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Abstract

An ARMA(n,m) model is uniquely determined by its n first covariances and m

first cepstrum coefficients. However, there does not always exist a model matching an
estimated set of these parameters. We propose a method determining an asymptotically
stable minimum phase model that match the covariances exactly and the cepstrum
parameters approximatively. A convex barrier term is used for the regularization and
the model is determined by a convex optimization problem.

1 Introduction

The maximum entropy method has been used to solve the covariance interpolation problem

for models of stochastic processes. Using this approach, an all-pole rational model, often

called just the Maximum Entropy (ME) model, is obtained. Generalizing the ME approach

to also use information about the zeros of the model, a pole-zero rational model is obtained

[1, 2]. Instead of using direct information about the zeros, it was shown in [2, 3] that using

information on the cepstrum parameters of the model, in addition to the covariances, also

determines a unique pole-zero rational model.

It should be noted that applying the maximum entropy approach to any arbitrary combi-

nation of observables, a complex non-linear model is generally obtained, but in this particular

case a finite order rational model maximizes the entropy. In fact, as in the ME problem,

the basic maximum entropy problem is an infinite dimensional problem that is solved by

considering a dual problem. The existence of an exactly matching model is connected to the

solution of the corresponding dual optimization problem beeing an interior point. For the

ME problem and the problem with fixed zeros, there is always an interior point solution, but

for the covariance and cepstrum problem, there might be solutions on the boundary. This

means that for some combinations of covariances and cepstrum parameters there might not

exist an interpolating model, which can be compared to the problem with fixed zeros, where

for any zero-polynomial there always exist a rational model interpolating the covariances.

Anyway, since the cepstrum parameters can be estimated directly from data, it is tractable

to consider the covariance and cepstrum interpolation problem.

However, since there does not always exist an ARMA(n,m) model matching a generic set of

data exactly, some approximation has to be done. In order to obtain interior point solutions
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for generic data, a barrier like term times a weighting parameter is added to the objective

function of the dual optimization problem. It is shown that the introduction of the barrier

term forces the solution to the interior, it increases the entropy of the solution, and further

that the entropy increases monotonically with the weighting parameter of the barrier term.

If the weighting parameter tend to infinity, the solution will tend to the maximum entropy

solution corresponding to the covariance data, and if the weighting term is set to zero the

original cepstrum and covariance matching problem is obtained. Since the barrier term is

also convex, the proposed optimization problem is convex and has a unique solution in an

interior point corresponding to an ARMA(n,m) model with poles and zeros strictly inside

the unit circle. Moreover, since the map from data to model is analytic, a small change in

the data will result in a small change in the resulting model, which provides robustness of

the proposed regularized CCM method.

2 Preliminaries

The window of covariance data Rn = {r0, r1, · · · , rn} is assumed to correspond to a bona

fide covariance sequence, which means that

Rn
4
=




r̂0 r̂1 . . . r̂n

r̂1 r̂0
. . .

...
...

. . . . . . r̂1

r̂n . . . r̂1 r̂0




(2.1)

is positive definite. The window of cepstrum data Cm = {c1, · · · , cm} is the Fourier coeffi-

cients of the logarithm of the spectral density Φ,

ck =
1

2π

∫ π

−π

eikθlog Φ(eiθ)dθ, k = 0, 1, 2, . . . , (2.2)

where the spectral density is defined as

Φ(eiθ) =
∞∑

k=−∞
rk(e

−ikθ). (2.3)

A finite window of the cepstrum coefficients can be estimated directly from data using

ergodic estimates. In particular, taking the DFT of the data, the absolute value square, the

logarithm and the IDFT determines an estimate of the cepstrum [4, 5].

The transfer function of a stable and minimum phase ARMA(n,m) model can be described

by

W (z) =
σ(z)

a(z)
,

where

a(z) = a0z
n + a1z

n−1 + · · ·+ an, (a0 > 0), (2.4)

σ(z) = zm + σ1z
m−1 + · · ·+ σm (2.5)
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are polynomials having all their roots in the open unit disc. If W is the transfer function of

an ARMA(n,m) model whose input is variance one white noise, then Φ(z) = W (z)W (z−1)

is the corresponding spectral density. Then

Φ = P/Q,

where P and Q are pseudo polynomials

P (z) = p0 +
1

2
p1(z + z−1) + · · ·+ 1

2
pm(zm + z−m), (2.6)

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(zn + z−n), (2.7)

where, since P (z) = σ(z)σ(z−1) and Q(z) = a(z)a(z−1), both P and Q are positive on the

unit circle. Given such a pseudo-polynomial P , using spectral factorization it is possible to

determine the unique polynomial with roots in the unit disc such that σ(z)σ(z−1) = P (z).

We denote the set of such positive pseudo-polynomials by Dn, where n denotes the degree.

A stable and minimum phase ARMA(n,m) model can then be described by two pseudo-

polynomials P ∈ Dm and Q ∈ Dn.

The dual optimization problem characterizing the maximum entropy solution to the the

covariance and cepstrum interpolation problem [2], can be formulated as

(P)

[
min ϕ(P, Q),

s.t. Q ∈ Dn, P ∈ Dm, p0 = 1.

]

where the objective function is given by

ϕ(P, Q)
4
= −

m∑

k=1

ckpk +
n∑

k=0

rkqk +
1

2π

∫ π

−π

P log
P

Q
dθ. (2.8)

3 Regularization of Problem (P)

Since the optimization problem (P) may have solutions on the boundary of the feasible

region, a regularization of that problem is proposed in this section. In order to force the

solution to the interior of the feasible region, the optimization problem (P) is modified by

adding a barrier like term to the objective function ϕ. By adding the term β = −〈1, log P 〉
to the objective function ϕ of the problem (P) the optimal P is forced into the interior of

Dm.

It follows from [1] that β = −〈1, log P 〉 has bounded level sets, is finite for all P ∈ Dm such

that p0 = 1 and has a derivative that tends to infinity as P tends to the boundary of Dm.

It is further strictly convex in P . Since the function values of β are finite at the boundary,

it is not a barrier function from a mathematical programming view point [6], but since the

derivatives of ϕ with respect to P are infinite, it will constrain the optimum away from the
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boundary as a barrier function would. It is shown later that this term will also increase the

entropy of the solution.

The regularized optimization problem is formulated as

(Pλ)

[
min ϕλ(P,Q),

s.t. Q ∈ Dn, P ∈ Dm, p0 = 1,

]

where the modified objective function is given by

ϕλ(P,Q)
4
= −

m∑

k=1

ckpk +
n∑

k=0

rkqk +
1

2π

∫ π

−π

P log
P

Q
dθ − 1

2π

∫ π

−π

λ log Pdθ. (3.9)

It is easy to see that ϕλ is strictly convex on a convex domain. If the minimum is located

in the interior, the gradient

∂ϕλ

∂pk

= −ck +
1

2π

∫ π

−π

eikθlog
P

Q
dθ − 1

2π

∫ π

−π

eikθ λ

P
dθ, k = 1, . . . , m, (3.10)

∂ϕλ

∂qk

= rk − 1

2π

∫ π

−π

zk P

Q
dθ, k = 0, 1, . . . , n, (3.11)

is zero at this point. The barrier term will make sure that the optimum will occur at an

interior point. Hence, we have the following theorem.

Theorem 3.1. For each λ > 0, Problem (Pλ) has a unique solution in the open set Dm×Dn,

At this point

1

2π

∫ π

−π

eikθ P

Q
dθ = rk, k = 0, 1, . . . , n (3.12)

1

2π

∫ π

−π

〈eikθ, log
P

Q
〉dθ = ck + λεk, k = 1, . . . , m, (3.13)

where εk = 1
2π

∫ π

−π
eikθ 1

P
dθ.

For the proof see [7, 8].

3.1 The Barrier Term and Entropy

In practice, the weight λ should be chosen smaller the better the data is, and the larger the

model order is relative to the complexity of the system to be realized.

The entropy of a process is defined as

E(Φ) =
1

2π

∫ π

−π

log Φdθ, (3.14)

see for example [9]. If the regularization term would have been chosen as −λE(Φ), the new

problem would not have been convex and the resulting model would not have interpolated

the covariances exactly. The choice of the regularization term proposed here is equivalent

to this entropy term for fixed Q, and it can be shown that the resulting model will have an

increased entropy even for this choice.
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Proposition 3.1. The entropy of the filter Φλ, that solves the problem (Pλ), is a monotonic

non-decreasing function of λ.

For the proof see [7, 8]. The barrier term is thus a measure of the entropy of the process.

Then λ is a weight that determines how much the entropy should be maximized relative to

the importance of the interpolation.

Standard optimization algorithms can be used to solve (Pλ). For example a damped

Newton method, similar to the one proposed in [2] for the problem with fixed zeros, can be

used. The best performance is probably achieved by using a homotopy method similar to

the one presented in [10]. For numerical experiments see [7, 8].
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