m1

k1

k2m1

k1

m2
1(k1+k2)

k2
1

)(
w

ẅ

)

+
(

ẇ w(3)
)( m1 + m2

m1m2

k1

m1m2

k1

m2
1m2

k2
1

)(
ẇ

w(3)

)
Such QDF measures the physical total energy of the system. Indeed, from the second-order

description given above in terms of the two variables w1 and w2 it follows that

Ekin(w1, w2) =
1

2
(m1ẇ1

2 + m2ẇ2
2)

Epot(w1, w2) =
1

2
(k1w

2
1 − 2k1w1w2 + (k1 + k2)w

2
2)

Using the fact the generalized positions col(w, w(2)) are related to the actual positions

col(w1, w2) by a nonsingular linear map as(
w1

w2

)
=

(
1 0

1 m1

k1

)(
w

ẅ

)
it can be readily verified that the sum of such two quantities yields the same value as QΦ

defined above.

We proceed to define the notion of generalized internal force. In classical mechanics it

is customary to take the positions q as external variables; the vector of internal forces is



then defined from the potential energy Epot as f := ∂
∂q

Epot; observe that in this way an

internal force is paired with each position. Taking our moves from the generalization of

position and potential energy given in Proposition 3.1 and Proposition 3.2, it is natural to

call the i-th component of −Kq the generalized internal force acting on the i-th generalized

position. The following Theorem provides the main result of this section, and shows that in

an Hamiltonian system an internal force can always be coupled with each external variable.

In such manner a hybrid representation of autonomous Hamiltonian systems is obtained in

which the internal forces and the external variables are present.

Theorem 3.1. Let B be an autonomous Hamiltonian behavior with q external variables,

having only even invariant polynomials. Then there exists a q-dimensional auxiliary variable

f , called the internal force, and polynomial matrices R,M,F ∈ Rq×q[ξ] such that B has the

hybrid representation

R(
d

dt
)w = M(

d

dt
)f

F (
d

dt
)w = f (3.3)

Moreover, R is nonsingular, R and M are left-coprime, R−1M is a proper rational function

satisfying R−1M = (R−1M)∼, and F satisfies F = F∼.

Theorem 3.1 shows that the external behavior of an autonomous Hamiltonian system is the

projection on the external variables of the interconnection of two systems, one described by

the first block of equations (3.3), and the other represented by the second block of equations

(3.3). The number of variables in the interconnection is 2q: there are as many internal forces

as there are external variables w. Observe also that in the system described by the first block

of (3.3), the internal forces are input variables, while w is an output; and moreover, that

the transfer function Gf→w from f to w satisfies Gf→w = G∼
f→w. It is from such pairing of

inputs and outputs, together with the symmetry property of the transfer function between

the two, that we take our moves to define Hamiltonianity for the controllable case in section

4. Before considering such issue, we briefly return to Example 3.1 in order to compute one

representation (3.3) for such system.

Example 3.2. In Example 3.1 we have computed the “potential energy” as

Epot(w) = k2w
2 + 2

k2m1

k1

wẅ +
m2

1

k2
1

(k1 + k2)ẅ
2

We define the internal force as f := −(k2w + k2m1

k1
ẅ). Choose M(ξ) = 1 and R(ξ) =

m1m2

k1
ξ4 + (m1 + m2)ξ

2; we obtain the hybrid representation

m1m2

k1

w(4) + (m1 + m2)w
(2) = f

−(k2w +
m1k2

k1

w(2)) = f



of the external behavior. In order to obtain a physical interpretation of such internal force,

observe that since w + m1

k1
w(2) = w2 (see Example 3.1), then f = −k2w2. Such expression

describes the reaction force of the second spring, and it corresponds to the sum of the two

internal forces f1 := −k1w1 + k1w2 and f2 := k1w1 − (k1 + k2)w2 that we would obtain

considering the second-order representation of the system in the external variables w1 and

w2, provided at the beginning of Example 2.2.

4 Controllable Hamiltonian systems

In the previous section we have shown that an autonomous (i.e. isolated) Hamiltonian system

admits an hybrid representation in which each external variable is paired with an auxiliary

variable (the “internal force”). In such hybrid representation, the transfer function from the

internal forces to the external variables is invariant under transposition and replacing of the

indeterminate ξ with −ξ. Observe that from the second block of equations (3.3) it follows

that such internal forces depend on the external variables, analogously to what happens

in classical mechanics, where they originate from a potential function of the configuration

variables and their velocities. If we assume that the forces f in the first block of equations

(3.3) can be chosen freely, then we arrive at the definition of a controllable Hamiltonian

system (see also [10], where the same definition is given).

Definition 4.1. Let B ⊆ C∞(R, R2m) be a controllable linear differential behavior with m

input variables, and let J2m ∈ R2m×2m be the skew-symmetric matrix

J2m =

(
0 Im

−Im 0

)
inducing the bilinear differential form LJ2m on B×B. Then B is Hamiltonian if for all

trajectories w1, w2 ∈ B ∩D(R, R2m) it holds that∫ +∞

−∞
LJ2m(w1, w2)dt = 0

In the following, whenever the dimensions of the matrix J2m are evident from the context,

we will suppress the subscript. Observe that in a controllable Hamiltonian system the number

of input variables is the same as that of the outputs.

We illustrate such definition with an example.

Example 4.1. Take the same system considered in Example 2.2, but with an external force

applied to the first mass. Choose as external variables the position q of the first mass and

the external force f ; then it is easy to see that the set of admissible trajectories w = (q, f)

is described by the equation

m1m2
d4q

dt4
+ (m1k1 + m1k2 + m2k1)

d2q

dt2
+ k1k2q = m2

d2f

dt2
+ (k1 + k2)f



In order for such system to be controllable, the polynomials d(ξ) := m1m2ξ
4 + (m1k1 +

m1k2 +m2k1)ξ
2 +k1k2 and n(ξ) := m2ξ

2 +k1 +k2 must be coprime. In such case the system

also admits an observable image representation induced by the polynomial matrix

M(ξ) =

(
m2ξ

2 + k1 + k2

m1m2ξ
4 + (m2k1 + m1k1 + m1k2)ξ

2 + k1k2

)
(4.4)

We now show that such system is an Hamiltonian. Observe that for every compact support

trajectories wi = M( d
dt

)`i i = 1, 2 with M as in (4.4), it holds that LJ(w1, w2) = LΦ(`1, `2),

where Φ(ζ, η) := M(ζ)T J2M(η), that is,

Φ(ζ, η) = (m2ζ
2 + k1 + k2)(m1m2η

4 + (m2k1 + m1k1 + m1k2)η
2 + k1k2)

−(m1m2ζ
4 + (m2k1 + m1k1 + m1k2)ζ

2 + k1k2)(m2η
2 + k1 + k2)

In order to prove that
∫ +∞
−∞ LJ(w1, w2)dt = 0, observe that Φ(−ξ, ξ) = 0. Conclude from The-

orem 3.1 of [11] that there exists Ψ ∈ R[ζ, η] such that Φ(ζ, η) = (ζ +η)Ψ(ζ, η), equivalently,
d
dt

LΨ = LΦ. Now use the fact that the latent variable trajectories `i are also compact-support,

in order to conclude that
∫ +∞
−∞ LΦ(`1, `2)dt = LΨ(`1, `2)

∣∣+∞
−∞ = 0.

The following result consists in a series of conditions on a behavior B and on its represen-

tations, equivalent to Hamiltonianity; the proof will be given elsewhere.

Theorem 4.1. Let B be a controllable behavior with m input and m output variables. Then

the following statements are equivalent:

1. B is Hamiltonian;

2. B ⊆(JB)⊥;

3. Every controllable subbehavior of B is Hamiltonian with respect to J ;

4. For every input/output partition (u, y) of the external variables of B there exists a

m ×m signature matrix Σ such that the transfer function G associated with such i/o

partition satisfies G∼Σ = ΣG;

5. For every input-output partition (u, y) of w, there exists a signature matrix Σ and a

minimal input-state-output representation

ẋ = Ax + Bu

y = Cx + Du

of B such that

J2nA = −AT J2n

ΣD = DT Σ

BT J2n = −ΣC



The characterization of Hamiltonian transfer functions given in statement 4 of Theorem

4.1 is the same given in [3] in the context of input-state-output systems and in [4] in the

polynomial model context.

It follows immediately from statement 5 of Theorem 4.1 that the McMillan degree n(B) of

a controllable Hamiltonian behavior is even. Using statement 5 it is also easy to see that the

projection on the output variable of the zero-input subbehavior Bz := {(u, y) ∈ B | u = 0}
of B is an autonomous Hamiltonian system. Indeed, observe that ΠyBz is described by the

minimal state-space equations ẋ = Ax, y = Cx and that the matrix A is Hamiltonian; now

apply statement 4 of Theorem 2.1 in order to conclude that ΠyBz is also Hamiltonian.

We conclude this section with two examples of controllable Hamiltonian systems.

Example 4.2. Newton’s second law defines a controllable Hamiltonian system

B = {(F, q) | F = mq̈}

as it is easy to verify using for example statement 4 of Theorem 4.1.

Example 4.3. Consider a parallel interconnection of a capacitor C with an inductance L

subject to an external current Ie. Assume that we choose as external variables for such

system the external current and the magnetic flux φL in the inductance; it is easy to verify

that in such case the system equation is ( d2

dt2
+ 1

CL
)φL − 1

C
Ie = 0. We show that this system

is Hamiltonian. It can be verified that an observable image representation of the system is

induced by the matrix

M(ξ) =

(
1

Cξ2 + 1
L

)
Consider that M(ζ)T J2M(η) = (ζ + η)Ψ(ζ, η) with Ψ(ζ, η) := C(ζ − η). Consequently such

BLDF satisfies d
dt

LΨ = LJ on B, and therefore
∫

LJ2(w1, w2)dt = 0 for all w1, w2 ∈ B.

In order to prove the Hamiltonianity of B, one can alternatively use the fact that the only

admissible input/output partition of the variables is with Ie the input and φL the output,

and that the transfer function GIe→φL
satisfies statement 4 of Theorem 4.1.

5 Conclusions

In this communication we have used the formalism of bilinear and quadratic differential forms

in order to study Hamiltonian systems. We have provided a series of conditions equivalent to

Hamiltonianity for autonomous systems (Theorem 2.1) and for controllable ones (Theorem

4.1). We have also proposed a definition of generalized total energy, generalized Lagrangian

and generalized internal forces for systems described by higher-order differential equations

(Theorem 3.1). For lack of space we have been unable to illustrate in this communication

the application of the concept of Hamiltonianity presented above to LQ-control problems;

this will be done elsewhere.



The approach followed in this paper is representation-free: the definitions and results are

not dependent on the existence of a special representation of the system, such as a transfer

function or a state-space representation. In view of the encouraging results of the application

of quadratic differential forms in the context of infinite-dimensional systems (see [6],[7]), it

can therefore be hoped that some of the results presented in this paper can be generalized

also to systems described by linear constant-coefficient partial differential equations.
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