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{absil,sepulchre}@montefiore.ulg.ac.be

∗Australian National University, ACT, 0200, Australia

Robert.Mahony@anu.edu.au

Abstract

An extension of the Rayleigh quotient iteration (RQI) to the Grassmann manifold
has been recently proposed for computing a p-dimensional eigenspace of a symmetric
matrix A. Here we analyze a continuous-time flow analogous to this Grassmannian
RQI. This flow achieves deflation in finite time, i.e. it converges in finite time to a
subspace that includes an eigenvector of A.

1 Introduction

One of the ‘classical’ numerical methods used to compute a single eigenvalue, eigenvector pair

for a symmetric matrix A is the Rayleigh Quotient Iteration [Par98]. The Rayleigh quotient

iteration is also important since it is closely related to the shifted QR-algorithm, an important

tool in most numerical routines used to compute eigen-decompositions of symmetric matrices

(cf. Watkins [Wat82] for an excellent review of the QR algorithm).

A generalization of the RQI to the Grassmann manifold Gr(p, n) has been proposed

in [AMSV02] for computing a p-dimensional invariant subspace of a symmetric matrix A.

The generalized method involves the solution of a Sylvester equation at each iteration step

for a numerical cost of O(np2). The property of cubic convergence of the RQI is retained in

the generalized algorithm.

Since the early eighties there has been considerable interest in studying continuous-time

flows related to algebraic iterations. The result that ignited interest in such flows was when

iterates of the unshifted QR-algorithm were shown to be unit time samples of a particular

Lax-pair equation [Fla74, Sym82, DNT83, Nan85]. This work sparked extensive research on
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using dynamical systems to solve linear algebraic problems [Bro89, WE88, Chu88, CD90,

HM94].

A continuous-time differential equation analogous to the (classical) Rayleigh Quotient It-

eration for a symmetric matrix A is studied in [MA01]. The set of all continuous solutions,

termed the Rayleigh quotient flow, is shown to be a scaled version of the Newton flow for

Rayleigh quotient cost functional. The scaling factor ensures that the rate of variation of

the Rayleigh quotient is constant and positive along solutions. This interpretation leads to

a precise phase portrait for Rayleigh quotient flow. In particular, it is shown that complete

solutions of the Rayleigh quotient flow visit the eigenvectors of A in ascending order.

In the present paper, the analysis that was carried out on the sphere Sn−1 in [MA01] is

extended to the Grassmann manifold Gr(p, n). Namely, we consider the flow generated by

the generalized Rayleigh quotient direction on the noncompact Stiefel manifold ST(p, n) (i.e.

the set of n-by-p matrices with full column rank). This flow is shown to belong to a class of

flows on ST(p, n) that induce a given flow on Gr(p, n) through the “column span” mapping

from ST(p, n) onto Gr(p, n). This flow is termed the Grassmann-Rayleigh Quotient Flow

(GRQF).

The connection with the Newton flow is not retained when p > 1, but the property of

constant variation of the Rayleigh quotient is still valid for the Ritz values associated to the

solutions. Moreover, for most initial conditions, if Y(t) is a solution of the GRQF, then there

exists a finite time t∗ such that Y(t∗) (which is an element of Gr(p, n), that is a p-dimensional

subspace of Rn) contains an eigenvector of A. This leads to a continuous-time flow achieving

deflation.

2 The power method flow and the Rayleigh quotient

flow

Because the Rayleigh quotient flow is derived from the power method, we begin this section

with a brief reminder of the power method and the associated flows.

The power method [Par98] defines a discrete flow on the sphere Sn−1:

xk+1 =
Axk

|Axk|
, x0 ∈ Sn−1, (2.1)

where |·| denotes the Euclidean 2-norm in Rn. The discrete flow (almost) always converges to

the maximal (in absolute value) eigenvalue, eigenvector pair of the n-by-n symmetric matrix

A. The iteration (2.1) is defined on the sphere Sn−1 but can be interpreted as a discrete-time

dynamical system on the real projective space RPn−1, i.e. the set of one-dimensional linear

subspaces of Rn [HM94, AMSV02].

A natural generalization of RPn−1 is the Grassmann manifold Gr(p, n), i.e. the set of the

p-dimensional subspaces of Rn. The power method is extended to Gr(p, n) in the following

way. Let Y be an element of Gr(p, n). Let Y ∈ Rn×p be a basis of Y . That is, the column
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space of Y , denoted by bY c for convenience throughout the article, is equal to Y . Note that

if Y1 and Y2 are two bases of Y , then there exist a nonsingular p-by-p matrix M such that

Y1 = Y2M . The extended power method, usually termed direct subspace iteration [Par98],

maps the subspace Y to the subspace bZc where

Z = AY. (2.2)

It is easily verified that bZc does not depend on the basis Y chosen to represent Y . This

iteration generically converges to the largest p-dimensional eigenspace of A. In practice, in

order to ensure numerical robustness, Y will be represented by an orthonormal basis X and

the next basis will be defined by X+ = qf(AX) where qf is any operator mapping general

basis to orthonormal basis without altering the column space.

The continuous-time flow associated to the direct subspace iteration is

Ẏ = BY. (2.3)

With the special choice B = ln(A), the iterates Y(k) of the discrete iteration (2.2) and the

solution Y (t) of (2.3) are related by Y(k) = Y (k) for all integer k provided Y(0) = Y (0).

The (classical) Rayleigh Quotient Iteration (RQI) is an inverse iteration with Rayleigh

quotient shift ρA(x) := (xT Ax)/(xT x), namely [Par98]

z = (A− ρA(x(k))I)−1x(k)

x(k+1) = z/|z|.

If x is close to an eigenvector of A, then ρA(x) is a very close (quadratic) approximation

of the corresponding eigenvalue of A. This ensures cubic local convergence of the RQI to

eigenvectors of A.

In [AMSV02], the RQI is extended to the Grassmann manifold in the following way. The

Grassmann Rayleigh Quotient Iteration (GRQI) maps the subspace bY c to the subspace bZc
where Z solves

AZ − Z(Y T Y )−1Y T AY = Y.

Here again, it is possible to show that bZc does not depend on the basis Y chosen to represent

bY c.
By analogy to the power method flow, we define the Grassmann-Rayleigh Quotient Flow

(GRQF) by

AZY − ZY (Y T Y )−1Y T AY = Y (2.4a)

Ẏ = ZY . (2.4b)

The solutions of (2.4) evolve on Rn×p but, as it will be shown in Proposition 3.1, they indeed

generate a unique flow on the Grassmann manifold Gr(p, n).

Contrary to the power method flow, the GRQF does not go through the (discrete) iterates

of the GRQI. Nevertheless, this flow displays interesting convergence properties and its

analysis conveys valuable ideas in terms of eigenspace computation.
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The case where p = 1, for which the Grassmann manifold reduces to the real projective

space RPn−1), has been investigated in [MA01]. It is shown in [MA01] that, when p = 1,

ρ̇A = 2 along the solutions of (2.4) —i.e. the Rayleigh quotient increases at constant rate—

and the solutions reach an eigenvector of A in finite time.

The present paper addresses the case p ≥ 1. It is shown that the property ρ̇A = 2 extends

to the eigenvalues of the matrix Rayleigh quotient RA(Y ) = (Y T Y )−1Y T AY . Moreover, the

property that the solutions reach an eigenvector of A is still valid in the sense that, at a

finite time t∗, the column span bY c of the solution Y of (2.4) contains an eigenvector of A.

3 The Grassmann-Rayleigh Quotient Flow and its rep-

resentations

The following proposition proves that the equation (2.4) defines a flow on the Grassmann

manifold, and that (2.4) belongs to a broader class of matrix differential equations whose

solutions generate the same curve on the Grassmann manifold.

Proposition 3.1 (GRQF). Let ZY verify (2.4a). Consider the following matrix differential

equation

Ẏ = ZY + Y R (3.5)

where R is a (possibly time-varying) arbitrary p-by-p matrix. Note that (3.5) reduces to (2.4b)

for the choice R ≡ 0. Recall the notation bY c for the column span of Y .

The curves bY (t)c where Y (t) solves (3.5) define a flow on the Grassmann manifold, i.e,

1. bY (t)c does not depend on R;

2. if Ya(t), Yb(t) solve (3.5) and bYa(0)c = bYb(0)c, then bYa(t)c = bYb(t)c for all t.

We call this flow the Grassmann-Rayleigh Quotient Flow (GRQF).

Proof. These properties are due to the fact that ZY verifies ZY M = ZY M (see [AMSV02])

and that motion of Y in the direction of Y M does not alter bY c. Choose an orthonormal

basis (W |W⊥) of Rn such that Y (0) is not orthogonal to W , i.e. W T Y (0) is invertible. For

each Y not orthogonal to W , there exists a unique K ∈ R(n−p)×p and a unique M ∈ Rp×p

such that

Y = (W + W⊥K)M. (3.6)

Note that bY c is uniquely defined by K. Substituting the representation (3.6) into the

dynamics (3.5) yields

Ṁ = W T ZW+W⊥KM + MR (3.7a)

K̇M = [W T
⊥ZW+W⊥K −KW T ZW+W⊥K ]M (3.7b)
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It is now shown that M(t) is invertible for all t. Denote B = W T ZW+W⊥K . The solution

M(t) of (3.7a) reads M(t) = exp[
∫ t

0
B(σ)dσ] M(0) exp[

∫ t

0
R(σ)dσ]. In this expression, M(0)

is invertible by choice of W . So, as long as the exponentials are well defined, M(t) is invertible

as the product of invertible matrices.

Since M(t) is invertible, postmultiplying (3.7b) by M−1 yields

K̇ = W T
⊥ZW+W⊥K −KW T ZW+W⊥K

which only involves the coordinates K of bY c. The matrices R and M are absent, which

proves properties 1 and 2 respectively.

In view of proving the deflating property of the GRQF, it is useful to represent subspaces

by orthonormal bases of Ritz vectors, namely, represent bY c ∈ Gr(p, n) by a matrix X in

Γ = {X ∈ Rn×p : XT X = Ip and XT AX is diagonal} (3.8)

such that bXc = bY c. This is achieved with a particular choice of R in (3.5) such that

Dt(Y
T Y ) = 0 and Dt[(Y

T Y )−1Y T AY ] is diagonal:

Proposition 3.2 (structure-preserving representation of the GRQF). The solution

Y (t) of (3.5) with R = (Y T Y )−1ZT
Y Y ,

Ẏ = ZY − Y (Y T Y )−1ZT
Y Y, (3.9)

verifies the following properties

1. Dt(Y
T Y ) = 0.

2. Dt[(Y
T Y )−1Y T AY ] = 2I.

Proof. 1. Dt(Y
T Y ) = Y T Z − ZT Y + (Y T Z − ZT Y )T = 0.

2. ṘA(Y ) = −(Y T Y )−1Dt(Y
T Y )(Y T Y )−1Y T AY

+(Y T Y )−1(ZT AY )− (Y T Y )−1Y T Z(Y T Y )−1Y T AY

+(Y T Y )−1Y T AZ − (Y T Y )−1Y T AY (Y T Y )−1ZT Y .

Grouping the terms appropriately and using (2.4a) yields the result ṘA(Y ) = 2I.

Consequently, (3.9) leaves Γ invariant:

Proposition 3.3 (Ritz representation of the GRQF). If X(0) is such that X(0)T X(0) =

I and X(0)T AX(0) = Σ(0) = diag(σ1(0), . . . , σp(0)), then the solution X(t) of

AZX − ZXXT AX = X (3.10a)

Ẋ = ZX −XZT
XX (3.10b)

verifies X(t)T X(t) = I and

RA(X(t)) = X(t)T AX(t) = diag(σ1(0), . . . , σp(0)) + 2It =: diag(σ1(t), . . . , σp(t)).

Moreover, since (3.10) is a particular realization of (3.5), bX(t)c is a solution of the GRQF.

5



Since RA(X) = diag(σ1(t), . . . , σp(t)), equation (3.10a) decouples into p equations

(A− σiI)Z:,i = X:,i, i = 1, . . . , p,

which shows that ZX is well defined by (3.10a) as long as

σi(t) = σ0 + 2t /∈ spec(A), i = 1, . . . , p. (3.11)

The dynamics (3.10b) of X can be interpreted in the following way. Premultiplying (3.10a)

by ZT yields

XT ZX − ZT
XX = −[XT AX, ZT Z],

whence (3.10b) also reads

Ẋ = (I −XXT )ZX −X[XT AX, ZT Z]. (3.12)

This clarifies the structure of (3.10b). The term (I − XXT )ZX in (3.12) is responsible

for variations of the orthonormal basis X towards its orthogonal complement, producing

variations of the subspace bXc spanned by X. The term X[XT AX, ZT Z], where X is

multiplied by a skew-symmetric matrix, rotates X inside bXc so as to preserve diagonality

of XT AX. This decomposition fits the decomposition of the tangent space TXSt(p, n) of the

Stiefel manifold —i.e. the manifold of the orthonormal n-by-p matrices, which can be viewed

as a principal fiber bundle over Gr(p, n) with group O(p) [KN63]— into the vertical space

{XΩ : Ω p-by-p skew} and the horizontal space {X⊥H : H ∈ R(n−p)×p}.

4 Deflation in finite time

In this section, it is proved that, under generic conditions, if X(t) is a solution of (3.10), then

either a column of X converges to an eigenvector of A, or X belongs to the stable manifold

of an unstable set. The latter behaviour is not observed in practice.

Choose an initial condition bY (0)c such that RA(Y ) and A have no eigenvalue in com-

mon (otherwise ZY is ill-defined). Without loss of generality, choose a coordinate system

and a matrix X(0) such that bX(0)c = bY (0)c, X(0)T X(0) = I, X(0)T AX(0) = Σ(0) =

diag(σ1(0), . . . , σp(0)), A = diag(λ1, . . . , λn), and λ1 − σ1(0) = min{λi − σj(0) : λi − σj(0) ≥
0}. Moreover, in order to simplify the forthcoming development, suppose that this mini-

mum is unique. Then from (3.11) the first critical time of (3.10), i.e. time when the equa-

tion (3.10a) for ZX is singular, is

t∗ = (λ1 − σ1(0))/2

and at that time, σ1(t
∗) = λ1.

It is claimed that (apart from a theoretically possible convergence of X to an unstable set)

the first column of X converges to ±e1 as t → t∗, which means that the solution bX(t)c of

the GRQF contains the eigenvector e1 of A when t = t∗. The proof follows.
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Denoting Xij = eT
i Xej and Xj = Xej, the element-by-element expression of (3.10) is

Ẋij = (λi − σj)
−1Xij −

∑
km

Xik(λm − σk)
−1XmkXmj (4.13)

where σl = XT
l AXl. Separating the terms that will blow up first (at t = t∗) yields

Ẋ11 =
1

λ1 − σ1

X11(1−X2
11) −

∑
(k,m) 6=(1,1)

Xik(λm − σk)
−1XmkXmj (4.14a)

Ẋij = − 1

λ1 − σ1

Xi1X1jX11 +
1

λi − σj

Xij −
∑

(k,m) 6=(1,1)

Xik(λm − σk)
−1XmkXmj. (4.14b)

Define the new time variable

τ = − ln(λ1 − σ1(t)) = − ln(2(t∗ − t)), t ≤ t∗,

and denote Dτ by ′. Then, denoting ξ = λ1 − σ1, (4.14) becomes

X ′
11 = X11(1−X2

11) + ξK11(X) (4.15a)

X ′
ij = −Xi1X1jX11 + ξKij(X) (4.15b)

ξ′ = −ξ (4.15c)

where K(X) is bounded on t ∈ [0, t∗] because X is orthonormal and λm−σk for (k,m) 6= (1, 1)

evolves linearly with t (see (3.11)) and does not vanish for t ∈ [0, t∗] by hypothesis. Restrict

the analysis to the invariant manifold Γ (see (3.8)) which is stable (non asymptotically) for

the GRQF by Proposition 3.2. The equilibrium points of (4.15) are

{ξ = 0, X11 = ±1} ∪ {ξ = 0, X11 = 0}.

Linearization of (4.15) at ξ̄ = 0, X̄11 = ±1 yields

X ′
11 = −2X11 + ξK̄11 (4.16a)

X ′
ij = . . . (4.16b)

ξ′ = −ξ (4.16c)

and the set {ξ = 0, X11 = ±1} is stable. Linearization of (4.15) at ξ̄ = 0, X̄11 = 0 yields

X ′
11 = X11 + ξK̄11 (4.17a)

X ′
ij = −X̄i1X̄1jX11 + ξK̄ij (4.17b)

ξ′ = −ξ (4.17c)

and the set {ξ = 0, X11 = 0} is unstable. Moreover, since K11 is bounded and ξ = e−τ ,

equation (4.15a) implies that either
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• X11 → 0. This happens only if X(0) belongs to the stable manifold of the unstable set

{ξ = 0, X11 = 0}. Or

• X11 → ±1. This means that the first column of X converges to the eigenvector ±e1 of

A.

When X11 = 1, then one has σ1 = λ1 and ZX is not defined. A possible continuation of the

flow is to deflate the problem by freezing X1 and continuing the flow inside the orthogonal

complement of X1 with initial point X:,2:p.

5 Conclusion

We have studied a continuous flow associated to a Rayleigh quotient iteration on the Grass-

mann manifold Gr(p, n) [AMSV02]. The analysis of this Grassmannian flow is carried out

using its Ritz representation on the Stiefel manifold. The property of constant variation of

the Rayleigh quotient along the solutions in the particular case p = 1 [MA01], extends when

p ≥ 1 to the Ritz values associated to the solutions. Moreover, for most initial conditions,

one of the Ritz vectors of the solution converges to an eigenvector of A in finite time. This

property leads to a continuous-time flow achieving deflation.
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