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Abstract
In this short paper we study the problem of existence of a controlled behavior that

is strictly dissipative with respect to a quadratic supply rate. The relation between
strictness and the rank of a suitable qudratic differential form that couples the dissi-
pativity properties of the hidden behavior and the orthogonal complement of the plant
behavior is analyzed.

1 Introduction and notation

Recently, in [19] it was shown that, given a plant and a supply rate, the problem of designing a

controller such that the interconnection is a dissipative system is equivalent to the problem

of finding a behavior which satisfies the following three properties: (1) it is wedged in

between the plant’s hidden behavior and manifest behavior, (2) it is dissipative, and (3) its

input cardinality is equal to the positive signature of the supply rate. In [19] necessary and

sufficient conditions for the existence of such behavior were obtained. One of these conditions

is a coupling condition, which requires that a certain quadratic differential form (called the

coupling QDF), coupling the dissipativity properties of the hidden behavior and manifest

behavior, is non-negative. In this short paper we study the problem of how the coupling

condition should be modified if, instead of a dissipative system behavior, we want to find

a strictly dissipative behavior. We will show that in this case the coupling QDF should, in

addition to being non-negative, have rank equal to the sum of the McMillan degrees of the

hidden behavior and the manifest behavior.

The paper is structured as follows. In the rest of this section we introduce notation and

review the most important behavioral definitions. The next section, section 2, contains the

key notions concerning quadratic differential forms with an emphasis on their rank. We also

prove a theorem about the rank of a QDF. This prepares the background for the subsequent

section 3 which contains the main result of this paper. In section 4 we apply the main result

to the classical strictly suboptimal state space H∞ control problem. Finally, in section 5 we

give some concluding remarks.

The notation that we use is standard. We use R to denote the field of real numbers and C to

denote the complex plane. Rn and Rn1×n2 are the obvious extensions to vectors and matrices
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of the specified dimensions. We use R•×n2 when the context does not call for a specification

of the row dimension (but just the column dimension) of the concerned matrix. We typically

use the superscript w (for example, Rw) when a generic element w has w components. The ring

of polynomials in the indeterminate ξ with coefficients in R is denoted by R[ξ]. R[ζ, η] is the

corresponding ring in two (commutative) indeterminates, and we use Rw×w[ξ] and Rw×w[ζ, η]

to denote the sets of matrices with entries from the above rings, etc. The space of infinitely

often differentiable functions with domain R and co-domain Rn is denoted by C∞(R,Rn),

and its subspace of compactly supported elements by D(R,Rn). The operator ‘col’ stacks its

arguments into a column and is used for improving readability of matrix equations within

text. We use rowdim(M) to indicate the row dimension of a matrix M and just dim(M) if

M is a vector or a square matrix.

A linear time-invariant differential system (or a behavior) is a subset B ⊆ C∞(R,Rw) such

that, for some polynomial matrix R ∈ R•×w[ξ], we have B = {w ∈ C∞(R,Rw) | R( d
dt

)w = 0 }.
We use  Lw to denote the set of such behaviors. Here a behavior has been specified as the

kernel of a differential operator. Hence we speak of this as a kernel representation of B.

More generally, we might encounter a behavior as follows: for R, M ∈ R•×•[ξ],

B = {w ∈ C∞(R,Rw) | ∃ ` ∈ C∞(R,Rl) such that R(
d

dt
)w = M(

d

dt
)`} .

It is a consequence of the elimination theorem that the set defined above is indeed a behavior

in the sense we defined. A representation like the one above is called a latent variable

representation (with ` as the latent variable here). The full behavior Bfull ∈  Lw+l is the set

of all (w, `) that satisfy the equation above.

In this paper, we restrict ourselves to controllable behaviors. Roughly speaking, control-

lable behaviors are defined as behaviors in which for any two of its elements there exists a

third element which coincides with the first one on the past and the second one on the future

(for details, see [8]).  Lw
cont (a subset of  Lw) denotes this set of controllable behaviors. Given a

behavior B ∈  Lw, it is possible to choose some components of w as any function in C∞(R,R).

The maximal number of such components that can be chosen arbitrarily is called the input

cardinality of B and is denoted as m(B). We also need the notion of state for a behavior.

We refer to [9] for a detailed exposition, with only a brief review here. A latent variable

representation of B ∈  Lw is called a state representation if the latent variable (denoted here

by x ) has the property of state, i.e.: if (w1, x1), (w2, x2) ∈ Bfull are such that x1(0) = x2(0)

then (w1, x1) ∧ (w2, x2), the concatenation (at t = 0, here), belongs to the Lloc
1 -closure of

Bfull. We call such an x a state for B. A state map for a B is a differential operator X( d
dt

)

(induced by X ∈ R•×w[ξ]) such that X( d
dt

)w is a state for B. A state map X ∈ R•×w[ξ] is

minimal if every other state map has at least as many rows as those of X, and this minimal

number of state variables (called the McMillan degree) of B is denoted by n(B). The rows

of such an X are linearly independent over R. A minimal state map has a property called

trimness, i.e., for all x0 ∈ Rx, there exists a (w,X( d
dt

)w) ∈ Bfull such that (X( d
dt

)w)(0) = x0 .

Issues concerning existence and constructive algorithms about state maps have been dealt

in [9].
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2 Quadratic differential forms

This section contains a brief review of bilinear differential forms, quadratic differential forms

and other necessary notions like the rank of a QDF, etc. A bilinear form (BF) on the vector

spaces (V1,V2) is a mapping ` : V1×V2 → R that is linear in each of its two arguments. Given

such an `, its rank is the number of independent linear functionals `(·, v2) where v2 ranges

over V2, or equivalently the number of independent linear functionals `(v1, ·) where v1 ranges

over V1. When V1 = V2 = V, a BF ` on (V,V) is called symmetric if `(v1, v2) = `(v2, v1).

Also, when V1 = V2 = V, we speak of the quadratic form (QF) induced by ` on V, defined

by q(v) := `(v, v). The rank of a QF is the rank of the symmetric BF that induces it. A QF

q on V can be expressed as q =
∑n+

k=1 |f
+
k (v)|2−

∑n−
k=1 |f

−
k (v)|2 with the f+

k ’s and f−k ’s linear

functionals on V, if (and only if) q has finite rank. We can choose f+
1 , f

+
2 , . . . , f

+
n+
, f−1 , f

−
2 ,

. . . , f−n− linearly independent over R. In this case n− and n+ are individually minimal over

all such decompositions of q as a sum and difference of squares. We call the corresponding

pair of integers (n−, n+) the signature of q and denote it as sign(q) = (σ−(q), σ+(q)). The

rank of q equals σ−(q) + σ+(q).

The QF on Rn induced by the matrix S = ST ∈ Rn×n is defined as qS(x) := xTSx. We

shall also use |x|2S to denote it, and when S = I the subscript is often dropped. We denote

the signature of S by sign(S) = (σ−(S), σ+(S)) where σ−(S) and σ+(S) are respectively the

number of negative and positive eigenvalues of S. Further, sign(S) = sign(qS). We have

σ−(qS) = 0 ⇔ qS(x) ≥ 0 for all x ∈ Rn. We call such a qS non-negative. Also, the usual

definition of positive definiteness (of matrices) gives us that σ+(qS) = n⇔ qS(x) > 0 for all

x 6= 0.

We now move over to the notions of BDF’s and QDF’s. Let Φ ∈ Rw1×w2 [ζ, η] be written

out as a finite sum Φ(ζ, η) = Σk,l∈Z+Φk`ζ
kη` with Φk` ∈ Rw1×w2 – its coefficient matrices. Let

B1 ∈  Lw1 and B2 ∈  Lw2 . Then, Φ induces the map LΦ : B1 ×B2 → C∞(R,R), defined by

LΦ(w1, w2) :=
∑
k,`∈Z+

(
dkw1

dtk
)TΦk`(

d`w2

dt`
)

called the bilinear differential form (BDF) on B1 ×B2 induced by Φ and which is denoted

by LΦ|B1×B2 . When w1 = w2 = w and B ∈  Lw, Φ also induces the map QΦ : B → C∞(R,R)

with QΦ(w) := LΦ(w,w). We call this map the quadratic differential form (QDF) on B

induced by Φ and denote it by QΦ|B. Define the ∗ operator as (Φ∗)(ζ, η) := (Φ(η, ζ))T .

When considering QDF’s, it is sufficient to consider Φ’s that are symmetric, i.e., those that

satisfy Φ = Φ∗.

We are interested in non-negativity of QDF’s on behaviors. For f : A → R, f ≥ 0 means

f(t) ≥ 0 for all t ∈ A. We shall use this general definition of non-negativity for QDF’s too.

Let B ∈  Lw and Φ ∈ Rw×w[ζ, η]. We call the QDF QΦ non-negative on B (and denote it by

QΦ|B ≥ 0) if QΦ(w) ≥ 0 for all w ∈ B. Extending this notion of non-negativity of a QDF

to positive definiteness the usual way, we say QΦ|B > 0 if for all w ∈ B: QΦ(w) ≥ 0 and

QΦ(w) = 0 implies that w = 0. Here B is a subset of C∞(R,Rw) and in the special case
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B = C∞(R,Rw), the subscript B is skipped.

Let B1 ∈  Lw1 and B2 ∈  Lw2 . There is a one-to-one correspondence between the BDF LΦ

on B1 ×B2 and the BF on B1 ×B2 defined by (w1, w2) 7→ LΦ(w1, w2)(0). Given B ∈  Lw,

there is a similar correspondence between the QDF QΦ on B and the QF on B defined by

w 7→ QΦ(w)(0). We define the ranks and signatures of a BDF or QDF by this correspondence.

Although they act on infinite dimensional spaces, both LΦ|B1×B2 and QΦ|B have finite rank.

If B ∈  Lw and Φ ∈ Rw×w[ζ, η] then Φ can be expressed as Φ(ζ, η) = F T
+ (ζ)F+(η)−F T

− (ζ)F−(η),

with F = col(F+, F−) ∈ R•×w[ξ], such that the rows of F induce (linear) functionals on B

that are linearly independent over R. A factorization of Φ as the one above is called a

canonical factorization on B. Such a factorization yields the signature and the rank of QΦ|B
by sign(QΦ|B) = (rowdim(F−), rowdim(F+)) and rank(QΦ|B) = rowdim(F ), and QΦ|B can

be expressed canonically as QΦ(w) = |F+( d
dt

)w|2−|F−( d
dt

)w|2. A formal exposition on QDF’s

can be found in [18].

Note the similarity of linear independence over R of the rows of F and of those of a minimal

state map. This similarity lies behind the very appealing result of [15]. We need a related

property of a minimal state map which is also satisfied by other polynomial matrices under

suitable assumptions. In this context we have the following theorem.

Theorem 1. : Let B ∈  Lw, F ∈ Rq×w[ξ] and K = KT ∈ Rq×q and define Φ(ζ, η) :=

F T (ζ)KF (η). Assume for η ∈ Rq: ηTF ( d
dt

)B = 0 ⇒ η = 0. Then we have K > 0 if and

only if (1) QΦ|B ≥ 0 and (2) rank(QΦ|B) = q

A close connection exists with the assumption in the theorem above and the notion of

trimness. A behavior B ∈  Lw is called trim if for all a ∈ Rw, there exists w ∈ B such that

w(0) = a. It is possible to show that the property that for η ∈ Rq: ηTF ( d
dt

)B = 0⇒ η = 0

is equivalent to the trimness of the behavior F ( d
dt

)B (here F ( d
dt

)B is an element of  Lq).

In theorem 1 above, F need not be a state map. However, as mentioned above, if F is a

minimal state map of B then the behavior F ( d
dt

)B is always trim.

3 Synthesis of strictly dissipative systems

Let SS ∈ Rw×w and B ∈  Lw
cont. B is said to be dissipative with respect to QΣ (or briefly,

Σ-dissipative) if
∫ +∞
−∞ QΣ(w) dt ≥ 0 for all w ∈ B ∩D. (In this case QΣ(w) equals wTΣw.)

Further, it is said to be dissipative on R− with respect to QΣ (or briefly, Σ-dissipative on R−)

if
∫ 0

−∞QΣ(w) dt ≥ 0 for all w ∈ B∩D. We also use the analogous definition of dissipativity

on R+. A controllable behavior B is said to be strictly dissipative with respect to QΣ (or

briefly, strictly Σ-dissipative) if there exists an ε > 0 such that B is dissipative with respect

to QΣ−εI . We have the obvious definitions for strict dissipativity on R− and on R+. Equipped

with these definitions, we state below the problem that we solve in this short paper.

Strict dissipativity synthesis problem formulation: Let N and P ∈  Lv
cont, and let

Σ = ΣT ∈ Rv×v be non-singular. The problem is to find K ∈  Lv
cont such that:
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1. N ⊂ K ⊂ P ,

2. K is strictly Σ-dissipative on R− ,

3. m(K) = σ+(QΣ) .

The constraints that K has to satisfy have important control-theoretic interpretations. We

call P the manifest plant behavior, N the hidden behavior and K the controlled behavior.

The condition N ⊂ K ⊂ P is equivalent to implementability of the controlled behavior

through a restricted set of variables called control variables. The third condition formal-

izes the requirement that the controlled behavior should be live enough to accept sufficiently

many exogenous inputs (which can be interpreted as disturbances). The strict Σ-dissipativity

condition combines various control design specifications depending on Σ, for example, dis-

turbance attenuation. The dissipativity on R− implies stability. We refer to [19] for details.

For additional material on strictly dissipative systems, see [6].

For a behavior B ∈  Lw
cont and a Σ = ΣT ∈ Rw×w, we say that Ψ = Ψ∗ ∈ Rw×w[ζ, η] induces a

storage function QΨ for B with respect to QΣ if the dissipation inequality d
dt
QΨ(w) ≤ QΣ(w)

is satisfied for all w ∈ B. It has been shown that such a storage function exists if and only

if B is Σ-dissipative. Moreover, B is Σ-dissipative on R− if and only if there exists a Ψ

such that QΨ|B ≥ 0. Analogously, B is Σ-dissipative on R+ if and only if there exists a Ψ

such that QΨ|B ≤ 0. It is also known (see for instance, [15]) that such a storage function

is always a state function, i.e., if X ∈ Rn×w[ξ] induces a state map for B, then associated

with this Ψ there exists a K ∈ Rn×n such that QΨ(w) = |X( d
dt

)w|2K . Thus we often speak

of the matrix associated with a storage function (and a state map). A storage function

is not unique. However, there exists a maximal and a minimal one between which every

other storage function lies. We denote the largest and the smallest storage functions by Ψ+

and Ψ−, and their associated matrices by K+ and K− respectively. Further, corresponding

to each storage function, we have a dissipation function which is the QDF Q∆ defined by

Q∆(w) := QΣ(w)− d
dt
QΨ(w) for all w ∈ B.

Given a BDF induced by a constant matrix we have a notion of the orthogonal complement

of a controllable behavior with respect to this BDF. Let Σ ∈ Rw×w and B1,B2 ∈  Lw
cont; B1 and

B2 are said to be orthogonal with respect to LΣ (briefly, Σ-orthogonal) if
∫ +∞
−∞ LΣ(w1, w2)dt =

0 for all w1 ∈ B1 ∩D and w2 ∈ B2 ∩D. This orthogonality relation between B1 and B2 is

denoted by B1 ⊥Σ B2. For B ∈  Lw
cont we define the Σ-orthogonal complement B⊥Σ of B as

B⊥Σ := {w ∈ C∞(R,Rw) |
∫ +∞

−∞
LΣ(w,w′)dt = 0 for all w′ ∈ B ∩D}.

When Σ = I, we use ⊥ instead of ⊥Σ. The following identities are easily verified: B⊥Σ =

(ΣB)⊥ = ((ΣT )−1)B⊥. (Here −1 denotes set-theoretic inverse.) Further, if Σ is nonsingular,

B = (B⊥Σ)⊥Σ . In the context of behaviors that are Σ-orthogonal we have the following

result.
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Proposition 2. : Let Σ ∈ Rw×w and B1,B2 ∈  Lw
cont. There exists a Ψ ∈ Rw×w[ζ, η] such

that d
dt
LΨ(w1, w2) = wT1 Σw2 for all (w1, w2) ∈ B1 ×B2 if and only if B1 ⊥Σ B2. Moreover,

Ψ is essentially unique, i.e., if Ψ1,Ψ2 ∈ Rw×w[ζ, η] both satisfy the above equality, then

LΨ1(w1, w2) = LΨ2(w1, w2) for all (w1, w2) ∈ B1 ×B2.

We call this BDF LΨ on B1×B2, the [(B1,B2); Σ]-adapted bilinear differential form. Here

also LΨ can be written as a function of the states of B1 and B2, i.e., given X1 and X2

that induce minimal state maps for B1 and for B2 respectively, there exists a matrix L ∈
R

n(B1)×n(B2) such that LΨ(w1, w2) = (X1( d
dt

)w1)TLX2( d
dt

)w2 . For the case of Σ = I and for

behaviors B and B⊥, L happens to be invertible and we can modify one of the two (minimal)

state maps to obtain a matched pair of state maps. (X,Z) is said to be a matched pair of

minimal state maps for (B,B⊥) if d
dt

(X( d
dt

)w1)TZ( d
dt

)w2 = wT1 w2 for all (w1, w2) ∈ B×B⊥.

More on this can be found in [18] (section 10).

We are now ready to state the main result of the paper, which is a solution to the

strict dissipativity problem described above. Since N ⊂ P, we have that N ⊥Σ P⊥Σ . Let

Ψ(N,P⊥Σ ) ∈ Rw×w[ζ, η] induce the [(N,P⊥Σ); Σ]-adapted BDF. It turns out that the existence

of a controlled behavior K as described in our problem formulation involves, in addition to

a non-negativity requirement, a rank condition on the coupling QDF.

Theorem 3. : A controlled behavior K ∈  Lv
cont as described in the problem formulation

exists if and only if the following conditions are satisfied:

1. N is strictly Σ-dissipative on R−,

2. P⊥Σ is strictly (−Σ)-dissipative on R+,

3. the coupling QDF Qcpl on N × P⊥Σ defined by:

Qcpl(v1, v2) := QΨ+
N

(v1)−QΨ−
P⊥Σ

(v2) + 2LΨ
(N,P⊥Σ)

(v1, v2) (1)

satisfies the following two properties:

(i) Qcpl|N×P⊥Σ ≥ 0 and

(ii) rank(Qcpl|N×P⊥Σ ) = n(N) + n(P) .

Here, Ψ+
N induces the largest storage function for N as a Σ-dissipative system and Ψ−

P⊥Σ

induces the smallest storage function for P⊥Σ as a (−Σ)-dissipative system.

We note here the importance of the last statement in the theorem above. Since Qcpl is a

sum of three terms that are themselves functions of the states of the behaviors concerned, it

cannot have rank more than n(N) +n(P). So the existence of a strictly dissipative controlled

behavior as in the problem formulation, in fact, requires the existence of a non-negative

coupling QDF of maximal rank. It is in this way that the strictness of the dissipativity in

the problem formulation affects the theorem. But unlike here, the McMillan degrees of the

hidden behavior and the plant behavior played no role in the nonstrict synthesis result of

[19].
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4 Application to the state space strictly suboptimal

H∞ control problem

We will now apply theorem 3 to the special case that the the behaviors N and P are given

as the hidden behavior and manifest plant behavior associated with a given to be controlled

plant Pfull ∈  Lv+c, i.e.

N = {v | (v, 0) ∈ Pfull}

and

P = {v | there exists c such that (v, c) ∈ Pfull}.

We will assume that the plant Pfull is given in input/state/output representation. Our results

on the general problem set-up will lead to a solution for the state space case, analogous to

those on the standard H∞ problem obtained in [1]. This double Riccati equation solution

and its variations have been the subject of very intensive research, see e.g. [5, 14] and

generalizations in [10, 11], [6, 7], [3, 4] and [2].

Assume the plant Pfull is given in input/state/output representation by

d
dt
x = Ax + Bu + Gd

y = Cx + + Dd

f = Hx + Ju

(2)

The state variable x is assumed to take its values in Rn. The following three regularity

conditions are assumed to hold:

A.1: D is surjective and J is injective,

A.2: (A−GDT (DDT )−1C,G(Id −DT (DDT )−1D)) is a controllable pair of matrices,

A.3: (A−B(JTJ)−1JTH, (If − J(JTJ)−1JT )H) is an observable pair of matrices.

The problem is to find a controller acting on the control variables (u, y) such that the

controlled system meets certain specifications. We want the controller to be also in state

representation, more exactly, in input/state/output representation, with y the input, u the

output, and with the controller state denoted as xc:

d
dt
xc = Acxc + Bcy

u = Ccxc + Dcy
(3)

Our aim is to derive conditions for the existence and algorithms for the computation of

the controller parameter matrices (Ac, Bc, Cc, Dc) such that the controlled system has the

following properties:

1. strict disturbance attenuation with gain factor normalized to 1, i.e., for all (d, f) ∈
L2(R,Rd+f) for which there exist (u, y, x, xc) satisfying both the plant equations (2)

and the controller equations (3), there should hold ||f ||L2(R,Rf) < ||d||L2(R,Rd);
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2. internal stability, meaning that in the controlled system d = 0 should imply that the

signals (x, xc, u, f) all go to zero as t→∞.

Note that conditions 1 and 2 are equivalent to the condition that the controlled system is

internally stable and has transfer function Gd7→f satisfying ‖Gd7→f‖H∞ < 1.

In terms of the notation used in the previous section, we have v = (d, f) as the to-

be-controlled variables, c = (u, y) as the control variables, and Σ = diag(Id,−If) as the

weighting matrix. In this section, hence, Σ = diag(Id,−If).
Assume now that a feedback controller (3) exists that achieves strict disturbance attenua-

tion and internal stability. This leads to a controlled behavior K ∈  Lv, represented in i/s/o

representation by

K = {(d, f) | there exist x, xc, u and y such that (2) and (3) hold}.

This system is internally stable and its transfer matrix Gd7→f satisfies ‖Gd7→f‖H∞ < 1. It is

clear that m(K) = d = σ+(Σ) and N ⊂ K ⊂ P (since K is implemented by a controller acting

on the control variable (u, y)). Now let Kcont be the controlable part of K. Since Kcont has

the same transfer matrix as K (which satisfies ‖Gd7→f‖H∞ < 1), we have that Kcont is strictly

dissipative on R−. Also, m(Kcont) = m(K) = σ+(Σ) and N = Ncont ⊂ Kcont ⊂ Pcont = P.

Thus we find that Kcont satisfies the three conditions of the strict dissipativity synthesis

problem, and we immediately conclude that the conditions of theorem 3 must hold. We will

investigate which form these conditions take for the plant Pfull given in i/s/o representation

(2).

We first derive the various behaviors that are involved. In particular, for the full plant

behavior Pfull represented by (2), we will derive specific representations for the manifest plant

behavior P and its Σ-orthogonal complement P⊥Σ , and the hidden behavior N. Subsequently,

we will derive conditions such that P and N satisfy the conditions of theorem 3.

Eliminating (u, y) from (2), yields the following driving variable representation for P:

d

dt
xP = AxP +

[
B G

] [d′P
d′′P

]
,

vP =

[
0

H

]
xP +

[
0 I

J 0

] [
d′P
d′′P

]
,

Putting (u, y) = (0, 0) in (2) yields the following output nulling representation for N:

d

dt
xN = AxN +

[
G 0

] [v′N
v′′N

]
,[

0

0

]
=

[
C

H

]
xN +

[
D 0

0 −I

] [
v′N
v′′N

]
.

Assumptions A.2 and A.3 ensure that N and P are controllable. Moreover, their state space

representations obtained above are controllable and observable.
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From the relations between an output nulling representation and driving variable repre-

sentation of a behavior and its orthogonal complement (see section 6 of [19]), we obtain the

following output nulling representation for P⊥Σ :

d

dt
zP = −AT zP +

[
0 −HT

] [v′
P⊥Σ

v′′
P⊥Σ

]
,[

0

0

]
=

[
BT

GT

]
zP +

[
0 JT

−I 0

] [
v′

P⊥Σ

v′′
P⊥Σ

]
.

The next step, after computing these behaviors, is to verify Σ-dissipativity of N on R−
and (−Σ)-dissipativity of P⊥Σ on R+. Using [6], theorem 5.3.4, it can be shown that N is

strictly Σ-dissipative on R− if and only if the algebraic Riccati equation

−ATKN −KNA−HTH −KNGG
TKN + (CT +KNGD

T )(DDT )−1(C +DGTKN) = 0 (4)

has a real symmetric solution KN > 0 such that

−A+GDT (DDT )−1(C +DGTKN)−GGTKN

has all its eigenvalues in the open left half complex plane C−. Similarly, strict (−Σ)-

dissipativity on R+ of P⊥Σ is equivalent to the existence of a real symmetric KP ∈ Rn×n such

that the algebraic Riccati equation

AKP +KPA
T −GGT −KPH

THKP + (B −KPH
TJ)(JTJ)−1(BT − JTHKP) = 0 (5)

has a real symmetric solution KP < 0 such that

AT −HTJ(JTJ)−1(BT − JTHKP)−HTHKP

has all its eigenvalues in the open right half complex plane C+. In fact, by using well-

known properties of the algebraic Riccati equation, we may conclude that the largest stor-

age function of N as a Σ-dissipative system is equal to xTNK
+
NxN, where K+

N is the largest

real symmetric solution of the ARE (4). This solution K+
N satisfies K+

N > 0 and −A +

GDT (DDT )−1(C + DGTK+
N)−GGTK+

N has all its eigenvalues in C−. Similarly, the small-

est storage function of P⊥Σ as a (−Σ)-dissipative system is equal to zTPK
−
P zP, where K−P is

the smallest real symmetric solution of the ARE (5). This solution satisfies K−P < 0 and

AT −HTJ(JTJ)−1(BT − JTHK−P )−HTHK−P has all its eigenvalues in C+.

We now study the coupling QDF Qcpl. Since d
dt
xTNzP = vTNΣvP it is clear that the

[(N,P⊥Σ); Σ]-adapted BDF can represented as xTNzP, so the coupling QDF is given by[
xN

zP

]T [
K+

N I

I −K−P

] [
xN

zP

]
. (6)

Condition 3 of theorem 3 then requires the matrix[
K+

N I

I −K−P

]
(7)
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to be non-negative definite, and its rank should be equal to n(N)+n(P). Since both McMillan

degrees are equal to n, the dimension of the state space of (2), condition 3 of theorem

3 is equivalent to the requirement that the matrix (7) is positive definite. This positive

definiteness can be seen to be equivalent to the combined conditions

1. K+
N > 0,

2. K−P < 0,

3. K+
N > (−K−P )−1.

The last condition is easily seen to be equivalent to ρ(K+
NK

−
P ) > 1, where ρ denotes the

spectral radius.

We conclude that the following conditions are necessary for the existence of an internally

stabilizing, strictly disturbance attenuating feedback controller:

1. both the algebraic Riccati equations (4) and (5) have at least one real symmetric

solution,

2. the largest solution K+
N of (4) is positive definite, and the smallest solution K−P of (5)

is negative definite,

3. −A + GDT (DDT )−1(C + DGTK+
N) − GGTK+

N has all its eigenvalues in C−, AT −
HTJ(JTJ)−1(BT − JTHK−P )−HTHK−P has all its eigenvalues in C+,

4. K+
N > (−K−P )−1.

It can be proven that this set of conditions is also sufficient for the existence of an inter-

nally stabilizing, strictly disturbance attenuating feedback controller and formulas for such

controllers can be given analogous to those obtained for the non-strict problem in [17]. We

note that our conditions are equivalent to those obtained in [1]. In fact, by pre- and post-

multiplying (4) and (5) by (K+
N)−1 and (K−P )−1, respectively, we find that P := −(K−P )−1

and Q := (K+
N)−1 satisfy the ‘mixed sign’ algebraic Riccati equations

ATP + PA+ PGGTP − (PB +HTJ)(JTJ)−1(BTP + JTH) +HTH = 0,

AQ+QAT +QHTHQ− (QCT +GDT )(DDT )−1(CQ+DGT ) +GGT = 0,

that A+QHTH− (QCT +GDT )(DDT )−1C and A+GGTP −B(JTJ)−1(BTP +JTH) have

all their eigenvalues in C−, and that P > 0, Q > 0, and Q−1 > P .

5 Conclusions and remarks

As expected, the solution to the strictly dissipative synthesis problem differs from that of

the nonstrict synthesis result of [19]. We have shown that it is the coupling QDF (which

10



was just non-negative in the nonstrict case) that has to be suitably strict, namely, it should

have maximal rank. In this context the McMillan degrees of the hidden behavior and the

plant behavior also come into picture. But while a minimal state map for a behavior is not

unique, the McMillan degree of a behavior does not depend on a particular representation.

We remark that both the problem formulation and the main theorem let themselves be

treated in a representation-free manner. This makes it possible to apply theorem 3 when

the to-be-controlled plant is given by any particular representation, like for example in

input/state/output representation. Analogously as in [17, section 5], by applying theorem

3 we re-obtained for this case the well-known conditions in terms of two Riccati equations

and a coupling condition that first appeared in [1], and was later studied in various forms

in, for example, [12, 13].
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