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Abstract

This paper shows that the assignability of finite poles of a strongly controllable and observable

singular system (E,A,B,C) is equivalent to the pole assignability of a non-singular system

(As, Bs, Cs) of order rank(E). Consequently, all the existing results on pole assignment of non-

singular systems can be extended to singular systems as far as the finite poles are concerned.

1 Introduction

Consider the linear time-invariant singular system described by

Eẋ = Ax+Bu, y = Cx (1)

where x ∈ Rn is the state of the system, u ∈ Rr and y ∈ Rm are the input and output vector of the
system respectively, and E, A,B,C are real constant matrices of appropriate sizes. E is assumed

to be singular with 0 <rank(E)= q < n .

If we apply a static output feedback

u = Ky + v (2)

the closed-loop system (1) becomes

Eẋ = (A+BKC)x+Bu, y = Cx (3)

It is well known that a singular system has a complicated structure and may contain infinite

pole (impulse mode) in addition to the finite poles. It is desirable to eliminate the infinite poles as

well as to assign the finite poles. It is shown [7] that if the system (1) is impulse controllable and

observable, then its infinite pole can be completely eliminated by output feedback. [1] shows that

the finite poles can be freely assigned and the infinite poles can all be eliminated by state feedback

if the system is strongly controllable. In this paper, we shall study the assignability of the finite

poles of the closed-loop system (3) by output feedback. A so-called equivalence of pole assignability

is established between singular systems and non-singular systems. Specifically, we show that the

finite poles of the closed-loop system (3) can be assigned as much as the finite poles of a controllable

and observable system (As, Bs, Cs) of order rank(E) if the system (1) is strongly controllable and

observable. Consequently, the existing result regarding pole assignability under output feedback

for non-singular systems can be directly extended to singular systems (E,A,B,C) as far as the

finite poles are concerned.
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2 Preliminaries

Let x ∈ Rn, and f(x) denote a polynomial in the ring of polynomials R[x]. A property is called
generic [5] if there exits a polynomial f(x) ∈ R[x] not identically zero such that the property holds
for any x ∈ S = Rn − N (f), where N (f) = {x | f(x) = 0, x ∈ Rn}. In other words, a generic
property holds for almost any x ∈ Rn.

Lemma 1 [2] The following statement are true.

1. The system (1) is impulse controllable (impulse observable) if and only if rank

"
E 0 0

A E B

#

= n+ rank(E) (rank

 E A

0 E

0 C

 = n+ rank(E)).

2. The system (1) is strongly controllable (strongly observable) if and only if it is impulse con-

trollable (impulse observable) and rank
h
sE −A B

i
= n (rank

"
sE −A
C

#
= n) for any

s ∈ C.

Lemma 2 Let A ∈ Rn×l, B ∈ Rn×r, and C ∈ Rm×l be constant matrices, let K ∈ Rr×m be a

variable matrix, then,

g.r.{rank(A+BKC),K ∈ Rr×m} = min{rank[ A B ], rank

"
A

C

#
}

where g.r. stands for generic rank, i.e., the maximum rank of the matrix of A+BKC as K varies

in Rr×m. Furthermore, for almost any K ∈ Rr×m,

g.r.{rank(A+BKC),K ∈ Rr×m} = rank(A+BKC)

Proof: The first part is available in [6]. Let us prove the second part.

Denote r∗ = min
(
rank[ A B ], rank

"
A

C

#)
. We consider a polynomial f(k) defined as the

sum of the squares of all possible minors of order r∗ of the matrix A+BKC, where the vector k is
composed of all the elements of the matrix K. Clearly the set of zeros of f(k) is the complement

of the set whose element achieves the maximum rank, and f(k) is nonzero due to the first part.

Hence, the result follows.

The second part of the lemma is first presented in a recent paper [4], where singular value

decomposition of the matrices is used in the proof. It is pointed out that the proof given above is

straightforward and much simpler than that in [4].

3 Main Result

Let us now study the assignability of the finite poles of the system (1). To this end, we assume

that the singular system (1) is both strongly controllable and observable. In other words, both

the exponential modes and the impulse modes are assumed to be controllable and observable. The
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strong controllability is assumed, because it is required even for the state feedback to make the

closed-loop system impulse-free and assign the finite pole arbitrarily [1].

We recall [2] that two restricted equivalent system have the same poles (both finite and the

infinite). Moreover, both controllability and observability are invariant under restricted equivalent

transform and output feedback.

Let Q1, P1 be non-singular matrices satisfying Q1EP1 =diag(Iq, 0). The system (1) is restricted

equivalent to

Eẋ = Ax+Bu, y = Cx (4)

where the new state x = P−11 x, and

E = Q1EP1, A = Q1AP1 =

"
A11 A12
A21 A22

#
, B = Q1B=

"
B1
B2

#
, C = CP1=

h
C1 C2

i
Following Lemma 1, the system (1) is impulse controllable if and only if rank

h
A22 B2

i
=n− q;

the system (1) is impulse observable if and only if rank

"
A22
C2

#
=n − q. It follows from Lemma 2

that A22 + B2KC2 is invertible for almost any K ∈ Rr×m. For such a matrix K, let the output
feedback

u = Ky + v

The system (4) has the following closed-loop form

Eẋ =

"
A11 +B1KC1 A12 +B1KC2

A21 +B2KC1 A22 +B2KC2

#
x+Bv, y = Cx (5)

Define two non-singular matrices

Q2 =

"
Iq −X12X−122
0 In−q

#
, P2=

"
Iq 0

−X−122 X21 X−122

#

where Xij = Aij +BiKCj , i, j = 1, 2. And make the state transformation ex = P−12 x. The system

(5) is restricted equivalent to eE ėx = eAex+ eBv, y = eCex (6)

where eE = E, eA = Q2AP2 =
"
As 0

0 In−q

#

eB = Q2BP2 =
"
Bs
B2

#
, eC = Q2CP2 = h

Cs C2X
−1
22

i
where As = X11 − X12X−122 X21, Bs = B − X12X−122 B2, and Cs = C1 − C2X−122 X21. Since both

controllability and observability are invariant under restricted equivalent transform and output

feedback, we can easily obtain

Lemma 3 Assume that the system (1) is impulse controllable and observable. Then it is strongly

controllable if and only if the pair (As, Bs) is completely controllable; It is strongly observable if

and only if the pair (As, Cs) is observable.
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Up to now, we have obtained a restricted equivalent decomposition of the closed-loop system

under output feedback. We summarize this decomposition in the next lemma.

Lemma 4 If the system (1) is strongly controllable and observable, then for almost any output

feedback (2), the closed-loop system (3) is restricted equivalent to a system with the following de-

composition "
Iq 0

0 0

# ėx = " As 0

0 In−q

# ex+ " Bs
Bf

#
v, y =

h
Cs Cf

i ex
Furthermore, the subsystem (As, Bs, Cs) of order q is both completely controllable and observable.

Apply output feedback

v = fKy + w
to the system (6), we get the characteristic equation of the resultant closed-loop system

d(s) = det

"
sI −As −BsfKCs −BsfKCf
−BffKCs −I −BffKCf

#
= 0

Note that I +BffKCf is invertible for almost any fK ∈ Rr×m, we have
d(s) = det(−I −BffKCf ) det[sI −As −BsfKCs +BsfKCf (I +BffKCf )−1BffKCs]

= det(−I −BffKCf ) det hsI −As −Bs[fK − fKCf (I +BffKCf )−1BffK]Csi
In order to recover the output feedback matrix in the original input space, the following lemma

is needed.

Lemma 5 If both I + BffKCf and I − KsCfBf are invertible, then the following two matrix
equations are equivalent

Ks = fK − fKCf (I +BffKCf )−1BffKfK = (I −KsCfBf )−1K

Proof. The equivalence can be proved by direct matrix manipulations using the matrix equations

Y (I +XY )−1 = (I + Y X)−1Y and X(I +X)−1 = I − (I +X)−1.
We are now ready to present the following result regarding the finite pole assignability of

singular systems.

Theorem 1 Assume that the singular system (1) is strongly controllable and observable. The

assignability of the finite poles of the singular system (1) by output feedback is equivalent to that

of the poles of a non-singular system (As, Bs, Cs) of order q that is completely controllable and

observable.

Proof. Using the matrices introduced above, I−KsCfBf is invertible for almost any Ks ∈ Rr×m.
Let fK = (I − KsCfBf )−1Ks. From Lemma 5, under the invertibility constraints, the set of the

finite poles

σ(As +BsKsCs) = σ( eE, eA+ eBfK eC) = σ(E,A+BKC +BfKC)
= σ(E,A+B(K +fK)C) = σ(E,A+BKC)
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where K = K + fK. The assignability equivalence then follows from the generic property of the

matrices fK and Ks that yield the same desired poles. This completes the proof.

The above theorem implies that under the assumption of strong controllability and observability

what we can say about the assignment of the finite poles of the closed-loop singular system is as

much as what we understand about the assignment of the poles of a controllable and observable

triple (As, Bs, Cs) of order rank(E). We call this the equivalence of finite pole assignability under

output feedback.

Following the above equivalence, all the existing results on output feedback for non-singular

systems can be extended straightforward to singular systems. We now give an extension of a result

in [3] regarding the separation and shifting of the finite poles.

Theorem 2 Assume that the singular system (1) is strongly controllable and observable. For

almost any output feedback (2), the closed-loop system (3) has rank(E) distinct finite poles, and

they are away from any given finite set in the complex plane.

4 Conclusion

This paper studies the finite pole assignment problem of LTI singular systems by output feedback. It

first presents a restricted equivalent decomposition for the closed-loop system under the assumption

of strong controllability and observability. This decomposition allows the establishment of an

equivalence of pole assignability between the LTI singular system and a non-singular systems of

low order. Consequently, so far as the finite poles are concerned, the existing results regarding

static output feedback for non-singular systems can be directly extended to singular systems.
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