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Abstract

In this paper, we obtain expressions for the principal angles between the row spaces of input and

output data block Hankel matrices of a linear stochastic model in terms of the model parameters.

The canonical correlations of the corresponding processes are equal to the limiting values of the

cosines of the principal angles. From these parametric expressions, the relations between the

different sets of canonical correlations can be easily deduced.

1 Introduction

Canonical correlation analysis (CCA) is a well developed tool in statistical analysis that is used

for measuring the linear relationship between two sets of random variables. It was developed

by H. Hotelling [10]. Although a wide variety of applications exists in econometrics, biometrics,

chemometrics, statistics, meteorology, etc., the technique has only got introduced quite recently in

the communities of signal processing, system theory and identification and neural networks [4, 14,

20]. In a classic paper by Gel’fand and Yaglom [9], CCA is extended to stochastic processes and

related to the notion of mutual information, a concept from information theory that is closely related

to CCA and that was introduced by Shannon [18] in 1948. A slightly different interpretation in

terms of channel capacity and information rate is given in [17]. Another area where CCA is applied,

is stochastic realization and identification of dynamical models [1, 3, 5, 11, 12, 15, 16, 21, 22]. The

order of the model and a state sequence can be derived from the canonical correlations and the

canonical variates of the past and the future output data.
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In this paper we will work with the geometric interpretation of canonical correlation analysis, as

is usually done in the subspace identification literature, see e.g. [22]. The canonical correlations

and the canonical variates are respectively equal to the cosines of the principal angles between

and the principal vectors in two linear subspaces. These subspaces are the row spaces of block

Hankel matrices obtained by stacking the measured input and output sequences. In this way it

is straightforward and computationally efficient to compute an approximation of the canonical

correlations between two measured processes, of which in practice, only a finite amount of data is

available. Meanwhile, we are able to give expressions for the real canonical correlations, viz. the

asymptotic values for infinite data.

The paper is organized as follows. In Section 2 we describe the models we will work with. The

principal angles between two subspaces are defined in Section 3. In Section 4 we discuss the

principal angles and canonical correlations between the past and future input and output spaces,

respectively processes, of a linear stochastic model.

2 Model class

We describe in Section 2.1 the state space representation of the model class that we will work with

throughout the paper. We also give the assumptions on the different stochastic processes involved.

We define the controllability and observability matrices and Gramians of the model and the inverse

model in Section 2.2. In Section 2.3 we introduce the past and future input and output block

Hankel matrices.

2.1 State space representation

The forward innovation representation of a given stationary stochastic process {y(k)}k∈Z with m

components, i.e. y(k) ∈ Rm ∀k, is the following

{

x(k + 1) = Ax(k) +Ku(k) ,

y(k) = Cx(k) + u(k) .
(2.1)

The process {x(k)}k∈Z ∈ Rn is the state process associated to this model, where n is the model

order, and A ∈ Rn×n, C ∈ Rm×n are the system and output matrices, respectively. The matrix

K ∈ Rn×m is the Kalman gain.

We will denote the model (2.1) by the threesome (A,K,C).

Its Markov parameters are denoted by the matrices H(k), k ≥ 0:

{

H(0) = Im

H(k) = CAk−1K for k > 0
(2.2)

The model has the following properties. The input process {u(k)}k∈Z, i.e. the innovation pro-

cess of the stochastic process {y(k)}k∈Z, is an m-component zero-mean, stationary, white stochas-

tic process with full rank covariance matrix Su ∈ Rm×m. Its autocovariance function Ru(τ) =

E
{
u(k + τ)u(k)T

}
is thus equal to2 Ru(τ) = Suδ(τ). The state process {x(k)}k∈Z is a zero-mean,

2δ(τ) is the Kronecker delta: δ(0) = 1 and δ(τ) = 0 ∀τ 6= 0.
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stationary and ergodic stochastic process with covariance matrix E{x(k)x(k)T } = Σ ∈ Rn×n, which

satisfies the Lyapunov equation

Σ = AΣAT +KSuK
T . (2.3)

Furthermore, the state x(k) is independent of the present and all future inputs. Consequently,

E{u(k + τ)Tx(k)} = 0 for τ ≥ 0 and E{u(k + τ)T y(k)} = 0 for τ > 0. The system in (2.1) is

stable and strictly minimum phase. This means that all the poles and zeros of the model are less

than one in modulus. The inverse model is then also stable and minimum phase. Its state space

description is readily derived from (2.1):
{

x(k + 1) = (A−KC)x(k) +Ky(k) ,

u(k) = −Cx(k) + y(k) .

The state space matrices of the inverse model are denoted by (Az,Kz, Cz):

(Az,Kz, Cz) = (A−KC,K,−C) . (2.4)

The Markov parameters of the inverse model are denoted by Hz(k) and they are equal to
{

Hz(0) = Im ,

Hz(k) = −C(A−KC)k−1K for k > 0 .
(2.5)

2.2 The controllability and observability matrices and Gramians

The controllability matrix Ci of the forward innovation model (2.1) is defined as

Ci =
(

K AK A2K · · · Ai−1K
)

,

and its observability matrix Γi is

Γi =











C

CA

CA2

...

CAi−1











. (2.6)

The controllability Gramian P of the forward innovation model (2.1) is defined as the solution of

the controllability Lyapunov equation

P = APAT +KKT , (2.7)

while the observability Gramian Q follows from the observability Lyapunov equation

Q = ATQA+ CTC . (2.8)

Since the model is stable and minimal, the matrices P and Q are the unique and positive definite

solutions of the respective equations. The explicit solution for P is of the form

P =
∞∑

k=0

AkKKT (Ak)T = C∞CT∞ ,
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where C∞ is the infinite controllability matrix. Similarly, the observability Gramian Q can be

obtained as

Q =
∞∑

k=0

(Ak)TCTCAk = ΓT∞Γ∞ ,

where Γ∞ is the infinite observability matrix of the model. We will also need the observability

matrix of the inverse model, denoted by Γzi :

Γzi =











−C

−C(A−KC)

−C(A−KC)2

...

−C(A−KC)i−1











,

where the subscript i in Γzi denotes the number of block rows.

The observability Gramian of the inverse model is denoted by Qz and it is equal to

Qz = ΓTz∞Γz∞ . (2.9)

It is the solution of the observability Lyapunov equation for the inverse model

Qz = (A−KC)TQz(A−KC) + CTC . (2.10)

2.3 Data block Hankel matrices

We define the input and output block Hankel matrices U and Y . These matrices play an impor-

tant role in the computation of the canonical correlations. The output block Hankel matrix Y is

defined as

Y =
1√
j


















y(0) y(1) y(2) · · · y(j − 1)

y(1) y(2) y(3) · · · y(j)
...

...
... · · · ...

y(i− 1) y(i) y(i+ 1) · · · y(i+ j − 2)

y(i) y(i+ 1) y(i+ 2) · · · y(i+ j − 1)

y(i+ 1) y(i+ 2) y(i+ 3) · · · y(i+ j)
...

...
... · · · ...

y(2i− 1) y(2i) y(2i+ 1) · · · y(2i+ j − 2)


















(2.11)

= Y0|2i−1 =

(

Y0|i−1

Yi|2i−1

)

=

(

Yp

Yf

)

∈ R2mi×j , (2.12)

where

• The number of columns (j) is typically equal to K − 2i+ 1, where K is the total number of

data samples, which implies that all given data samples are used. For statistical reasons we

will assume that j,K →∞ throughout this paper.
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• The subscripts of Y0|2i−1, Y0|i−1, Yi+1|2i−1 denote the subscript of the first and last element

of the first column in the block Hankel matrix. The subscript ‘p’ stands for ‘past’ and the

subscript ‘f’ for ‘future’.

The input block Hankel matrices U0|2i−1, Up, Uf are defined in a similar way.

We will also need the state sequence matrix, which is defined as

Xi =
1√
j

(

x(i) x(i+ 1) · · · x(i+ j − 1)
)

, (2.13)

where the subscript i denotes the subscript of the first element of the state sequence. Analogously

to the past inputs and outputs, we denote the past state sequence by Xp and the future state

sequence by Xf : Xp = X0 ∈ Rn×j and Xf = Xi ∈ Rn×j . The state space equations (2.1) can now

be formulated in terms of data block Hankel matrices as follows

Xf = AiXp +∆iUp , (2.14)

Yp = ΓiXp +HiUp , (2.15)

Yf = ΓiXf +HiUf , (2.16)

where ∆i ∈ Rn×mi is the reversed controllability matrix:

∆i =
(

Ai−1K Ai−2K · · · AK K
)

,

the matrix Γi ∈ Rmi×n is the observability matrix of the model (see (2.6)) and the matrix Hi ∈
Rmi×mi is a block lower triangular and block Toeplitz matrix with the Markov parameters of the

model (the impulse response sequence) as its elements:

Hi =











Im 0 0 · · · 0

CK Im 0 · · · 0

CAK CK Im · · · 0
...

...
...

. . .
...

CAi−2K CAi−3K CAi−4K · · · Im











. (2.17)

From (2.15) or (2.16) it immediately follows that the observability matrix of the inverse model (see

(2.18)) is equal to

Γzi = −H−1
i Γi . (2.18)

Note that the input covariance matrix limj→∞ UpU
T
p = limj→∞ UfU

T
f , which will be denoted by

Qui is a block diagonal matrix with diagonal blocks all equal to Su. By using the state sequence

matrices, we can write the state covariance matrix Σ as Σ = limj→∞XpX
T
p = limj→∞XfX

T
f . The

fact that the states are uncorrelated with the present and future inputs and that the output is

uncorrelated with the future inputs, translates to

{

limj→∞XpU
T = 0

limj→∞XfU
T
f = 0

and lim
j→∞

YpU
T
f = 0 , (2.19)

respectively.
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3 Principal angles between and principal directions in subspaces

The concept of principal angles between subspaces of linear vector spaces is due to Jordan [13]

in the 19th century. In the area of systems and control, the principal angles between and the

principal directions in two subspaces are used in subspace identification methods [22] and also in

model updating [7] and damage location [8]. In the latter two applications, one starts from a finite

element model and measurements of a certain mechanical structure and one tries to find the subset

of parameters of the model that should be adapted to explain the measurements, which is done

by computing the principal angles between a certain measurement space and the parameterized

space. In that way, damage to the structure can be located. The subspace-based fault detection

algorithm of Basseville et al. [2], on the other hand, is based on linear dynamical models, the type

of models that we deal with. Changes in the eigenmodes of the observed system are determined

by monitoring the difference between the column spaces of the observability matrix of the nominal

linear dynamical model and the observability matrix of the model that can be identified from the

measurements. The difference between the column spaces can be quantified by the principal angles

between the subspaces.

The principal angles between and principal directions in two subspaces S1 and S2 are defined as

follows.

Definition 3.1. The principal angles between and principal directions in two subspaces

Let S1 and S2 be subspaces of dimension p and q, respectively, where p ≤ q. Then, the p principal

angles between S1 and S2, denoted by θ1, . . . , θp, and the corresponding principal directions ui ∈ S1

and vi ∈ S2 are recursively defined as

cos θ1 = max
u∈S1

max
v∈S2

|uT v| = uT1 v1

cos θk = max
u∈S1

max
v∈S2

|uT v| = uTk vk (k = 2, . . . , p)

subject to ‖u‖ = ‖v‖ = 1, and for k > 1: uTui = 0 and vT vi = 0, where i = 1, . . . , k − 1.

Let A ∈ Rp×n be of rank ra and B ∈ Rq×n of rank rb, where ra < rb. Then, the ordered set of ra
principal angles between the row spaces of A and B is denoted by

(θ1, θ2, . . . , θra) = [A ^ B] .

Assume that the matrices A and B are of full row rank and that p ≤ q. Then, the squared

cosines of the principal angles between their row spaces can be computed as the eigenvalues of

(AAT )−1ABT (BBT )−1BAT :

cos2 [A ^ B] = λ
(
(AAT )−1ABT (BBT )−1BAT

)
. (3.20)

Since we will have to compute the principal angles between subspaces in Rn, where n is a large

number, e.g. 10 000, it is useful to have an efficient algorithm. We present here an algorithm that

is based on the LQ decomposition, which is first defined.
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Definition 3.2. The LQ factorization of a matrix

The LQ factorization of a real m× n matrix A is given by

A = LQT ,

where Q ∈ Rn×n is orthogonal and L ∈ Rm×n is lower triangular.

Note that the LQ decomposition of a matrix A boils down to the QR decomposition of AT , which

is the numerical version of the Gram-Schmidt orthogonalization (see e.g. [19]).

It can be shown (see e.g. [6]) that the principal angles between two full row rank matrices A ∈ Rp×n

and B ∈ Rq×n, where p ≤ q and p+ q ≤ n, can be computed as follows.

1. Compute the triangular part of the LQ factorization of the matrix

(

A

B

)

. The triangular part

is denoted by
(

L11 0

L21 L22

)

∈ R(p+q)×(p+q) ,

where L11 ∈ Rp×p, L21 ∈ Rq×p and L22 ∈ Rq×q.

2. Compute the triangular part of the LQ factorization of
(

L21 L22

)

:

(

L21 L22

)

=
(

S 0
)

T .

The resulting lower triangular matrix S ∈ Rq×q is non-singular.

3. The cosines of the principal angles between row(A) and row(B) are the singular values of the

matrix S−1L21.

The above described computational scheme leads to a very simple Matlab program, which is given

in Table 1.

function cosines = cosines lq(A,B)

p = size(A,1);

q = size(B,1);

L = triu(qr([A;B]’));

L = L(1:p+q,p+1:p+q);

S = triu(qr(L));

S = S(1:q,:);

L = L(1:p,:);

cosines = svd(L/S);

Table 1: The Matlab program cosines lq.m for the computation of the principal angles between

the row spaces of the matrices A and B.
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4 Principal angles and canonical correlations of input and output

In this section we compute the principal angles between the past and future input and output spaces

and the canonical correlations of the corresponding processes. In Section 4.1 we first describe the

future and the past of a stochastic process. We show how the canonical correlations of the processes

will be computed and indicate how they are related. In Section 4.2, we derive expressions for the

principal angles between different combinations of past and future input and output spaces, i.e. the

row spaces of the mi × j data block Hankel matrices, where we assume j → ∞. The expressions

are in terms of the system matrices (A,K,C) and the input covariance matrix Su. As we will

see, the principal angles converge for i → ∞. The cosines of the limiting principal angles are

the canonical correlations of the corresponding processes. In Section 4.4 the relations between the

different canonical correlations are derived.

4.1 Introduction

4.1.1 Past and future input and output processes of a linear model

Let {u(k)}k∈Z and {y(k)}k∈Z denote the input and output process of a linear stochastic model in

forward innovation form. We assume that the processes are zero-mean, stationary and ergodic.

The past output process is defined as

yp = {y(k) (k < 0)} , (4.21)

and the future output process is

yf = {y(k) (k ≥ 0)} . (4.22)

Analogous definitions hold for the past and the future input process, up and uf , respectively.

4.1.2 The canonical correlations of the past and future input and output processes

The canonical correlations of the past and future input and output processes are defined as the

canonical correlations of the corresponding random variables U−1|−∞, U0|∞, Y−1|−∞ and Y0|∞,

where

Y−1|−∞ =






y(−1)
y(−2)

...




 and Y0|∞ =






y(0)

y(1)
...




 ,

and analogously for U−1|−∞ and U0|∞. For example, the canonical correlations of the past and

future of the output process are equal to

cc(yp, yf ) = cc(Y−1|−∞,Y0|∞) . (4.23)

Due to the stationarity and ergodicity of the processes, the canonical correlations are equal to the

cosines of the principal angles between the row spaces of the doubly infinite block Hankel matrices

(see (2.11) and (2.12)):

cc(yp, yf ) = lim
j→∞

cos
[
Y−1|−∞ ^ Y0|∞

]
.

We can already treat three trivial cases:
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1. Due to the independence of the past and future input processes, the canonical correlations of

up and uf are all equal to 0:

cc(up, uf ) = 0, 0, . . .

2. The future input is also independent of the past output process. Consequently, their canonical

correlations are all equal to 0:

cc(yp, uf ) = 0, 0, . . .

3. The output at a certain time step k is a linear combination of the present input and all past

inputs:

y(k) =
∞∑

i=1

CAi−1Ku(k − i) + u(k) =
∞∑

i=0

H(i)u(k − i) ,

where H(i) is the ith Markov parameter of the linear model (see (2.2)). Consequently, all

random variables in Y−1|−∞ can be obtained as linear combinations of the random variables

in U−1|−∞. Otherwise formulated, the row space of Y−1|−∞ is contained in the row space of

U−1|−∞:

row(Y−1|−∞) ⊆ row(U−1|−∞) . (4.24)

The canonical correlations of the past input and past output processes are consequently all

equal to 1:

cc(up, yp) = 1, 1, . . . (4.25)

Moreover, by applying the same reasoning to the inverse model, we obtain u(k) as a linear

combination of the present and past outputs:

u(k) = −
∞∑

i=1

C(A−KC)i−1Ky(k − i) + y(k) =
∞∑

i=0

Hz(i)y(k − i) ,

where Hz(i) are the Markov parameters of the inverse model (see (2.5)). This leads to

row(U−∞|−1) ⊆ row(Y−∞|−1) . (4.26)

It follows from (4.24) and (4.26) that the past input and the past output process span the

same space:

row(Y−∞|−1) = row(U−∞|−1) . (4.27)

The canonical correlations of the other combinations of past and future input and output processes

can be obtained as the following limits:

cc(uf , yf ) = lim
i→∞

cc(U0|i−1,Y0|i−1) , (4.28a)

cc(up, yf ) = lim
i→∞

cc(U−i|−1,Y0|i−1) , (4.28b)

cc(yp, yf ) = lim
i→∞

cc(Y−i|−1,Y0|i−1) , (4.28c)
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where

Y−i|−1 =









y(−i)

y(−i+ 1)
...

y(−1)









and Y0|i−1 =









y(0)

y(1)
...

y(i− 1)









,

and analogously for the input random variables. The parameter i describes how far we go back

into the past (k = −i) and forward into the future (k = i− 1), where the present is at k = 0.

Since the processes are stationary, we can as well take the present at time instant k = i, the past

from k = 0 to k = i − 1 and the future from k = i to k = 2i − 1. This is only a convention

that allows us to estimate the canonical correlations from measured data sequences. The canonical

correlations of the past and future output processes, e.g., can then be computed as

cc(yp, yf ) = lim
i→∞

cc(Y0|i−1,Yi|2i−1) .

Due to the stationarity and ergodicity of the processes, the canonical correlations of Y0|i−1 and

Yi|2i−1 can be obtained as the cosines of the principal angles between the row spaces of the mi× j

data block Hankel matrices Y0|i−1 and Yi|2i−1, provided j → ∞. These block Hankel matrices are

equal to the past and future output block Hankel matrices Yp and Yf , which are defined in (2.12).

Consequently, we can compute the canonical correlations of the combinations of past and future

processes in (4.28a–4.28c) as follows:

cc(uf , yf ) = lim
i→∞

lim
j→∞

cos [Uf ^ Yf ] , (4.29a)

cc(up, yf ) = lim
i→∞

lim
j→∞

cos [Up ^ Yf ] , (4.29b)

cc(yp, yf ) = lim
i→∞

lim
j→∞

cos [Yp ^ Yf ] . (4.29c)

This explains why we denote the first i block rows of the output block Hankel matrix by Yp and

the following i block rows by Yf (see (2.12)), and similarly for Up and Uf .

4.1.3 Overview of the relations between the canonical correlations

From Equation (4.27) we can already deduce that the canonical correlations of the past input and

future output are equal to the canonical correlations of the past and future output:

cc(up, yf ) = cc(yp, yf ) .

The parametric expressions that we derive in Section 4.2, will also reveal that the canonical corre-

lations of the future input and future output are related to the canonical correlations of the past

and future output in the following way:

cc2(uf , yf ) = 1− cc2(yp, yf ) .

The corresponding principal angles are complementary:

[Uf ^ Yf ] =
π

2
− [Yp ^ Yf ] for i, j →∞ .

An overview of the relations of the canonical correlations of the different combinations of processes

is given in Table 2. The canonical correlations of the past and the future output are denoted by ρk

in this table.
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up uf yp yf

up 1 0 1 ρk

uf 0 1 0
√

1− ρ2
k

yp 1 0 1 ρk

yf ρk

√

1− ρ2
k ρk 1

Table 2: Overview of the relations between the different sets of canonical correlations.

4.2 The principal angles between the input and output spaces

Based on the state space equations (2.14)–(2.16), the properties in (2.19) and (3.20) the following

expressions are derived for the principal angles between the past and future input and output spaces.

From these expressions, the canonical correlations of the corresponding processes are deduced in

Section 4.3. We only give the results. The computations can be found in [6].

The principal angles between row(Uf) and row(Yf)

The squared cosines of the largest n principal angles between row(Uf ) and row(Yf ) for j →∞ and

finite i are the eigenvalues of (In + GziΣ)−1, where Gzi is equal to

Gzi = ΓTziQ
−1
ui

Γzi

=

i−1∑

k=0

(A−KC)k
T

CTS−1
u C(A−KC)k . (4.30)

The other mi− n principal angles are equal to zero:

lim
j→∞

cos2 [Uf ^ Yf ] = λ
(
(In + GziΣ)−1

)
, 1, . . . , 1
︸ ︷︷ ︸

mi−n

. (4.31)

Remark 4.1. Gzi
as the solution of a Lyapunov equation

If the state space matrices (A,K,C) and the input covariance matrix Su are known, then the matrix

Gzi can be computed by making the sum in (4.30). However, Gzi is also the solution of the following

Lyapunov equation:

Gzi = (A−KC)TGzi(A−KC) + CTS−1
u C − (A−KC)i

T

CTS−1
u C(A−KC)i . (4.32)

©

The principal angles between row(Up) and row(Yf)

The squared cosines of the smallest n principal angles between row(Up) and row(Yf ) for j → ∞
and finite i are the eigenvalues of Di(G−1

zi
+Σ)−1, where

Di = ∆iQui∆
T
i =

i−1∑

k=0

AkKSuK
TAkT .

11



The other mi− n principal angles are equal to π
2 :

lim
j→∞

cos2 [Up ^ Yf ] = λ
(
Di(G−1

zi
+Σ)−1

)
, 0, . . . , 0
︸ ︷︷ ︸

mi−n

. (4.33)

The principal angles between row(Yp) and row(Yf)

The squared cosines of the smallest n principal angles between row(Yp) and row(Yf ) for j → ∞
can be computed as the eigenvalues of

(

−AiΣRT
i +Di −RiTiR

T
i +AiΣGzi(ΣAiT + TiR

T
i )

+
(
−Ri −AiΣGziTiGzi +RiTiGzi

)
ΣAiT

) (
G−1
zi

+Σ
)−1

, (4.34)

where

Ti = (Σ−1 + Gzi)−1 ,

Ri = ∆iΓzi = −
i−1∑

k=0

Ai−1−kKC(A−KC)k .

The other mi− n angles are equal to π
2 .

4.3 The canonical correlations of the input and output processes

The canonical correlations of uf and yf

The smallest n canonical correlations of uf and yf are the square roots of the eigenvalues of

(In+GzΣ)−1, where Σ is the state covariance matrix, which can be found by solving the Lyapunov

equation Σ = AΣAT +KSuK
T , and Gz = limi→∞ Gzi is the solution of the Lyapunov equation

Gz = (A−KC)TGz(A−KC) + CTS−1
u C . (4.35)

The other canonical correlations are equal to 1.

cc2(uf , yf ) = λ
(
(In + GzΣ)−1

)
, 1, 1, 1, . . .

The canonical correlations of yp and yf / up and yf

The largest n canonical correlations of the past and the future output (and also of the past input

and future output) are the square roots of the eigenvalues of Σ(G−1
z + Σ)−1. The other canonical

correlations are equal to 0.

cc2(yp, yf ) = λ
(
Σ(G−1

z +Σ)−1
)
, 0, 0, 0, . . .

4.4 Relation of the canonical correlations between the different processes

The canonical correlations of the different pairs of processes (or the principal angles between the

pairs of subspaces) are closely related, as we have already indicated in Table 2. Here, we show

12



that the canonical correlations of the future input and output are complementary3 to the canonical

correlations of the past and future output (or past input and future output). The relation is

straightforwardly proven by means of the matrices given in Section 4.3.

Property 4.1. Complementarity of cc(uf , yf) and cc(yp, yf)

The canonical correlations of uf and yf are complementary to the canonical correlations of yp and

yf (up and yf ).

Proof.

The smallest n squared canonical correlations of uf and yf are the eigenvalues of (In + GzΣ)−1 =

In − (G−1
z + Σ)−1Σ and the other canonical correlations are equal to 1. The eigenvalues of In −

(G−1
z +Σ)−1Σ are equal to the eigenvalues of In−Σ(G−1

z +Σ)−1. Since the eigenvalues of Σ(G−1
z +

Σ)−1 are the largest n squared canonical correlations of yp and yf (up and yf ) and the other

canonical correlations are equal to 0, we have proven that the canonical correlations of uf and yf

are complementary to the canonical correlations of yp and yf (up and yf ).

Remark 4.2. Simplifications for single-input single-output (SISO) models

For SISO models, the expressions for the canonical correlations can be simplified. By comparing

(4.35) with (2.10), we see that for SISO models, the matrix Gz is equal to 1
σ2Qz, where σ2 is the

variance of the input process and Qz is the observability Gramian of the inverse model. Similarly,

a comparison of (2.3) and (2.7) shows that the state covariance matrix Σ of a SISO model is equal

to σ2P , where P is the controllability Gramian of the model. We consequently obtain the following

expressions for the canonical correlations of the input and output processes of a SISO model:

cc2(uf , yf ) = λ
(
(In +QzP )−1

)
, 1, 1, 1, . . .

cc2(yp, yf ) = λ
(
P (Q−1

z + P )−1
)
, 0, 0, 0, . . .

©

5 Conclusions

In this paper we have given expressions for the canonical correlations of the different past and

future input and output processes of a linear stochastic model, in terms of the model parameters.

References

[1] H. Akaike, “Stochastic theory of minimal realization”, IEEE Transactions on Automatic

Control 19, 667–674, 1974.

[2] M. Basseville, M. Abdelghani, and A. Benveniste, “Subspace-based fault detection algorithms

for vibration monitoring”, Automatica 36, 101–109, 2000.

[3] D. Bauer, “Order estimation for subspace methods”, Automatica 37, 1561–1573, 2001.

3Two canonical correlations ρ1 and ρ2 are complementary if ρ
2
1 = 1− ρ2

2. For the corresponding principal angles,

θ1 and θ2 holds: θ1 =
π

2
− θ2.

13



[4] M. Borga, Learning Multidimensional Signal Processing, PhD thesis, Linköping University,
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