
Non-regular processes and singular Kalman filtering

Augusto Ferrante, Giorgio Picci, Stefano Pinzoni

Dipartimento di Elettronica e Informatica

Università di Padova

via Gradenigo 6/A

35131 Padova, Italy

E-mail: augusto@dei.unipd.it, picci@dei.unipd.it, pinzoni@dei.unipd.it

Abstract

Contrary to the continuous-time case, a discrete-time process y can be represented
by minimal linear models (see (1.1) below), which may either have a non-singular or
a singular D matrix. In fact, models with D = 0 have been commonly used in the
statistical literature. On the other hand, for models with a singular D matrix the
Riccati difference equation of Kalman filtering involves in general the pseudo-inversion
of a singular matrix. This “cheap filtering” problem has been studied for several
decades in connection with the so-called “invariant directions” of the Riccati equation.
For a singular D, a reduction in the order of the Riccati equation is in general possible.
In this paper, we provide an explanation of this phenomenon from the classical point of
view of “zero flippin” among minimal spectral factors. Changing D’s occurs whenever
zeros are “flipped” from z = ∞ to their reciprocals at z = 0. It is well known that
for finite zeros the zero-flipping process takes place by multiplication of the underlying
spectral factor by a suitable rational all-pass matrix function. For infinite zeros, zero-
flipping is implemented by a dual version of the Silverman structure algorithm. Using
this interpretation, we derive a new algorithm for filtering of non-regular processes,
based on a reduced-order Riccati equation.

Keywords: Discrete-time processes, Stochastic realization, Riccati equation, Singular

filtering, Silverman structure algorithm

1 Introduction

Consider a linear discrete-time stochastic model

x(t + 1) = Ax(t) + Bw(t) (1.1a)

y(t) = Cx(t) + Dw(t), (1.1b)

driven by a normalized p-dimensional white-noise process w. Any m-dimensional stationary

process y admitting a representation of the form (1.1) has a spectral density matrix Φ(z),

which is an m × m rational function of z. Representations of the type (1.1) are called

stochastic realizations of the process y. Minimal stochastic realizations are such that the

dimension of the state vector x is as small as possible: in this paper, we shall only deal

1



with minimal stochastic realizations. Even assuming minimality, the representations (1.1)

are highly non-unique. In fact, a fundamental result of stochastic system theory [2, 6]

parametrizes the family of minimal stochastic realizations of a process with a given rational

spectrum by the solutions of a certain linear matrix inequality, whose coefficients can be

read off from a state-space realization of Φ(z). This matrix inequality reduces, in certain

special instances, to an algebraic Riccati equation.

A general assumption, which we shall keep all through this paper, is that y is a full-rank

process. This is equivalent to the spectral density matrix Φ(z) being of full rank, i.e., an

invertible matrix, almost everywhere in z. As a consequence, in the model (1.1) the dimension

of the process w is always greater than or equal to that of y, i.e., p ≥ m. Now, it is well

known that the same discrete-time process y can be represented by minimal realizations of

the type (1.1), which may either have a non-singular or a singular D matrix. In fact, there

may be realizations, like those used by Akaike in [1] and quite commonly encountered in the

statistical literature, where D = 0.

When the matrix D in the representation (1.1) is singular, the problem of estimating the

state x based on the (past) observations of y is known as “cheap (or singular) filtering”.

This problem is dual to the better known “cheap control” problem, and has been discussed

in the literature for several decades, see [4, 13, 11], and references therein. It has been

observed that, related to the singularity of D, there is a possible reduction in the order of

the Riccati equation. This reduction has been investigated in a series of now classical papers

by L. Silverman and co-authors (compare [22], and references therein), mostly in an optimal

control context.

This paper is motivated by the observation that a straightforward dualization of the anal-

ysis of [22] does not apply naturally to the stochastic setting and in particular to the Riccati

equation of the stochastic realization problem1. To the best of our knowledge, the question

regarding the singularity of the D matrix in some (but in general not all) minimal realiza-

tions of a discrete-time process has been around for several decades in the literature, but has

never been explained completely. In the recent paper [10], we provide an explanation of this

phenomenon in the key of “zero flipping” among minimal spectral factors. The zeros which

are “flipped” are zeros at z = ∞ being sent to their reciprocals at z = 0. By this procedure,

one transforms spectral factors with a singular D matrix into other spectral factors with

a “less singular” (and eventually non-singular) D. This process is implemented by a dual

version of the Silverman structure algorithm which is described below. Using this interpre-

tation, we point out that the reduction in the order of the ARE is related to a property of

the process y (called regularity2, see Definition 3.1 below), rather than to the singularity of

the D matrix in a specific model. Moreover, we get a precise characterization of the amount

of order reduction of the Riccati equation, which is afforded by zeros either at z = ∞ or

at the origin, something which has traditionally been looked upon by studying “invariant

1In fact, past attempts in this direction [12] have been less than convincing.
2Not to be confused with the notion of linear regularity in [20].
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directions”.

The main contribution of the present paper is in Section 4, where we propose a reduced-

order algorithm for filtering of non-regular processes. We show that if y is a non-regular

process, the optimal filter may be derived by solving a reduced-order Riccati equation. The

structure of this equation and the order reduction amount are analyzed and related to the

parameters A, B, C, D of the given model and to the spectral density of the process y.

2 Background on stochastic realization

The material in this section is standard and can be found in various places in the literature

[3, 7, 8]. We shall just recall the basic facts in order to set notations.

The transfer function W (z) = C(zI −A)−1B + D of any state-space representation of the

process y of the type (1.1) is a spectral factor of Φ(z), i.e.,

Φ(z) = W (z)W (z−1)>. (2.1)

Note that two p-dimensional normalized white-noise processes w1, w2 differing by multiplica-

tion by a constant p×p orthogonal matrix are indistinguishable (as second order processes).

Hence, it is natural to consider two realizations (1.1) with input noises differing by a constant

orthogonal transformation as the same object. For this reason, we will not distinguish among

spectral factors differing by right-multiplication by a constant p× p orthogonal matrix.

From now on, we shall fix our attention to causal realizations, where the matrix A has

all eigenvalues strictly inside of the unit circle of the complex plane. The transfer function

of each model (1.1) is then an analytic spectral factor of Φ(z), since it has no poles outside

of the open unit disk, including the point z = ∞. To each such spectral factor of minimal

degree (called a minimal spectral factor), we let correspond an equivalence class of minimal

realizations (1.1), defined modulo a change of basis in the state space, an arbitrary p × p

constant orthogonal transformation of the white-noise process w and, in the non-square case,

the choice of some components of the noise process; see [16, 17, 18] for details. In this sense,

the minimal causal realizations of y are essentially in a one-to-one correspondence with the

(equivalence classes of) minimal analytic spectral factors W (z).

If we decompose Φ(z) = Φ(z−1)> into the analytic and co-analytic (with respect to the

unit circle) components

Φ(z) = Φ+(z) + Φ+(z−1)>, (2.2)

then Φ+(z) has a minimal realization whose parameters can be formally expressed as a

function of the parameters of the model (1.1). In fact,

Φ+(z) = C(zI − A)−1C̄> + 1
2
Λ0, (2.3)

where C̄> = APC>+BD>, P being the steady-state covariance P := E{x(t)x(t)>}, unique

solution to the Lyapunov equation P = APA>+ BB>. The matrix C̄ must obviously be an
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invariant of the process (in the given basis), while Λ0 in (2.3) is just the output covariance

at lag zero, i.e.,

Λ0 := E{y(t)y(t)>} = CPC> + DD>. (2.4)

Well-known examples of minimal analytic spectral factors are the outer, also called minimum-

phase, and the maximum-phase spectral factors, denoted W−(z) and W+(z), respectively.

Both W−(z) and W+(z) are analytic in {z : |z| ≥ 1} including infinity, but while the outer

factor has all zeros inside of the closed unit disk, W+(z) has all zeros outside of the open

unit disk. The following result is standard [23, 16].

Theorem 2.1 All minimal analytic rational spectral factors can be obtained by post-multiplying

the minimum-phase factor W−(z) by a rational inner matrix function Q(z), or by post-

multiplying the maximum-phase factor W+(z) by a co-analytic rational inner matrix function

Q̄(z), i.e., a rational matrix function analytic in {z : |z| < 1}, such that

Q̄(z)Q̄(z−1)> = I. (2.5)

Since the McMillan degree of minimal spectral factors has to be kept constant in the

multiplication by the inner function, cancellation of zeros of W−(z) with poles of Q(z), or

cancellation of zeros of W+(z) with poles of Q̄(z) has to take place. Hence, some zeros are

replaced by their reciprocal image with respect to the unit circle. This phenomenon is called

“zero flipping” in the engineering literature. Zero flipping is closely related to solving a linear

matrix inequality, as summarized in the following theorem, for the proof of which we refer,

e.g., to [3, 8].

Theorem 2.2 Let (A, C̄>, C, 1
2
Λ0) be a minimal realization of the analytic component Φ+(z)

of the spectral density matrix Φ(z). Then, there is a one-to-one correspondence between

minimal analytic spectral factors of Φ(z) and symmetric n×n matrices P solving the Linear

Matrix Inequality

M(P ) :=

[
P − APA> C̄> − APC>

C̄ − CPA> Λ0 − CPC>

]
≥ 0. (2.6)

In fact, corresponding to each solution P = P> of (2.6), consider the unique (modulo

orthogonal transformations) full column rank matrix factor

[
B

D

]
of M(P ),

M(P ) =

[
B

D

] [
B> D>

]
, (2.7)

and define the rational matrix W (z) parametrized in the form

W (z) = C(zI − A)−1B + D. (2.8)

Then, (2.8) is a minimal realization of a minimal analytic spectral factor of Φ(z).
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Conversely, to each minimal analytic spectral factor W (z) there corresponds, by suitably

choosing a basis in the state space, a minimal realization of the form (2.8), for some B, D

matrices. Then, the solution P = P> of the Lyapunov equation P −APA> = BB> satisfies

the matrix equation (2.7) and hence the Linear Matrix Inequality (2.6).

Moreover, all symmetric solutions P of (2.6) are necessarily positive definite.

It can be shown [6, 8] that the set of solutions to the LMI (2.6)

P := {P | P = P>, M(P ) ≥ 0} (2.9)

is closed, bounded and convex. Moreover, there are two special elements P−, P+ ∈ P , such

that

P− ≤ P ≤ P+, for all P ∈ P , (2.10)

where P1 ≤ P2 means that P2 − P1 ≥ 0, i.e., the difference P2 − P1 is a positive semidefinite

matrix. To such minimal and maximal solutions of the LMI there correspond minimum-rank

matrix factors

[
B−
D−

]
and

[
B+

D+

]
in the factorization (2.7), which yield the minimum- and

maximum-phase spectral factors

W−(z) = C(zI − A)−1B− + D−, W+(z) = C(zI − A)−1B+ + D+, (2.11)

respectively.

If Λ0−CPC> > 0, a simple calculation yields that M(P ) ≥ 0 if and only if P satisfies the

algebraic Riccati inequality

P − APA> − (C̄> − APC>)(Λ0 − CPC>)−1(C̄ − CPA>) ≥ 0. (2.12)

In particular, if P satisfies the algebraic Riccati equation

P = APA> + (C̄> − APC>)(Λ0 − CPC>)−1(C̄ − CPA>), (2.13)

the corresponding spectral factor W (z) is square m × m. The solutions P = P> of (2.6)

corresponding to square spectral factors form a subfamily P0 ⊂ P. If P /∈ P0, then W (z) is

rectangular m× p, with p > m.

3 Regularity

One of the questions which naturally arise in the discrete-time context is for what kind

of processes all minimal realizations have a non-singular D matrix. Here the word “non-

singular” means that D is full row rank, i.e., D does possess a right-inverse. The following

definition is from [6].
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Definition 3.1 The process y is regular if all its minimal realizations have a right-invertible

D matrix.

Right-invertibility of D is obviously equivalent to R := DD> being non-singular and it can

be seen that all system-theoretic properties of a discrete-time regular process are exactly the

same as of a continuous-time process with a spectral density matrix strictly positive-definite

at infinity. The following theorem collects some equivalent characterizations of the property

of regularity.

Theorem 3.1 Let y be a stationary process with a full-rank rational spectral density matrix

Φ(z). Then, the following are equivalent.

1. The process y is regular.

2. For all solutions P = P> of the LMI (2.6), Λ0 − CPC> > 0.

3. Λ0 − CP+C> > 0, where P+ = P>+ is the maximal solution of the LMI (2.6) or,

equivalently, D+ = W+(∞) is non-singular.

4. There exists a minimal spectral factor of Φ(z) having zeros neither at z = 0, nor at

z = ∞.

5. All minimal spectral factors of Φ(z)h ave zeros neither at z = 0, nor at z = ∞.

6. The numerator matrix Γ− = A−B−D−1
− C of the minimum-phase spectral factor W−(z)

is non-singular or, equivalently, limz→0 W−(z)−1 is finite.

7. Φ(z) has no zeros at infinity, nor at zero; more precisely, limz→∞Φ(z)−1 is finite or,

equivalently, limz→0 Φ(z)−1 is finite.

While conditions 1 to 6 are more or less known, see [19, 14], condition 7 seems to be new.

It states that the inverse Φ(z)−1 of the spectrum of a full-rank regular process is proper, i.e.,

it has no poles at z = ∞ (nor at z = 0). In [10] we provide a proof.

Regularity is quite restrictive. For instance, scalar processes admitting an AR representa-

tion

y(t) +
n∑

k=1

aky(t− k) = b0w(t), (3.1)

with w normalized white noise and an 6= 0, cannot be regular if n > 0. Instead, MA processes

described by models of the form

y(t) =
n∑

k=0

bkw(t− k) (3.2)
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are regular. In fact, in the former case the spectral density function is

Φ(z) =
b2
0

(1 +
n∑

k=1

akz
−k)(1 +

n∑
k=1

akz
k)

, (3.3)

with a zero at z = ∞ of multiplicity n, while in the second case we get

Φ(z) =

(
n∑

k=0

bkz
−k

)(
n∑

k=0

bkz
k

)
, (3.4)

whose inverse is bounded as z →∞.

3.1 Zero flipping at infinity

We want now to analyze the minimal realizations (A, B, C,D) of a non-regular process y,

with D a singular, i.e., not full row rank matrix. The following (quite obvious) lemma serves

the purpose of linking singularity of D to the presence of zeros at infinity.

Lemma 3.1 A proper rational matrix W (z) = C(zI − A)−1B + D has zeros at z = ∞ if

and only if D is singular.

Consider a minimal spectral factor W (z) = C(zI − A)−1B + D with a singular D. The

“flipping” of zeros from z = ∞ to z = 0 is accomplished by using a dual version of the

well-known Silverman algorithm [?].

Assume the matrix D has p0 linearly independent columns, with 0 ≤ p0 ≤ m. Let Q0 be an

orthogonal matrix such that DQ0 =
[

D01 0
]
, with D01 ∈ Rm×p0 being full column rank.

Let us partition BQ0 =
[

B01 B02

]
conformably, obtaining the following block structure,

W0(z) := W (z)Q0 = C(zI − A)−1
[

B01 B02

]
+
[

D01 0
]
, (3.5)

and let

Ŵ1(z) := W0(z)

[
Ip0 0

0 zIp−p0

]
. (3.6)

Clearly, Ŵ1(z) is also a spectral factor of Φ(z). Since

Ŵ1(z) =
[

D01 + CB01z
−1 + CAB01z

−2 + . . . CB02 + CAB02z
−1 + CA2B02z

−2 + . . .
]

= C(zI − A)−1
[

B01 AB02

]
+
[

D01 CB02

]
,

this spectral factor has necessarily McMillan degree n and, hence, is also minimal. At this

point, either
[

D01 CB02

]
is right-invertible, or we may iterate the above procedure by

introducing another orthogonal matrix Q1, such that[
D01 CB02

]
Q1 =

[
D11 0

]
,
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with D11 ∈ Rm×p1 of full column rank p1, with p1 ≥ p0, and define the minimal spectral

factor

W1(z) := Ŵ1(z)Q1 = C(zI − A)−1
[

B11 B12

]
+
[

D11 0
]
, (3.7)

where
[

B11 B12

]
=
[

B01 AB02

]
Q1.

Since y is a full-rank process, W (z) as a rational function has full row rank m and hence,

after a finite number of steps of the above procedure, we get a minimal spectral factor

Wl(z) := W (z)Q(z), Q(z) = Q0

l−1∏
i=0

[
Ipi

0

0 zIp−pi

]
Qi+1, (3.8)

such that Wl(∞) is right-invertible, i.e., Wl(z) has no zeros at infinity. Equivalently, Wl(z)

has a realization of the form

Wl(z) = C(zI − A)−1
[

Bl1 Bl2

]
+
[

Dl1 0
]
, (3.9)

with Dl1 square and invertible. In the following, we shall rename the transfer function Wl(z)

obtained at the last step of the Silverman algorithm as WS(z) = C(zI −A)−1
[

B1 B2

]
+[

D1 0
]
.

So, the Silverman algorithm transforms a spectral factor W (z) with a given zero structure

at infinity to another, WS(z), which has no zeros at infinity. In fact, it can be shown that

all zeros at infinity of W (z) are replaced by corresponding zeros at z = 0 of WS(z), with the

same multiplicity.

Finally, let

Γ := A−B1D
−1
1 C (3.10)

be the numerator matrix of WS(z) [15, 14] and consider the orthogonal complement of the

column space of
[

Γ B2

]
, which we may denote as Lker

[
Γ B2

]
. In [10] we prove the

following geometric characterization of regular processes.

Theorem 3.2 The process y is regular if and only if

Lker
[

Γ B2

]
= {0}. (3.11)

Clearly, this result is mostly useful when the D matrix in the given model is non-singular,

i.e., WS(z) = W0(z), and the process y might in principle be regular.

4 Steady-state filtering of non-regular processes: order-

reduction of the ARE

In this section we shall consider steady-state estimation of the state x in a given model (1.1)

for a non-regular observation process y. Such non-regular filtering problem encompasses (but
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is more general than) the singular filtering problem occurring when D is singular. Singular

problems are usually addressed by writing the ARE with a Moore-Penrose pseudoinverse ]

in place of the usual inverse, i.e.,

X = AXA> − (AXC> + BD>)(CXC> + DD>)](AXC> + BD>)> + BB>. (4.1)

This formulation, however, hardly gives insight into the problem and may lead to substan-

tially heavier computations than what is actually needed.

We shall show that the size of the ARE (4.1) associated with a non-regular observation

process is always fictitiously large and that the problem complexity may be conveniently

reduced even if D is non-singular. We would like to stress that the order reduction is a

consequence of the non-regularity of the process y, rather than of the singularity of DD>.

In fact, it does not depend on the particular realization (1.1) of y, but only on the process

y itself. For this reason, the reduction procedure may by applied even in the standard

(non-singular) filtering case.

It turns out that the reduction ν in the order of the ARE is an invariant of the process,

equal to the sum of the multiplicities of the zeros of any model (1.1), located at z = ∞ or

at z = 0. The order reduction ν can also be related to certain system theoretic properties

of the matrices Γ and B2 (cf. Theorem 3.2), that play a central rôle in stochastic realization

theory [18] and smoothing estimation [9].

Let W (z) = C(zI − A)−1B + D be the transfer function of the given model (1.1). In

general, D will not be right-invertible but, by using the dual Silverman algorithm of Section

3.1, we can always obtain an equivalent3 model of y described by the transfer function

WS(z) := W (z)Q(z) = C(zI − A)−1
[

B1 B2

]
+
[

D1 0
]
, (4.2)

with D1 non-singular. Here, the function Q(z) is a polynomial conjugate-inner function

given by the expression (3.8).

Let P0 = P>0 be the solution of the LMI (2.6) corresponding to the spectral factor WS(z),

so that

P0 − AP0A
> = B1B

>
1 + B2B

>
2 , (4.3a)

C̄ = (AP0C
> + B1D

>
1 )>, Λ0 = D1D

>
1 + CP0C

>, (4.3b)

and let P = P> be any solution of the LMI leading to a minimal square spectral factor with

a non-singular D. One such solution of particular interest here is P = P−, since the steady-

state Kalman filter for the given model (1.1) is uniquely determined once P− is known. In

fact, the steady-state Kalman gain is given by

K = (C̄> − AP−C>)(Λ0 − CP−C>)−1. (4.4)

3“Equivalent” here means that WS(z) is also a minimal spectral factor of Φ(z). The state process of this
model will in general be different from the original one.
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However, the argument below will work for more general P ’s of the kind defined above. Any

such P must satisfy

Λ0 − CPC> > 0, (4.5a)

P − APA> − (C̄> − APC>)(Λ0 − CPC>)−1(C̄ − CPA>) = 0. (4.5b)

Define ∆ := P0−P . By subtracting (4.5) from (4.3a), we get the algebraic Riccati equation

∆ = A∆A>−(A∆C>+B1D
>
1 )(D1D

>
1 +C∆C>)−1(A∆C>+B1D

>
1 )>+B1B

>
1 +B2B

>
2 , (4.6)

which is the standard ARE satisfied by the steady-state error covariance matrix of the state

estimate. Writing A as Γ + B1D
−1
1 C, the ARE assumes the form

∆ = Γ∆Γ> − Γ∆C>
(
D1D

>
1 + C∆C>

)−1
C∆Γ> + B2B

>
2 . (4.7)

The ARE (4.7) has a fictitiously large size. More precisely, in a suitable basis, any solution

of (4.7) has the form

∆ =

[
∆1 0

0 0

]
, (4.8)

where ∆1 solves a reduced-order ARE (RARE). Theorem 4.1 below will describe the pro-

cedure to obtain such reduced-order ARE and also clarify what is the maximal amount of

reduction that one can get.

As a preliminary step, select a square orthogonal matrix T , such that

Γ̂ := TΓT> =

 ΓR ΓRI ΓRN

0 ΓI ΓIN

0 0 ΓN

 , B̂2 := TB2 =

 B2R

0

0

 , (4.9)

where the pair (ΓR, B2R) is reachable, ΓI is invertible and ΓN ∈ Rν×ν is nilpotent. Note that

ΓN is the nilpotent part of the map induced by Γ on the quotient space Rn/〈Γ | B2〉. In

other words, ΓN describes the invariant zero-dynamics at z = 0 of WS(z).

Define

Γ1 :=

[
ΓR ΓRI

0 ΓI

]
∈ R(n−ν)×(n−ν), B21 :=

[
B2R

0

]
∈ R(n−ν)×(p−m), (4.10)

and partition CT> as CT> =
[

C1 C2

]
, with C1 of dimension m × (n − ν). In [10] the

following theorem is proved.

Theorem 4.1 Let T be an n×n orthogonal matrix leading to the special form (4.9). Then,

there is a bijective correspondence between the symmetric solutions of the ARE (4.7) and

those of the RARE

∆1 = Γ1∆1Γ
>
1 − Γ1∆1C

>
1

(
D1D

>
1 + C1∆1C

>
1

)−1
C1∆1Γ

>
1 + B21B

>
21, (4.11)
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given by

∆ = T>
[

∆1 0

0 0

]
T. (4.12)

The RARE (4.11) has order n − ν, with ν being the algebraic multiplicity of the invariant

zero at z = 0 of WS(z). The ARE cannot be reduced further.

This theorem suggests the following procedure to reduce the order of the ARE and effi-

ciently compute the steady-state Kalman filter gain for a non-regular process.

1. Apply the Silverman algorithm to W (z) to get WS(z) with a non-singular D matrix.

2. Compute the state covariance matrix P0 of the transformed model by solving the

Lyapunov equation (4.3a).

3. Do an orthogonal change of basis on the realization of WS(z) (e.g., bring it to the real

Schur form) to find T and Γ1, C1, B21.

4. Find the maximal solution ∆1,MAX of the RARE (4.11).

5. Compute ∆MAX using (4.12) and P− = P0 − ∆MAX to get the steady-state Kalman

gain K from (4.4).

The reduction procedure is actually performed on the ARE relative to the model WS(z),

obtained from the original model W (z) by flipping the zeros at infinity into z = 0. In

particular, if D is not right-invertible, it is guaranteed that the ARE can be somewhat

reduced. However, we have seen that, as long as the process y is non-regular, such order

reduction occurs even if the original D matrix is right-invertible.
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[9] A. Ferrante and G. Picci. Minimal realization and dynamic properties of optimal

smoothers. IEEE Trans. Automat. Contr., AC-45:2028–2046, 2000.

[10] A. Ferrante, G. Picci, and S. Pinzoni. Silverman algorithm and the structure of discrete-

time stochastic systems. Linear Algebra and its Applications, special issue on System

Theory, 2002.

[11] T. Geerts. The Algebraic Riccati equation and singular optimal control: The discrete

time case. In U. Helmke, R. Mennicken, and J. Saurer, editors, Proc. MTNS 93., Sys-

tems and Networks: Mathematical Theory and Applications II, pp. 129–134. Akademie

Verlag, 1994.

[12] A. Kitapci, E. Jonkheere and L. M. Silverman. Singular optimal filtering. In C. I. Byrnes

and A. Lindquist, editors, Frequency Domain and State Space Methods for Linear Sys-

tems, Elsevier Science Publ. (North Holland), 1986.

[13] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. John Wiley & Sons,

New York, 1972.

[14] A. Lindquist and Gy. Michaletzky. Output-induced subspaces, invariant directions and

interpolation in linear discrete-time stochastic systems. SIAM Journal on Contr. Op-

tim., 35:810–859, 1997.

[15] A. Lindquist, Gy. Michaletzky, and G. Picci. Zeros of spectral factors, the geometry

of splitting subspaces, and the algebraic Riccati inequality. SIAM Journal on Contr.

Optim., 33:365–401, 1995.

[16] A. Lindquist and G. Picci. On the stochastic realization problem. SIAM Journal on

Contr. Optim., 17:365–389, 1979.

12



[17] A. Lindquist and G. Picci. Realization theory for multivariate stationary Gaussian

processes. SIAM Journal on Contr. Optim., 23:809–857, 1985.

[18] A. Lindquist and G. Picci. A geometric approach to modelling and estimation of linear

stochastic systems. Journal of Mathematical Systems, Estimation, and Control, 1:241–

333, 1991.

[19] M. Pavon. Stochastic realization and invariant directions of the matrix Riccati equation.

SIAM Journal on Contr. Optim., 28:155–180, 1980.

[20] Y. A. Rozanov. Stationary Random Processes. Holden Day, S. Francisco, 1967.

[21] L. M. Silverman. Inversion of multivariable linear systems. IEEE Trans. Automat.

Contr., AC-14:270–276, 1969.

[22] L. M. Silverman. Discrete Riccati equation: alternative algorithms, asymptotic proper-

ties, and system theory interpretations. In C. T. Leondes, editor, Control and Dynamic

Systems, pp. 313–386. Academic Press, New York, 1976.

[23] D. C. Youla. On the factorization of rational matrices. IEEE Trans. P. I. T., 7:172–189,

1961.

13


