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Abstract

Generic results regarding the structural properties of LTI singular system are presented in

this paper. These include the structure of the system poles (both finite and infinite), assignment

of the finite poles, elimination of the impulse mode, and controllability and observability of the

closed-loop system. These properties are characterized by some new concepts defined in this

paper.

1 Introduction

In the past two decades, a considerable amount of research concerning linear time-invariant (LTI)

singular systems (or descriptor systems) has been reported because of their extensive applications.

It is well known that a singular system has complicated structures and contains not only finite poles

but also infinite pole which may generate undesired impulse behaviors [7]. Efforts have been devoted

to investigating structural properties of this kind of singular systems. Results on controllability

and observability, stability, pole assignment, and feedback regularization have been established by

both algebraic and geometric approaches (see, for example, [2, 5] and the references therein). [1]

shows that the finite poles can be freely assigned and the infinite pole can all be eliminated by state

feedback if the system is strongly controllable (i.e., both R-controllable and impulse controllable).

It is shown [15] under the assumption of impulse controllability and observability, the closed-loop

system can be made impulse-free by almost any output feedback. [8] calculates the number of the

infinite pole that are eliminable based-on the slow/fast decomposition of the system. [14] presents

an equivalence of pole assignability between a strongly controllable and observable LTI singular

system and a completely controllable and observable non-singular system.

This paper studies three basic problems regarding structural properties of singular systems.

Namely, 1) the algebraic structures of both the finite poles and the infinite pole; 2) the assignabil-

ity of the finite poles and the elimination of the infinite pole by output feedback; and 3) the

controllability and observability of the system with minimal number of inputs and outputs. New

generic solutions to these problems are presented in terms of the concepts defined in this paper.

2 Open-loop systems

Consider a linear time-invariant singular system

Eẋ = Ax+Bu, y = Cx (1)
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where x ∈ Rn is the state of the system, u ∈ Rr and y ∈ Rm are the input and output vectors of

the system respectively, E ∈ Rn×n is assumed to be singular with 0 <rank(E)< n, and A,B,C are
real constant matrices of appropriate sizes.

We assume in this section that the system (1) is regular, i.e., det(sE−A) 6= 0. Let deg(det(sE−
A)) = n1, then the system (1) has n1 finite poles (counted repeatedly for multiple poles), defined

as the eigenvalues of the matrix pair (E,A). Let λ ∈ σ(E,A) = {s | det(sE−A) = 0, finite s ∈ C}
be a finite pole of the system (1). Its geometric multiplicity (GM) is defined as gm(λ, E,A) =

dim[null(λE −A)].

Definition 1 The finite cycle index (FCI) of the system (1) is defined as

cyc(E,A) = max {dim[null(sE −A)], finite s ∈ C}

The system (1) has infinite pole (impulse mode) if deg(det(sE−A)) < rank(E). The algebraic
multiplicity (number) of the impulse mode is defined as the degree deficiency, i.e., alg∞(E,A) =
rank(E)− deg(det(sE −A)).

Let the Smith canonical form of E-λA be

E − λA ≈ diag[ϕ1(λ),ϕ2(λ), ...,ϕµ(λ), O]

where µ is the normal rank of E − λA, and ϕ1(λ), ...,ϕµ(λ) are polynomials of λ with leading

coefficient one, satisfying

ϕ1(λ)|ϕ2(λ)| · · · |ϕµ(λ)
and O stands for the zero block matrix of appropriate size. The infinity rank of sE − A is then

defined in [13] as

rank∞[sE −A] = max{k | lim
λ→0

ϕk(λ)

λ
6= 0, and lim

λ→0
ϕk+1(λ)

λ
= 0}

Lemma 1 [9]The infinity rank of matrix pencil sE −A can be determined by

rank∞[sE −A] = rank
"
E 0

A E

#
− rank(E)

Definition 2 The geometric multiplicity (GM) of the infinity pole of the system (1) is defined as

gm∞(E,A) = n− rank∞[sE −A]

The GM of the infinite pole is also called impulse cycle index (ICI) of the system (1), and denoted

by cyc∞(E,A). The overall cycle index (OCI) of the system (1) is defined as

Cyc(E,A) = max{cyc(E,A), cyc∞(E,A)}

Note that 0 ≤ gm∞(E,A) = cyc∞(E,A) ≤ alg∞(E,A) ≤ rank(E).

Lemma 2 The GM of the impulse mode (the ICI) of the system (1) is given by

gm∞(E,A) = cyc∞(E,A) = n− rank

"
E 0

A E

#
+ rank(E)

2



Proposition 1 The following statements are true.

(a) The system (1) has no impulse mode (impulse-free) if and only if a lg∞(E,A) = 0 (or

gm∞(E,A) = 0, or cyc∞(E,A) = 0).

(b) The system (1) has no finite pole if and only if cyc(E,A) = 0.

3 Closed-loop systems

Apply static output feedback

u = Ky + v (2)

to the system (1), we have the closed-loop system

Eẋ = (A+BKC)x+Bv, y = Cx (3)

We now assume that the system (1) is regularizable by output feedback (2). That is, the system

(3) is regular for some K.

The output fixed polynomial (FP) of the system (1) is defined as

pf (s,E,A,B,C) = gcd
©
det(sE −A−BKC),K ∈ Rr×mª

where gcd stands for greatest common divisor. The roots of the FP is defined as the finite fixed

modes (FFM) of the system (1), i.e.,

Λ(E,A,B,C) = ∩
K∈Rr×m

σ(E,A+BKC)

If deg[det(sE − A− BKC)] < rank(E) for all K ∈ Rr×m, then the system (1) is said to have

an impulse fixed mode (IFM).

The following definitions characterize the ability of the output feedback (2) to change the pole

structures of the system (1).

Definition 3 The output variable polynomial (VP) of the system (1) is defined as

pv(s,E,A,B,C,K) =
det(sE −A−BKC)
pf (s,E,A,B,C)

Note that the zeros of the VP are the variable finite poles of the system (1).

Definition 4 Let λ ∈ Λ(E,A,B,C), its algebraic and geometric multiplicity are defined as, re-
spectively,

a lg(λ, E,A,B,C) = min{a lg(E,A+BKC),K ∈ Rr×m}
gm(λ, E,A,B,C) = min{gm(E,A+BKC),K ∈ Rr×m}

Definition 5 The algebraic multiplicity (number) of the IFM is defined as

a lg∞(E,A,B,C) = min{a lg(E,A+BKC),K ∈ Rr×m}
And the GM of the IFM is defined as

gm∞(E,A,B,C) = min
©
gm∞(E,A+BKC),K ∈ Rr×m

ª
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Definition 6 The finite output feedback cycle index (FOCI) of the system (1) is defined as

cyc(E,A,B,C) = min{cyc(E,A+BKC), K ∈ Rr×m)}

Similarly, the impulse output feedback cycle index (IOCI) of the system (1) is defined as

cyc∞(E,A,B,C) = min{cyc∞(E,A+BKC),K ∈ Rr×m}

And the overall output feedback cycle index (OOCI) of the system (1) is defined as

Cyc(E,A,B,C) = min{Cyc(E,A+BKC),K ∈ Rr×m}

As immediate consequences of the above definitions, we have the following characterizations of

the regularization and complete impulse mode elimination.

Proposition 2 The following statements are true.

(a) The impulse mode of the system (1) can all be eliminated by almost any output feedback (2) if

and only if a lg∞(E,A,B,C) = 0 (or gm∞(E,A,B,C) = 0, or cyc∞(E,A,B,C) = 0).

(b) The system (1) has no IFM if and only if cyc∞(E,A,B,C) = 0.

It can be shown that it is generic that any output feedback matrix K ∈ Rr×m will give the

respective index. In other words, for almost any K ∈ Rr×m, we have, for example,

gm(λ, E,A,B,C) = gm(λ, E,A+BKC)

a lg∞(E,A,B,C) = a lg∞(E,A+BKC)

cyc∞(E,A,B,C) = cyc∞(E,A+BKC)

This means that these indices can be determined from the pair (E,A+BKC) for almost any

randomly selected matrix K ∈ Rr×m. Particularly, if two such selected matrices result in the same
numbers, we can be practically sure that the numbers are the respective indices indeed.

It is easy to see that

Cyc(E,A,B,C) = max{cyc(E,A,B,C), cyc∞(E,A,B,C)}

In addition, the geometric multiplicity of the FFM and the IFM can be determined directly in

terms of the system matrices as given below.

Theorem 1 Let λ ∈ Λ(E,A,B,C), then

gm(λ, E,A,B,C) = n−min{rank
h
λE −A B

i
, rank

"
λE −A
C

#
}

And

gm∞(E,A,B,C) = cyc∞(E,A,B,C) = n+ rank(E)−min{rank
"
E 0 0

A B E

#
, rank

 E 0

A E

C 0

 }
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For the finite output feedback cycle index, we have that cyc(E,A,B,C) = 0 when the closed-

loop system (3) always has no finite pole.

Theorem 2 Except the special case mentioned above, the FOCI of the system (1) can be determined

as follows

(a) If Λ(E,A,B,C) 6= Φ, then cyc(E,A,B,C) = max{gm(λ, E,A,B,C),λ ∈ Λ(E,A,B,C)};
(b) Otherwise cyc(E,A,B,C) = 1.

4 Assignment of the finite poles and elimination of impulse mode

Theorem 3 The assignability of the variable finite poles of the system (1) is equivalent to that of

a non-singular triple that is completely controllable and observable. Consequently, for almost any

K ∈ Rr×m, the variable finite poles of the system (1) are distinct, and away from any given finite

set in the complex plane.

Theorem 4 Consider the system (1). The number of impulse mode (counted repeatedly) that can

be eliminated by output feedback (2) is given by

ae = a lg∞(E,A)− a lg∞(E,A,B,C)
The number of independent impulse mode that can be eliminated by output feedback (2) is given by

ge = gm∞(E,A)− gm∞(E,A,B,C)

= min{rank
"
E 0 0

A B E

#
, rank

 E 0

A E

C 0

}− rank " E 0

A E

#

Moreover the elimination can be achieved by almost any K ∈ Rr×m.

The contribution of Theorem 4 is twofold. First, it gives solution to partial impulse mode elim-

ination problem, including the impulse free and regularization problem as a special case. Secondly,

it points out the generic nature of the solution.

5 Controllability and observability

The roles of the cycle indices in characterizing the controllability and observability of the singular

system are given by the following results.

Proposition 3 Assume that the system (1) is regular, then

(a) it is R-controllable (R-observable) only if col(B) ≥ k (row(C) ≥ k). Moreover, for almost any
F ∈ Rr×k (G ∈ Rk×m), (E,A, F,G) is R-controllable (R-observable), where k = cyc(E,A).

(b) it is impulse controllable (impulse observable) only if col(B) ≥ k (row(C) ≥ k). Moreover, for
almost any F ∈ Rr×k (G ∈ Rk×m), (E,A,F,G) is impulse controllable (impulse observable),
where k = cyc∞(E,A).
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(c) it is strongly controllable (strongly observable) only if col(B) ≥ k (row(C) ≥ k). Moreover, for
almost any F ∈ Rr×k (G ∈ Rk×m), (E,A, F,G) is strongly controllable (strongly observable),
where k = Cyc(E,A).

Theorem 5 Assume that the system (1) is regularizable by output feedback, then,

(a) for almost any K ∈ Rr×m, F ∈ Rr×k, and G ∈ Rk×m, (E,A+BKC,F,G) is R-controllable
and R-observable, where k = cyc(E,A,B,C).

(b) for almost any K ∈ Rr×m, F ∈ Rr×k, and G ∈ Rk×m, (E,A + BKC,F,G) is impulse
controllable and impulse observable, where k = cyc∞(E,A,B,C).

(c) for almost any K ∈ Rr×m, F ∈ Rr×k, and G ∈ Rk×m, (E,A + BKC,F,G) is strongly
controllable and strongly observable, where k = Cyc(E,A,B,C).

6 Conclusion

This paper studies structural properties of both finite poles and the infinite pole of LTI singular

systems under output feedback. The ability of output feedback to change the structure of the

finite and infinite pole of the system is characterized through some new concepts regarding the

multiplicity of the pole or the indices of the system. The determination of these multiplicities and

indices are discussed. The number of the infinite pole that can be eliminated by output feedback

is given. An assignability equivalence is established between the variable finite poles and the poles

of a controllable and observable non-singular system. Consequently, all the finite poles, except the

fixed ones (corresponding to the uncontrollable or unobservable modes), can be separated from

each other and shifted away from any given finite set. It is also shown that the minimal number

of inputs (outputs) required for controllability (observability) is equal to the output feedback cycle

indices of the singular system.
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