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Abstract

This paper studies the notions of approximate time-controllability and (exact) time-controllability
of behaviours. In the 1-D case, we show that these two notions are equivalent and in the n-D
case we give an example of a behaviour which is approximately time-controllable, but not time-
controllable. Finally, we discuss time-controllability of the heat equation. It turns out that it is
time-controllable with respect to the so called Gevrey class of second order.

1 Introduction

Our purpose is to study the two notions of time-controllability (see [7]) of dynamical systems de-
scribed by linear, constant coefficient ordinary and partial differential equations in the behavioural
theory of Willems (see Polderman and Willems [5] for an elementary introduction to the subject).
Although the property of (exact) time-controllability is desirable, very often one might be satisfied
with an approximate, but reasonably good performance of the system in the future. This gives rise
to the notion of approximate time-controllability. In this paper, we show that these two notions co-
incide in the case of 1-D behaviours. However, this is not the case for multidimensional behaviours
in general. We illustrate this by means of an example which is approximately time-controllable, but
not time-controllable. Moreover, this example shows that there is a large class of partial differential
equations which constitute approximately, but not exactly time-controllable behaviours. Finally,
the heat equation will be considered. We show that it is time-controllable with respect to Gevrey
class of second order. An “algebraic” if and only if test on the polynomial matrix characterizing
the time-controllability property of the corresponding behaviour remains an open problem.

The organization of the paper as follows. Section 2 is devoted to preliminaries. In Section 3 we
discuss 1-D systems. This will be followed an example of 2-D behaviour which is approximately
time-controllable but not time-controllable. In Section 5, time-controllability of the heat equation
will be investigated. For the sake of easy reference, in the last section we have listed the definitions
of terms that either do not have a unique universal meaning or are not well-known.

2 Preliminaries

This paper concerns dynamical systems Σ =
(
R
m+1, Cw,B

)
, where C

w is called the signal space and
B ⊂ C∞ (

R
m+1, Cw

)
is called the behaviour of the system Σ (see for example Pillai and Shankar

[4]). The behaviour B of a dynamical system is said to be time-controllable if for any w1 and w2
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in B, there exist a w ∈ B and a τ ≥ 0 such that

w(•, t) =

{
w1(•, t) for all t ≤ 0
w2(•, t − τ) for all t ≥ τ

.

w is then said to concatenate w1 and w2. The behaviour B of a dynamical system is said to be
approximately time-controllable if for any w1 and w2 in B, and any given neighborhood N (in the
topology of the topological vector space1 C∞((0,∞), Cw) of the future of w2, there exist a w ∈ B

and a τ ≥ 0 such that w(•, t) = w1(•, t) for all t ≤ 0 and w(•, t − τ)|t>0 ∈ N .
It is easy to see that if a behaviour is time-controllable, then it is approximately time-controllable.

We remark that the above definitions of time-controllability and approximate time-controllability
could be given more generally for a subspace W of all distributional solutions satisfying the given
set of PDEs. One then insists that for two trajectories in this subspace W, the concatenating
trajectory also lies in W, and in the case of approximate time-controllability with respect to W,
one uses the natural topology of W|t>0. For example for certain applications, it might be natural to
consider approximate time-controllability with respect to the space W = C (R, L2 (Rm)w). However,
for the sake of simplicity, we will restrict ourselves to the definitions with respect to C∞ in this
paper.

Let us denote the polynomial ring C[η1, . . . , ηm, ξ] by A. Consider the polynomial matrix R =
[rkl]g×w ∈ Ag×w, with each entry in A. The polynomial matrix R gives rise to a map DR :
C∞ (

R
m+1, Cw

) → C∞ (
R
m+1, Cg

)
, which is given by:

DR




w1
...

ww


 =




∑w
k=1 r1k

(
∂

∂x1
, . . . , ∂

∂xm
, ∂

∂t

)
wk

...∑w
k=1 rgk

(
∂

∂x1
, . . . , ∂

∂xm
, ∂

∂t

)
wk


 .

Such maps will be called differential maps in the sequel. Given a behaviour, say B, corresponding
to some kernel representation given by a polynomial matrix R∗, define

〈R〉B =
{

r =
[

r1 . . . rw

]
∈ Aw | Dr(w) = 0 for all w ∈ B

}
.

It was shown in Oberst [3] that given any 〈R〉B = 〈R∗〉, where 〈R∗〉 denotes the A-submodule of
Aw generated by the rows of the polynomial matrix R∗.

Let R ∈ C[η1, . . . , ηm, ξ]g×w and B be the corresponding behaviour. Let us consider the following
four statements

A1. The C(η1, . . . , ηm)[ξ]-module C(η1, . . . , ηm)[ξ]w/C(η1, . . . , ηm)[ξ]gR is torsion free.

A2. ¬ [∃ χ ∈ Aw \ 〈R〉 and ∃ (0 6=) p ∈ A such that p · χ ∈ 〈R〉, and deg(p) = deg((p))], where
 is the homomorphism p(ξ, η1, . . . , ηm) 7→ p(ξ, 0, . . . , 0) : C[ξ, η1, . . . , ηm] → C[ξ].

B1. B is time-controllable.

B2. B is approximately time-controllable.
1The topological vector space C∞(Ω, C w ), where Ω is an open subset of Rm , is a Fréchet space: it is locally convex,

metrizable, Hausdorff and complete (see for instance, Trèves [8]).
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It was shown in Sasane and Cotroneo [6] and Sasane et al. [7] that the following implications hold:

A1 ⇒ B1
⇓ 6⇑ ⇓
A2 ⇐ B2

In this article we will show that B2 6⇒ B1. The validity of B1 ⇒ A1 remains an open question.

3 The 1-D case

The following theorem states that in the 1-D case, the notions of (exact) time-controllability and
approximate time-controllability are equivalent.

Theorem 3.1. Let R ∈ C[ξ]g×w, and let the corresponding behaviour be B. Then the following are
equivalent:

1. B is approximately time-controllable

2. B is time-controllable

3. there exists a r0 ∈ N ∪ {0} such that for all λ ∈ C, rank(R(λ)) = r0

4. the C[ξ]-module C[ξ]w/〈R〉 is torsion free.

Proof We will prove that 4 ⇒ 3 ⇒ 2 ⇒ 1 ⇒ 4.

4 ⇒ 3. Let us assume that 3 does not hold. From Theorem B.1.4 (page 404, Polderman and
Willems [5]), it follows that there exist unimodular matrices U and V such that R = UΣV , where

Σ =

[
diag(d1, d2, · · · , dr) 0

0 0

]
g×w

and the dk’s are polynomials such that dk divides dk+1 for all k ∈ {1, . . . , r− 1}. Thus any vector
r in 〈R〉 is of the form

r = uUΣV = ũΣV = ũ1d1v1 + · · · + ũrdrvr, (3.1)

where u ∈ C[ξ]g, ũ = uU =
[

ũ1 ũ2 . . . ũg

]
and V = col(v1, v2, . . . , vw). Now let χ := vr.

Furthermore, since 3 does not hold, it follows that dr is not constant. Clearly χ 6∈ 〈R〉: indeed
otherwise we would obtain ũ1d1v1 + · · ·+ ũrdrvr = vr, and so ũrdr = 1, which contradicts the fact
that dr is not a constant. Moreover, from (3.1), it is easy to see that dr · χ ∈ 〈R〉. Hence χ + 〈R〉
is a nonzero torsion element in the C[ξ]-module C[ξ]w/〈R〉, and so it is not torsion free.

3 ⇒ 2. This follows from Theorem 5.2.5, page 154 of Polderman and Willems [5].

2 ⇒ 1. This is evident from the definitions.

1 ⇒ 4. Suppose that 4 does not hold and the behaviour is approximately time-controllable. Then
there exists an element χ ∈ C[ξ]w \ 〈R〉 and a 0 6= p ∈ C[ξ] such that p · χ ∈ 〈R〉. As χ is not in
〈R〉, it follows that, it does not kill every element in B. Let w0 ∈ B be a trajectory such that
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Dχw0 6= 0. Without loss of generality, we may assume that (Dχw0) |t>0 6= 0 (otherwise w0 can be
shifted to achieve this). Since the topology of C∞(Ω, C) is Hausdorff, it follows that there exists
a neighborhood N in C∞((0,∞), C) of (Dχw0) |t>0 that does not contain 0. Since the map Dχ :
C∞((0,∞), C)w → C∞((0,∞), C) is continuous, it follows that there exists a neighborhood N1 in
C∞((0,∞), C)w of w0|t>0 such that w1 ∈ N1 implies that Dχw1 ∈ N . Consequently (Dχw1) |t>0 6= 0.
Let τ ≥ 0 and let w ∈ B be such that w(t) = 0 for all t ≤ 0, and w(•+τ) ∈ N1. Defining u = Dχw,
we have u|t>0 6= 0. Since p · χ ∈ 〈R〉, and w ∈ B, it follows that Dpu = 0. But since w(t) = 0 for
all t ∈ (0,∞), it follows from the definition of u that u(t) = 0 for all t ∈ (0,∞). Hence it follows
that u must be zero, but this a contradiction since u 6= 0. This completes the proof.

4 A behaviour that is approximately time-controllable, but not

time-controllable

We quote the following (Theorem 12.7.8 on page 142 of Hörmander [1] and Theorem 8.6.8 on page
312 of Hörmander [2], respectively):

Theorem 4.1. Let p be an irreducible polynomial with principal part pN which is hyperbolic with
respect to n. Let K be a convex compact subset of the plane 〈x, n〉 = 0 and x0 a point in this plane
outside K. If w ∈ CN(H) where H = {x | 〈x, n〉 ≥ 0}, is a solution of the equation Dpw = 0 with
Cauchy data vanishing outside K, and if the support of w is contained in {x0} + Γ◦(pN, n) except
for a bounded set, it then follows that w = 0 identically in H.

Theorem 4.2. Let X1 and X2 be open convex sets in R
n such that X1 ⊂ X2, and let p ∈

C[ζ1, . . . , ζn]. Then the following conditions are equivalent:

1. Every T ∈ D′(X2) such that DpT = 0 in X2 and vanishing in X1 must also vanish in X2.

2. Every hyperplane characteristic with respect to p and intersects X2 also intersects X1.

Using the above theorems, we will show that exact and approximate time-controllability are not
equivalent for a 2-D system.

Theorem 4.3. The behaviour corresponding to p(η, ξ) = 1 + ηξ is not time-controllable.

Proof Let the corresponding behaviour be denoted by B. Since the plane with normal nx = (1, 0)

t

x

0

(t0, t0)

K

τ

nxt

C
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is characteristic with respect to the differential operator Dp, it follows from Theorem 8.6.7 (page
310, Hörmander [2]) that there exists a trajectory, say w2, such that w2(x, t) = 0 if x < 0 and
supp(w2) = {(x, t) ∈ R

2 | x ≥ 0}.
Let w1 = 0. Clearly w1 ∈ B. If B is time-controllable, then there exists a trajectory that

concatenates w1 and w2: that is, there exists a τ ≥ 0 and a w such that

w(•, t) =

{
0 t ≤ 0
w2(•, t − τ) t ≥ τ

.

Clearly w 6= 0, since it matches the nonzero future of w2.
We now show that p is irreducible. It is nonconstant. Moreover, if p = p1p2 for some p1 and p2

in C[η, ξ], then it follows that p1 = a0 + a1ξ and p2 = b0 + b1ξ, for some a0, a1, b0, b1 ∈ C[η].
Thus a0b0 = 1 and so it follows that they are constants and furthermore, from a1b1 = 0, it follows
that one of them must be zero. Hence it follows that either p1 or p2 must be a constant.

pN = ηξ is hyperbolic with respect to nxt = (−1,−1). Indeed, (−1) · (−1) 6= 0 and with θ0 = 0,
we have pN ((x, t) + iθnxt) = (x − iθ)(t − iθ) 6= 0 for all (x, t) ∈ R

2 and θ < θ0.
We will now find Γ◦(pN, nxt). We know that (x, t) ∈ Γ(pN, nxt) iff pN ((x, t) + θnxt) = (x − θ)(t −

θ) = 0 implies θ < 0. But (x − θ)(t − θ) = 0 iff θ = x or θ = t. Hence (x, t) ∈ Γ(pN, nxt) iff x < 0
and t < 0. Hence the dual cone of Γ(pN, nxt) = {(x, t) ∈ R

2 | x < 0 and t < 0} is Γ◦(pN, nxt) =
{(x, t) ∈ R

2 | ∀(x1, t1) ∈ Γ(pN, nxt), 〈(x, t), (x1, t1)〉 ≥ 0} = {(x, t) ∈ R
2 | x ≤ 0 and t ≤ 0}. Let

K = {(x, t) ∈ R
2 | 0 ≤ t ≤ τ}∩ {(x, t) ∈ R

2 | 〈(x, t), nxt〉 = 0}. Then K is a convex compact subset
of the plane {(x, t) ∈ R

2 | 〈(x, t), nxt〉 = 0}. Let (t0, t0) be any point with t0 > τ (then this point
belongs to the plane and is outside K) and denote the half plane {(x, t) ∈ R

2 | 〈(x, t), nxt〉 ≥ 0}
by H. It is then clear that w ∈ C∞(R2, C) (⊂ C2(H, C)) is a solution of the equation Dpw = 0
with Cauchy data vanishing outside K, and the support of w is contained in {(t0, t0)}+Γ◦(pN, nxt)
except for the bounded set {(x, t) ∈ R

2 | t ≤ x ≤ t0 and 0 ≤ t ≤ τ} ∩ H.
Thus the assumptions of Theorem 4.1 apply, and it follows that w = 0 in H. Finally, we apply

Theorem 4.2, with X2 = R
2, X1 = {(x, t) ∈ R

2 | 〈(x, t), nxt〉 > 0} to conclude that w = 0, which is
a contradiction.

From the above proof, it is clear that one can construct a host of other polynomials (for instance,
polynomials in ηξ that are irreducible) such that the corresponding behaviour is approximately
time-controllable, but not time-controllable.

5 The heat equation and open questions

In this section we study the case of the heat equation [ ∂
∂t − ∂2

∂x2 ]w = 0. We have not been able to
show that the behaviour is time-controllable, but we will show that in a large subspace W of the
behaviour, trajectories can be concatenated in W, that is, the behaviour is time-controllable “with
respect to W”. Before defining the set W, we recall the definition of the (small) Gevrey class of order
2, denoted by γ(2)(R): γ(2)(R) is the set of all ϕ ∈ C∞(R, C) such that for every compact set K and
every ε > 0 there exists a constant Cε such that for every k ∈ N, |ϕ(k)(t)| ≤ Cεε

k(k!)2 for all t ∈ K.
W is the set of all w ∈ B such that w(0, •) ∈ γ(2)(R). Since the heat operator is (1, 2)-hypoelliptic
(see Theorem 7.9, page 446, Trèves [8]), it follows that for a fixed t, any solution w is an analytic
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function in x. Let w1 and w2 belong to W. Since w1 is an analytic function in x for a fixed t, we
obtain

w1(x, t) =
∞∑
k=0

∂k

∂xk
w1(0, t)

xk

k!
=

∞∑
k=0

∂2k

∂x2k
w1(0, t)

x2k

(2k)!
+

∞∑
k=0

∂2k+1

∂x2k+1
w1(0, t)

x2k+1

(2k + 1)!

=
∞∑
k=0

∂k

∂tk
w1(0, t)

x2k

(2k)!
+

∞∑
k=0

∂k+1

∂tk∂x
w1(0, t)

x2k+1

(2k + 1)!
, (5.2)

where we have used the relations ∂2k

∂x2k w1(0, t) = ∂k

∂tk w1(0, t) and ∂2k+1

∂x2k+1 w1(0, t) = ∂k+1

∂tk∂xw1(0, t).
Similarly

w2(x, t) =
∞∑
k=0

∂k

∂tk
w2(0, t)

x2k

(2k)!
+

∞∑
k=0

∂k+1

∂tk∂x
w2(0, t)

x2k+1

(2k + 1)!
.

From the remark following Definition 12.7.3 (page 137 of Hörmander [1]), it follows that γ(2)(R) is
an algebra and one can find cut-off functions there. Consequently, it is easy to see that given any
τ > 0, one can find functions f and g in γ(2)(R) such that

f(t) =

{
w1(0, t) t ≤ 0
w2(0, t − τ) t ≥ τ

, and g(t) =

{
∂
∂xw1(0, t) t ≤ 0
∂
∂xw2(0, t − τ) t ≥ τ

.

Now let w(x, t) =
∑∞

k=0 f (k)(t) x2k

(2k)! +
∑∞

k=0 g(k)(t) x2k+1

(2k+1)! . Since f and g belong to the class γ(2)(R),
it is easy to see that the convergence is uniform on compact subsets of R

2. Furthermore, we know
that the class γ(2)(R) is closed under differentiation. Consequently, we have

∂

∂t
w(x, t) =

∞∑
k=0

f (k+1)(t)
x2k

(2k)!
+

∞∑
k=0

g(k+1)(t)
x2k+1

(2k + 1)!
=

∂2

∂x2
w(x, t)

and so w satisfies the heat equation. Moreover, it is clear that w concatenates w1 and w2. Hence
the behaviour is time-controllable with respect to W.

An interesting question that now arises is the following: since we have only one variable w,
how is the control implemented? (5.2) shows that a solution w in W is fixed once w(0, •) and
∂
∂xw(0, •) are specified. Hence the control could be implemented by the two point control input
functions acting at the point x = 0: u1(t) = w(0, t) and u2(t) = ∂

∂xw(0, t) for all t ∈ R. Another
interesting problem is to construct an example of a trajectory in the behaviour that is not in the
class W. Also whether the behaviour of the heat equation is time-controllable or not is an open
question. The answers to these questions would either strengthen or discard the conjecture that
the behaviour corresponding to p ∈ C[η1, . . . , ηm, ξ] is time-controllable iff p ∈ C[η1, . . . , ηm], which
would eventually help in settling the conjecture that A1 and B1 are equivalent.

6 Glossary of technical terms

Irreducible polynomial: A polynomial p ∈ C[ζ1, . . . , ζn] is said to be irreducible if it is noncon-
stant and is not the product of two nonconstant polynomials in C[ζ1, . . . , ζn].
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Degree of a polynomial: Let p ∈ C[ζ1, . . . , ζn] be of the form

p =
∑

|(α1,...,αn)|≤N

a(α1,...,αn) ζα1
1 . . . ζαn

n ,

with a(α1,...,αn) 6= 0 for some (α1, . . . , αn) with |(α1, . . . , αn)| (:= α1 + · · · + αn) = N. The degree of
p, denoted by deg(p), is N.

Principal part of a polynomial: With the same notation as above, the principal part of p

(denoted by pN) is defined by

pN =
∑

|(α1,...,αn)|=N

a(α1,...,αn) ζα1
1 . . . ζαn

n .

Characteristc hyperplane: The hyperplane with normal n ∈ R
n, that is, {x ∈ R

n | 〈x, n〉 = 0}
is said to be characteristic with respect to p if pN(n) = 0.

Hyperbolic polynomial: A polynomial p is called hyperbolic with respect to a real vector n if
pN(n) 6= 0 and there exists a number θ0 such that p(x + iθn) 6= 0 if x ∈ R

n and θ < θ0.

Cauchy data: Given a n ∈ R
n, let H be the half-space {x | 〈x, n〉 ≥ 0}. Given a polynomial

p, and a solution w ∈ C
N(H) of the equation Dpw = 0 the Cauchy data is the restriction of the

function w to the set {x ∈ R
n | 〈x, n〉 = 0}.

The covex cone Γ(p, n): Given a polynomial p and a n ∈ R
n,

Γ(p, n) := {x ∈ R
n | pN(x + θn) = 0 implies t < 0}.

The dual cone: Given a cone Γ, the dual cone, denoted by Γ◦ is defined by

Γ◦ = {x ∈ R
n | 〈y, x〉 ≥ 0 for all y ∈ Γ}.
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[1] L. Hörmander. The Analysis of Linear Partial Differential Operators II. Springer-Verlag, 1983.
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