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Abstract

In this paper we investigate some aspect of the partial realization problem formu-
lated for Schur-functions considered on the right half plane of C. This analysis can be
considered to be partially complementary to the results of A. Lindquist, C. Byrnes et
al. on Carathéodory functions, [2], [4], [3].

1 Preliminaries and notation

Let F be a rational p × m matrix of McMillan degree N , whose entries lie in the Hardy

space of the right half-plane. We shall denote by CI + the right half-plane, and by H2
+ the

corresponding Hardy space of vector or matrix valued functions (the proper dimension will be

understood from the context). The space H2
+ is naturally endowed with the scalar product,

< F, G > =
1

2π
Tr

∫ ∞

−∞
F (iy)G(iy)∗ dy, (1.1)

and we shall denote by ‖ ‖2 the associated norm. Note that if M is a complex matrix, Tr

stands for its trace, MT for its transpose and M∗ for its transpose conjugate. Similarly,

we define H∞+ to be Hardy space of essentially bounded functions analytic on the right half

plane.

We assume that we are given a set of interpolation points s1, ..., sn in the right half-plane

CI + and interpolating conditions

U =


u1

u2

...

un

 V =


v1

v2

...

vn

 (1.2)

with ui, vi row vectors in CI p, ‖ui‖ = 1 and ‖vi‖ < 1 for i = 1, ..., n and we want to find the

solutions Q to the problem

uiQ(si)
∗ = vi i = 1, ..., n (1.3)
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which are Schur-functions.

It is well-known (see eg. [1]) that all solutions of this problem can be given using a rational

fractional representation defined by a J-inner function. This representation is even valid for

a more general form of the interpolation problem (1.3) which allows for multiplicities of the

interpolation nodes. This can be defined in the following way.

Problem 1.1. Given the matrix A of size n× n with eigenvalues in the left half plane CI −,

and matrices U, V of size n × p and a constant matrix D of size p × p parameterize all

Schur-functions Q of McMillan-degree at most n satisfying{
(Q(s)U∗ − V ∗) (sI +A∗)−1 is analytic on CI +

Q(∞) = D .
(1.4)

In this case the eigenvalues of −A∗ determine the interpolation nodes.

To avoid pathological cases, we assume that the functions Q(s)u∗i are non constant. Notice

that this assumption is always satisfied if for all i = 1, ..., n we have uiD
∗ 6= vi.

Among the solutions of the Problem 1.1 we would like to consider solutions with ”low

complexity”. In the scalar case – p = 1 – this can be formulated as solutions with McMillan

degree no greater than n. In the multivariate case the condition should be formulated in

terms of ”global zero structure”, as follows.

Problem 1.2. Given the matrix A of size n× n with eigenvalues in the left half plane CI −,

and matrices U, V of size n× p and a constant contractive matrix D of size p× p, such that

[D, I]

[
U∗

−V ∗

]
is of full row rank, parameterize all functions Q for which

(i) Q is a Schur-function;

(ii) {
(Q(s)U∗ − V ∗) (sI +A∗)−1 is analytic on CI +

Q(∞) = D .
(1.5)

(iii) ([
U∗

−V ∗

]
,−A

)
(1.6)

determine a global right null pair of the function [Q(z), I].

Together with the interpolation conditions formulated in Problem 1.2 we are going to

analyze solutions satisfying the following zero interpolation conditions

[I −Q(ti)Q
∗(ti)]zi = 0, i = 1, ..., n , (1.7)

where t1, . . . , tn ∈ CI −, z1, . . . , zn ∈ CI p, ‖zi‖ = 1, i = 1, . . . , n.
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The general form of this zero condition is the following:

(I −QQ∗) QZ and QZ have no common poles, (1.8)

where QZ is an inner function. In this case the poles of QZ determine the nodes of the zero

conditions.

The following lemma shows that without loss of generality we can assume that D = 0.

Lemma 1.1. Let Q be a Schur function, D = Q(∞) assuming that DD∗ < I. Set

QD = (I −DD∗)1/2 (I −QD∗)−1 (Q−D) (I −D∗D)−1/2

UD = (U − V D) (I −D∗D)−1/2

VD = (V − UD∗) (I −DD∗)−1/2

Then QD is an Schur-function and Q is a solution of the interpolation problem (1.4) defined

by A, U , V and D if and only if QD is a solution of (1.4) defined by A, UD, VD and 0.

2 State-space realizations of the solutions

The J−inner function Θ generating all solutions of the interpolation Problem 1.1 without

constraints on McMillan-degree has the realization

Θ =

 A U V

− U∗P−1 I 0

V ∗P−1 0 I

 (2.1)

where P satisfies

AP + PA∗ + UU∗ − V V ∗ = 0 (2.2)

Then the Schur-function Q is a solution of the interpolation Problem 1.1 if and only if

Q := (SΘ12 + Θ22)
−1(SΘ11 + Θ21)

where

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
(2.3)

and S is a Schur-function with S(∞) = D.

Especially, if ui and vi are the rows of U and V and

A = diag{−s1, ...,−sn} ,

then the Schur function Q is a solution to then Nevanlinna-Pick problem

Q(si)u
∗
i = v∗i .

Similarly, if we take A lower triangular and P diagonal, we obtain a Potapov factorization

of Θ and therefore a Schur problem.
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Lemma 2.1. Let Θ be a J−inner function as in (2.1), and let S =

(
A B

C D

)
. Then Q

has realization:

Q =

 A+ V (DU∗ − V ∗)P−1 −V C −U + V D

−BU∗P−1 A −B

(DU∗ − V ∗)P−1 −C D

 (2.4)

Proposition 2.1. If the pair (A, B) is controllable then the realization of the function Q

defined in (2.4) is controllable, as well.

PROOF. The identity

A+ V (DU∗ − V ∗)P−1 = −PA∗P−1 + (V D − U) U∗P−1

implies that the controllability subspace defined by the pair([
A+ V (DU∗ − V ∗)P−1 −V C

−BU∗P−1 A

]
,

[
−U + V D

−B

])
coincide with that determined by([

−PA∗P−1 −V C

0 A

]
,

[
−U + V D

−B

])
To prove controllability the celebrated P-B-H test will be applied. The orthogonal com-

plement of the controllability subspace is invariant under the adjoint of the state-transition

matrix. Thus we can consider an eigenvector belonging to that subspace.

[α∗, β∗]

[
U − V D

B

]
= 0 (2.5)

[α∗, β∗]

[
−PA∗P−1 −V C

0 A

]
= λ [α∗, β∗] (2.6)

The equation (2.6) gives that

λα∗ = −α∗PA∗P−1 , (2.7)

λβ∗ = −α∗V C + β∗A . (2.8)

If α 6= 0 then λ should be an eigenvalues of −A∗, i.e. λ coincides with one of the interpolation

nodes. In particular, Re λ > 0. Consequently, λ is not an eigenvalue of A, thus the matrix

λI − A is nonsingular implying that

β∗ = −α∗V C (λI − A)−1 . (2.9)
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Substituting this back to the equation in (2.5)

α∗
[
U − V

(
D + C(λI − A)−1B

)]
= 0 . (2.10)

Shortly,

α∗ [U − V S(λ)] = 0 (2.11)

Observe that since λ is in the right half plane the inequality

S(λ)S(λ)∗ ≤ I (2.12)

holds true.

Multiplying the Lyaponuv-equation (2.2) by α∗ and α from the left and right, respectively,

we get that

−2Re λα∗Pα + α∗V [S(λ)S(λ)∗ − I] V ∗α = 0

If α is nonzero then the first term is strictly negative while the second term is nonpositive

leading to a contradiction.

If α = 0 then equations in (2.5) and (2.6) give that

β∗B = 0

β∗A = λβ∗ .

Now the controllability of the pair A, B implies that β = 0, concluding our proof.

Proposition 2.2. If the realization of S is observable, then the unobservability subspace of

the realization (2.4) is determined by the range of the matrix

[
α

β

]
, where α and β are

solutions of the equation

Aα = αΓ (2.13)

(S(s)U∗ − V ∗)P−1α (sI − Γ)−1 = C (sI − A)−1 β . (2.14)

Especially, in this case the dimension of the unobservability subspace in the realization of Q

given by (2.4) is at most n.

PROOF. Obviously the unobservability subspace of the realization given in (2.4) is deter-

mined by the pair ([
(DU∗ − V ∗)P−1,−C

]
,

[
A 0

−BU∗P−1 A

])
.

Assume that the column vectors of a matrix

[
α

β

]
determine a basis in the unobservability

subspace. Then

(DU∗ − V ∗)P−1α− Cβ = 0 (2.15)[
A 0

−BU∗P−1 A

] [
α

β

]
=

[
α

β

]
Γ (2.16)
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for some matrix Γ.

If a vector γ is in the kernel space of α, i.e. αγ = 0, then the equation in (2.16) implies

that

αΓγ = Aαγ = 0,

thus Γγ ∈ Ker(α), so the kernel subspace of α is Γ invariant. Especially, it contains an

eigenvector of Γ. In other words there exists a vector γ, for which the identities

αγ = 0

Γγ = µγ

for some µ hold. Multiplying the equations (2.15) and (2.16) from the right by γ we obtain

that

Cβγ = 0

Aβγ = µβγ .

Thus the vector βγ is in the unobservability subspace determined by the pair (C, A). Using

the assumed observability of the realization S we get that βγ = 0. Consequently[
α

β

]
γ = 0 .

But the column vectors of the matrix

[
α

β

]
are linearly independent, thus γ = 0.

The equation (2.16) gives that

Aα = αΓ ,

−BU∗P−1α + Aβ = βΓ ,

thus

(sI − A)−1 BU∗P−1α + β = (sI − A)−1 β(sI − Γ) .

Multiplying from the left by C and using equation (2.15) we obtain that(
D + C (sI − A)−1 B

)
U∗P−1α− V ∗P−1α = C (sI − A)−1 β(sI − Γ) .

In other words

(S(s)U∗ − V ∗)P−1α (sI − Γ)−1 = C (sI − A)−1 β , (2.17)

proving (2.13) and (2.14). At the same time (2.13) implies the last part of the proposition.
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Let us introduce the notations:

n = McMillan degree of Θ ,

nS = McMillan degree of S ,

nQ = McMillan degree of Q ,

do,S = dimension of the unobservability subspace of the realization (2.4) .

Corollary 2.1. Assume that the realization of the function S is minimal. Then

nQ = n + nS − do,S (2.18)

Moreover

nQ ≥ nS .

Observe that the poles of the function on the right hand side of (2.14) are among the

eigenvalues of the matrix A, while the function standing on the left hand side has formally

poles at the eigenvalues of A and Γ. Thus the eigenvalues of this latter one should be

cancelled. This is again an interpolation type condition where the interpolation nodes are

defined by the eigenvalues of Γ forming a subset of the eigenvalues of A. These interpolation

nodes are in the left half plane CI −. Note that in the special case when

nQ ≤ n

the number of the interpolation constraints formulated above on the function S should be

as large as its McMillan-degree nS.

Especially, if A = diag (−s1, . . . ,−sn) and nQ = nS then these interpolation conditions

can be expressed as

S(−s̄j)U
∗P−1ej = V ∗P−1ej , i = 1, . . . , n , (2.19)

where ej denotes the j-th unit vector.

3 The inverse transformation

Suppose now we invert the relation Q = TΘ(S) and want to determine the degree. We have

the following:

Lemma 3.1. Let Θ be a J−inner function as in (2.1) and let

Q =

(
AQ BQ

CQ DQ

)
. (3.1)
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Then S = T−1
Θ (Q) has the following non-minimal realization:

S =

 AQ −BQU∗P−1 BQ

V CQ A+ (U − V DQ)U∗P−1 V DQ − U

CQ (V ∗ −DQU∗)P−1 DQ

 . (3.2)

In the case when Q is a solution of the interpolation Problem (1.4) then the state space

of the realization (3.2) can be further reduced.

Proposition 3.1. Let Q be a solution of the interpolation Problem (1.4) with realization

Q =

(
AQ BQ

CQ DQ

)
.

Assume that (CQ, AQ) is an observable pair. Then S = T−1
Θ (Q) has the observable realization

S =

(
AQ − Y P−1V CQ BQ − Y P−1 (V DQ − U)

CQ DQ

)
, (3.3)

where Y is defined by the equation

(Q(s)U∗ − V ∗) (sI +A∗)−1 = CQ (sI − AQ)−1 Y . (3.4)

PROOF. Since the function (Q(s)U∗ − V ∗) (sI +A∗)−1 is analytic on CI +, it might have

poles only at the eigenvalues of AQ, and vanishes at ∞, the observability of (CQ, AQ) implies

the existence of the matrix Y in (3.4).

Evaluating the identity

Q(s)U∗ − V ∗ = DU∗ − V ∗ + CQ (sI − AQ)−1 BQU∗ = CQ (sI − AQ)−1 β (sI +A∗)

at ∞ the equation

DU∗ − V ∗ = CQY (3.5)

is obtained. Subtracting CQY from both sides we get that

CQ (sI − AQ)−1 BQU∗ = CQ (sI − Aq)
−1 (YA∗ + AQY ) .

Observability of (CQ, AQ) implies that

BQU∗ = YA∗ + AQY . (3.6)

Let us apply the state transformation defined by the matrix

T =

[
I Y

0 P

]
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for the realization (3.2). Using that

[
CQ, (V ∗ −DQU∗)P−1

] [ I Y

0 P

]
= [CQ, 0][

I Y

0 P

] [
BQ

V D − U

]
=

[
BQ − Y P−1 (V D − U)

P−1 (V D − U)

]
[

AQ −BQU∗P−1

V CQ A+ (U − V D) U∗P−1

] [
I Y

0 P

]
=

[
I Y

0 P

] [
AQ − Y P−1V CQ 0

P−1V CQ −A∗

]
the following realization is obtained:

S =

(
AQ − Y P−1V CQ BQ − Y P−1 (V DQ − U)

CQ DQ

)
. (3.7)

The realization (3.3) is obviously observable if (CQ, AQ) is an observable pair. This concludes

the proof of the proposition.

Now let us analyze the controllability subspace of the realization defined in (3.3).

Proposition 3.2. Assume that the realization of Q given in (3.1) is minimal. If the func-

tions V Q(s) − U and sI − A have no common left zero-functions then the realization of S

in (3.3) is minimal.

PROOF. Let us apply the P-H-B test. Assume that there exist a nonzero column vector

αQ and µ ∈ CI such that

α∗Q
(
BQ − Y P−1 (V D − U)

)
= 0 (3.8)

α∗Q
(
AQ − Y P−1V CQ

)
= µα∗Q . (3.9)

It is immediately obtained that α∗QY 6= 0. Otherwise the equations α∗QBQ = 0, α∗QAQ = µα∗

would hold, contradicting to the controllability of (AQ, BQ).

Computing (3.8) U∗−(3.9)Y we get that

α∗Q
(
BQU∗ − Y P−1V DU∗ + Y P−1UU∗ − AQY + Y P−1V CQY

)
= −µα∗QY .

Using (3.5) and (3.6) we get that

α∗Q
(
YA− Y P−1V V ∗ + Y P−1UU∗) = −µα∗QY .

I.e. (
α∗QY P−1

)
(µI −A) = 0 (3.10)
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On the other hand equations in (3.8) and (3.9) can be arranged into the following form

[
α∗Q,−α∗QY P−1

] [ AQ − µI BQ

V CQ V DQ − U

]
=

[
0

0

]
. (3.11)

Equations (3.10) and (3.11) indicate that the functions sI−A and V Q(s)−U have a common

zero direction at s = µ, contradicting to our assumption. Thus the realization of S given in

(3.3) is controllable, concluding the proof of the proposition.

Introduce the notation

dc,Q = dimension of the controllability subspace of the realization (3.3).

According to Proposition 3.1 the realization (3.3) is observable. Consequently

nS = dc,Q .

Corollary 3.1. Assume that the realization (3.1) of the function Q is minimal, moreover

the matrices A and AQ have no common eigenvalues and

Ker

([
V Q(s)− U

sI −A

])
= {0}

for all s ∈ CI . Then

nS = nQ .

4 Solutions of the interpolation problem with ”low com-

plexity”

Consider now the interpolation problem formulated in Problem 1.2.

Theorem 4.1. The Schur-function Q is a solution of the interpolation Problem 1.2 if and

only if it has the realization

Q =

(
−A∗ + BU∗ B

DU∗ − V ∗ D

)
. (4.1)

PROOF. Assume that Q =

(
AQ BQ

CQ D

)
. According to the assumption the matrix

[D, I]

[
U∗

−V ∗

]
is of full row rank. Consequently, [D, I] can be extended into a nonsingular

matrix [
D I

D1 I

]
.
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Set

Qe(z) =

[
Q(z) I

D1 I

]
.

Then using assumption (iii) in Problem 1.2 the pair

([
U∗

−V ∗

]
,−A∗

)
determines a global

right-null pair of the function Qe of size 2p × 2p. On the other hand the global right-null

pair of Qe is determined by[
D I

D1 I

]−1 [
CQ

0

]
, AQ − [BQ, 0]

[
D I

D1 I

]−1 [
CQ

0

]
.

Thus there exists an invertible transformation T such that[
D I

D1 I

]−1 [
CQ

0

]
T =

[
U∗

−V ∗

]
, (4.2)(

AQ − [BQ, 0]

[
D I

D1 I

]−1 [
CQ

0

])
T = T (−A∗) , (4.3)

giving that

AQT −BQU∗ = −TA∗ ,

DU∗ − V ∗ = CQT .

Thus

Q =

(
T (−A∗ + T−1BQU∗) T−1 BQ

(DU∗ − V ∗) T−1 D

)
=

(
−A∗ + T−1BQU∗ T−1BQ

DU∗ − V ∗ D

)
, (4.4)

which introducing the notation B = T−1BQ gives eqution (4.1). Straightforward calcuation

gives the converse statement.

In this case the corresponding Schur-function S has the realization

S =

(
A+ BSU∗P−1 BS

(DU∗ − V ∗)P−1 D

)
, (4.5)

where

BS = PB + U − V D .

Note that any function with realization defined in (4.1) provides a solution of the interpo-

lation problem (1.4) but the required stability of Q does not necessarily hold.

The following theorem shows that Theorem 4.1 can be formulated in a way which is similar

to the form given in the so-called Kimura-Georgiou parameterization of all solutions of the

Carathéodory interpolation problem with McMillan-degree no greater than the number of

the interpolation conditions. [8], [6].
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Theorem 4.2. Consider the interpolation Problem 1.1 and denote by Ξ the inner function

determined by the interpolation nodes and directions, i.e.

Ξ(s) = I − U∗R−1 (sI −A)−1 U ,

where R is the solution of the Ljapunov-equation

AR+RA∗ + UU∗ = 0 .

Then the Schur-function Q is a solution of the interpolation Problem 1.2 if and only if it

can be written in the form

Q = G∗ (F ∗)−1 ,

where G, F are stable rational functions and ΞF ∗ is unstable, F (∞) = I.

PROOF. Assume that Q has the realization given in 4.1. Set

F ∗ = I − U∗ (sI +A∗)−1 B .

Then ΞF ∗ is a stable function and

QF ∗ = D − V ∗ (sI +A∗)−1 B ,

which is an unstable function.

Conversely, if ΞF ∗ is a stable function, for which F (∞) = I then F ∗ has the form

F ∗ = I − U∗ (sI +A∗)−1 B

for some matrix B. Now if Q = G∗ (F ∗)−1 is a solution then

G∗ −
(
D − V ∗ (sI +A∗)−1 B

)
= QF ∗ −

(
D − V ∗ (sI +A∗)−1 B

)
= Q− (QU∗ − V ∗) (sI +A∗)−1 B −D .

The first term should be an unstable function while the last term – using that Q is a

solution of the interpolation Problem 1.1 – is a stable, strictly proper function. Thus it must

be identically zero, proving that

G = D − V ∗ (sI +A∗)−1 B .

Consequently the function Q has a realization given in (4.1).

Proposition 4.1. Let Q be as in (4.1), and suppose it has McMillan-degree n. Then Q is

stable if and only if

B = P−1
W (U −W )

where W ∈ CI n×p satisfies the generalized Pick condition, i.e. the Lyapunov equation

APW + PWA∗ + UU∗ −WW ∗ = 0 (4.6)

has a unique positive definite solution.
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PROOF. Assume that Q with the realization given in (4.1) is a stable function. The

assumption concerning its McMillan-degree implies that this realization is minimal, i.e. there

exists a matrix PQ > 0 for which the equation

(−A∗ + BU∗)PQ + PQ (−A+ UB∗) + BB∗ = 0

holds. This can be arranged to

AP−1
Q + P−1

Q A∗ + UU∗ −
(
U + P−1

Q B
) (

U + P−1
Q B

)∗
= 0 .

Introducing the notations

PW = P−1
Q

W = U + P−1
Q B

the equation (4.6) is obtained.

Conversely assume that (4.6) holds. Straightforward calculation gives that

PW

(
−A∗ − P−1

W (U −W )U∗)P−1
W = A+ W (U∗ −W ∗)P−1

W(
A+ W (U∗ −W ∗)P−1

W

)
PW + PW

(
A+ W (U∗ −W ∗)P−1

W

)∗
+ (U −W ) (U∗ −W ∗) = 0 .

Now the controllability of the pair(
A∗ + P−1

W (U −W ) W ∗,P−1
W (U −W )

)
implies the stability of

(
A+ W (U∗ −W ∗)P−1

W

)
.

Theorem 4.3. Let Q be as in (4.1), and suppose it has McMillan-degree n. Then Q is a

Schur-function if and only if

B = −R−1
(
U − V D − Ṽ (I −D∗D)

1
2

)
where Ṽ ∈ CI n×p and R ∈ CI n×n, R is positive definite and the equation

AR + RA∗ + UU∗ − V V ∗ − Ṽ Ṽ ∗ = 0 (4.7)

holds.

PROOF. According to the positive real lemma the function Q is a Schur-function if and

only if the equation

R
(
AQ + BQD∗ (I −DD∗)−1 CQ

)
+
(
AQ + BQD∗ (I −DD∗)−1 CQ

)∗
R

+ C∗
Q (I −DD∗)−1 CQ + RBQ (I −D∗D)−1 B∗

QR = 0 (4.8)
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has a positive definite solution R. Expressing the matrices AQ and CQ using (4.1) straight-

forward calculation gives that

RA∗ +AR + (UU∗ − V V ∗)− (RB + U − V D) (I −D∗D)−1 (B∗R + U∗ −D∗V ∗) = 0

holds. Introducing the notation

Ṽ = (RB + U − V D) (I −D∗D)−
1
2

equation (4.7) is obtained.

Based on this a parameterization of stable solutions to the interpolation problem can be

obtained using the results in [5], [7].

Finally note that the right null-pair corresponding to the zeros of the function I − QQ∗

inside CI − is given by the matrices(
−A∗ + B (I −D∗D)−

1
2 Ṽ ∗, V ∗ − (I −DD∗)−1 D (I −D∗D)

1
2 Ṽ ∗

)
.

Using the transformation allowed by Lemma 1.1 this has a particularly simple form:(
−A∗ + BṼ ∗, V ∗

)
.
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