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Abstract

The shifted QR algorithm can be interpreted as a nonlinear discrete dynamical
system on the flag manifold. In the complex case we describe the reachability sets as
orbits of a group action and prove non-controllability of the algorithm. In contrast,
the algorithm restricted on the subset of Hessenberg flags is generically controllable.

1 Introduction

Spectral shifts are an important tool in numerical linear algebra and serve to speed up the

convergence of matrix eigenvalue algorithms. They are e.g. instrumental for the QR al-

gorithm in order to achieve quadratic or cubic convergence rates. Such shift strategies are

usually found in a heuristic way and a systematic analysis and design of shift policies is

essentially an open research problem in numerical analysis; see [7]. From a control theoretic

point of view, matrix eigenvalue algorithms can be viewed as dynamical systems with spec-

tral shifts acting as control variables. In [5, 6], reachability properties of the shifted inverse

power iteration on projective space are investigated. Here we extend this earlier approach

to a control theoretic analysis of the shifted QR algorithm.

The starting point for our analysis is the well known basic fact that the QR algorithm

for computation of eigenspaces can be interpreted as the inverse power iteration on the flag

manifold, i.e. as a nonlinear dynamical system on the flag manifold; see e.g. [1]. In this

paper we focus on the controllability properties of the shifted inverse power iteration on com-

plex flag manifolds. Reachable sets are shown to be orbits of an abelian group that acts on

the flag manifold. This immediately leads to a sharp upper bound on the dimensions of the

reachable sets as well as to the conclusion that the shifted QR algorithm for n× n matrices

is never controllable, unless n = 2. Moreover, a coarser partition of the flag manifold by

unions of reachable sets of a fixed type is described, thus making contact with earlier work

by Gelfand et. al. [3] on Grassmann simplices.

In practical implementations of the algorithm an initial matrix A is first reduced to Hes-

senberg form. Since the QR algorithm preserves the Hessenberg structure it makes sense to

restrict the algorithm to matrices of that type. In our setting this is equivalent to consider the
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restriction of the shifted inverse power iteration on the set of so-called Hessenberg flags. Hes-

senberg flags V = (V1, . . . , Vn−1) are increasing sequences of linear subspaces V1 ⊂ · · · ⊂ Vn−1

with the property that AVk ⊂ Vk+1, k = 1, . . . , n− 1. The set of Hessenberg flags is a com-

pact algebraic subvariety of the flag manifold, called the Hessenberg variety. Its geometry

has been studied by de Mari and Shayman [2]. As the Hessenberg variety is invariant under

iterations of the shifted inverse iteration, it is in particular a union of reachable sets. We

prove that there is one reachable set that is dense in the set of complex Hessenberg flags.

This implies that the QR algorithm with complex eigenvalue shifts is generically control-

lable on the set of Hessenberg matrices. A similar characterization of reachable sets for the

shifted QR algorithm on real symmetric isospectral tridiagonal matrices has been given in

unpublished work by G. Gladwell and presented in a lecture at the 4th SIAM Conference on

Linear Algebra in Signals, Systems and Control, Boston 2001. Gladwell’s approach is quite

different to ours and is based on the preservation of total positivity of tridiagonal matrices

under the QR algorithm; see [4]. We believe that our approach has certain advantages that

simplifies the analysis.

2 Reachable sets as orbits of a group action

We begin, by interpreting the QR algorithm as an inverse iteration on the flag manifold. Re-

call, that a complex flag V is a sequence of complex linear subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vn−1

with dimC Vk = k for all k = 1, . . . , n− 1. Let Flag(Cn) denote the set of all such flags. It is

a smooth, compact and connected manifold of complex dimension 1
2
n(n− 1).

The general linear group GLn(C) acts on Flag(Cn) via

V → g · V := (gV1, gV2, . . . , gVn−1) ∈ Flag(Cn), g ∈ GLn(C).

Let A denote a complex n×n matrix with spectrum σ(A). Following Ammar and Martin [1]

we interpret the shifted QR algorithm, acting on linear subspaces, as the nonlinear discrete

time control system on Flag(Cn), given as

Vk+1 = (A− ukI)−1Vk, uk /∈ σ(A) (2.1)

Starting from any point V0 of the flag manifold, the set of flags that can be obtained by a

finite number of iteration steps of (2.1), is the reachable set

RA(V0) := {V ∈ Flag(Cn) | V = ΠN
k=0

(
A− ukI

)−1V0 |N ∈ N;uk ∈ C \ σ(A)}.

The next result shows that reachable sets of (2.1) are orbits of an abelian group action on

the flag manifold. Recall that a matrix A is called cyclic if its minimal polynomial coincides

with the characteristic polynomial.
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Lemma 2.1. (a) Given A ∈ Cn×n, the set

ΓA := {ΠN
k=0

(
A− ukI

)−1 |N ∈ N;uk ∈ C \ σ(A)}

is a abelian subgroup of GLn(C). If A is cyclic, then ΓA is the centre of A in GLn(C).

If A is diagonalizable, then

ΓA = {Πn−1
k=0

(
A− ukI

)
|uk ∈ C \ σ(A)}.

(b) For every V ∈ Flag(Cn), the reachable sets coincide with the orbits of ΓA:

RA(V) = ΓA · V

From the above lemma, if A is diagonalizable, then every reachable set is the image of a

connected set under the continuous map FV : (C \ σ(A))n → Flag(Cn)

FV(u0, . . . , un−1) = Πn−1
k=0

(
A− ukI

)
V .

Therefore the image is connected, too. This shows that reachable sets are always connected.

Together with the description of reachable sets as orbits of a Lie group action, the following

result is obtained. Note that the given dimension bound is sharp.

Theorem 2.1. If A is diagonalizable, the reachable sets RA(V) are connected complex sub-

manifolds of Flag(Cn) of dimension at most n− 1.

In particular, every reachable set has dimension at most n− 1. Since Flag(Cn) has dimen-

sion 1
2
n(n− 1) we conclude

Corollary 2.1. Let n > 2. The shifted inverse iteration (2.1) on the flag manifold is not

controllable. In particular, the shifted QR algorithm on isospectral complex n × n matrices

is not controllable.

3 Classification of reachable sets

The results of the previous section show that the partition of the flag manifold by reachable

sets is a singular foliation by low dimensional submanifolds. Although the geometry of such

leaves can be easily described, the partition is to fine to be useful for classification purposes.

We therefore introduce a coarser partition of the flag manifold by unions of reachable sets

of a fixed type.

Definition 3.1. For A ∈ Cn×n let InvA denote the set of proper A-invariant subspaces

W ⊂ Cn. Two flags U ,V ∈ Flag(Cn) are called equivalent, U ' V, if for all W ∈ InvA:

dim(Uj ∩W ) = dim(Vj ∩W ), j = 1, . . . , n− 1.

The set of all flags, that are equivalent to a given flag U is denoted by [U ].
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Theorem 3.1. ' is an equivalence relation on Flag(Cn). The equivalence classes are unions

of reachable sets. If A is cyclic, there exist only finitely many equivalence classes.

Note that each equivalence class [U ] has the following equivalent description as an intersec-

tion of Schubert cells. For simplicity we assume that A has distinct eigenvalues with eigen-

vectors e1, . . . , en. For any permutation π : {1, . . . , n} → {1, . . . , n} let Eπ = (Eπ
1 , . . . , E

π
n−1)

denote the flag defined by Eπ
i = span{eπ(1), . . . , eπ(i)}. Then

SU(Eπ) := {V ∈ Flag(Cn) | dim(Vi ∩ Eπ
j ) = dim(Ui ∩ Eπ

j ) ∀i, j}

is a Schubert cell in the flag manifold and

[U ] =
⋂
π

SU(Eπ)

is the intersection of these n! Schubert cells. Such objects have been first studied by Gelfand

et. al. [3] and are called Grassmann simplices. The filtration by Grassmann simplices is

coarser then that by reachable sets.

From max{0, dim(V )+dim(W )−n} ≤ dim(V ∩W ) we expect that the largest Grassmann

simplex is

MA :=
{
V ∈ Flag(Cn) | dim(Vk ∩W ) = max{0, dim(Vk) + dim(W )− n}

for all W ∈ InvA and k = 1, . . . , n− 1
}
.

For generic matrices A this is indeed true:

Theorem 3.2. If A ∈ GLn(C) has n distinct eigenvalues, then MA is open and dense in

Flag(Cn).

Example 3.1. Let A ∈ GL3(C) have distinct eigenvalues. If e1, e2, e3 is a basis of eigenvec-

tors of A then

InvA = {〈e1〉, 〈e2〉, 〈e3〉, 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉}.

Each equivalence class of a flag U ∈ Flag(C3) ist characterized by 12 numbers dim(Ui ∩
W ) ∈ {0, 1, 2}. The class MA is the set of flags U = (U1, U2) with dim(U1 ∩W ) = 0 and

dim(U2 ∩W ) = dim(W )− 1.

The following conjecture describes the adherence order on Grassmann simplices.

Conjecture 3.1. Let A ∈ GLn(C) have n distinct eigenvalues and U ,V ∈ Flag(Cn), then

[U ] ⊆ [V ] ⇔ for all W ∈ InvA : dim(Uj ∩W ) ≥ dim(Vj ∩W ), j = 1, . . . , n− 1.
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4 Reachable sets of the Hessenberg variety

In numerical computations one transforms a matrix A first into Hessenberg form and then

applies the QR algorithm to this condensed form. Since the QR algorithm preserves the Hes-

senberg structure it restricts to a control system on the set of Hessenberg flags; see [1] and [2].

For a given matrix A, the Hessenberg variety is defined as the set

HessA(Cn) := {V ∈ Flag(Cn) |AVk ⊂ Vk+1, k = 1, . . . , n− 1}.

De Mari and Shayman [2] have shown that HessA(Cn) is a compact connected submanifold

of Flag(Cn), provided A has n distinct eigenvalues. Moreover, the dimension in this case is

n− 1. On the other hand, the Hessenberg variety is invariant under iterations of the control

system (2.1) and therefore it is a union of reachable sets. Since these reachable sets have at

most dimension n− 1, one expects that there is a dense reachable set in HessA(Cn). This is

indeed true and shown below.

The following result characterizes the intersection of MA with the Hessenberg variety.

Lemma 4.1. Let A have n distinct eigenvalues and V ∈ HessA(Cn). Then V ∈ MA if and

only if AVk 6= Vk for all k = 1, . . . , n − 1. In particular, MA ∩ HessA(Cn) is an open and

dense subset of HessA(Cn).

Note that the set HessA(Cn)∩MA is invariant under the algorithm and therefore must be

a union of reachable sets. It is actually equal to a reachable set.

Theorem 4.1. Let A ∈ GLn(C) have distinct eigenvalues. For every V ∈ HessA(Cn)∩MA

then RA(V) = HessA(Cn) ∩MA.

This implies the main result of this paper.

Theorem 4.2. Let A ∈ GLn(C) have n distinct eigenvalues. For every V ∈ HessA(Cn)∩MA

RA(V) = HessA(Cn).

In particular, the shifted inverse iteration (2.1), restricted to the Hessenberg variety, is con-

trollable.

It can be shown, using the above result, that the shifted QR algorithm on complex isospec-

tral Hessenberg matrices is controllable. In the real case the situation is a bit more compli-

cated and only partially understood. If A is a real symmetric matrix with distinct eigenval-

ues, then (2.1) with real shifts is controllable on the real Hessenberg variety. This implies

controllability of the shifted QR algorithm on the set of symmetric isospectral tridiagonal

matrices, with positive off diagonal entries. There are several open research problems in

this area. One is the characterization of the adherence order for the reachable sets, i.e. a

characterization of the reachable sets contained in the closure of a given one. The extension

of our results to FG algorithms is another challenge, as is the extension of the algorithm to

other classical groups or general semisimple Lie groups.
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5 Conclusions

The QR algorithm with eigenvalue shifts on for eigenspace computations can be equivalently

reformulated as the shifted inverse iteration on the flag manifold. It is never controllable,

except for 2× 2 matrices. For arbitrary complex matrices with distinct eigenvalues we show

that the shifted inverse iteration on the Hessenberg variety is controllable. This implies

controllability of the shifted QR algorithm on complex isospectral Hessenberg matrices.
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