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Abstract

In this paper we present a stable coordination strategy for vehicle formation missions that involve

group translation, rotation, expansion and contraction. The underlying coordination framework

uses artificial potentials and virtual leaders. Symmetry in the framework is exploited to partially

decouple the mission control problem into a formation management subproblem and a maneuver

management subproblem. The designed dynamics of the virtual leaders play a key role in both

subproblems: the direction of motion of the virtual leaders is designed to satisfy the mission while

the speed of the virtual leaders is designed to ensure stability and convergence properties of the

formation. The latter is guaranteed by regulating the virtual leader speed according to a feedback

measurement of an appropriate formation error function. The coordination strategy is illustrated

in the context of adaptive gradient climbing missions.

1 Introduction

The main contribution of this paper is a method and proof for stably coordinating a group of vehicles

to cooperatively perform a mission. Gradient climbing and adaptive sampling in a given region

of the environment are examples of missions for which coordinated vehicle networks are expected

to outperform current approaches (see, for example, [4] on adaptive ocean sampling networks).

This expectation is motivated in part by the success of animal aggregations in searching their

environment. Fish schools, for instance, are remarkably effective and efficient at finding the densest

source of food, and biologists have developed a number of models for the traffic rules that govern

their successful cooperative behavior (see, for example, [7, 11, 12, 13] and references therein).

Coordinating control laws that are designed to produce the emergent behavior observed in biology

for gradient climbing are described in [1, 2].
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Adaptive sampling problems refer to those in which the main objective is to efficiently gather

data from the environment. The vehicle formation serves as a reconfigurable sensor array. Adap-

tation in this context might mean, for example, that the resolution of this sensor array adapts to

the environment; the resolution increases (i.e., the vehicles form a tighter group) when there is

considerable local variation in the measurements and decreases (i.e., a looser group) when there is

little variation in measurements across the group.

In this paper we present a control strategy and a Lyapunov-based stability proof for translation,

rotation, expansion and contraction of a vehicle formation. These then form the basic elements

for missions. In this paper, we focus on gradient climbing missions with environment-driven group

contraction and expansion.

We use as a setup for the construction and maintenance of vehicle formations the framework

presented in [9]. This framework uses artificial potentials and virtual leaders. Virtual leaders are

moving reference points that are used to herd the vehicle group and to enforce a desired group

geometry. Artificial potentials define interaction forces between pairs of neighboring vehicles and

between virtual leaders and nearby vehicles. The framework leads to decentralized control designs

in which each vehicle responds to its local environment. No ordering of vehicles is necessary and

this provides robustness to a vehicle failure.

In [9] the dynamics of the virtual leaders are independent of the behavior of the formation. This

keeps the rules relatively simple. However, the independence becomes a problem in circumstances

in which the formation cannot keep up with the virtual leaders. Following [10], we introduce in this

paper virtual leader dynamics that are driven by a feedback error associated with the formation.

Roughly speaking, we constrain motion of the virtual leaders in the event that the formation is not

keeping up so that we can guarantee stability and convergence.

The stability properties of the formation (without feedback-driven virtual leader dynamics) were

proved in [9] using Lyapunov’s direct method. In this paper, by incorporating the magnitude of

that same Lyapunov function as a feedback into the speed control of the virtual leaders, we are

able to extend the stability results to the moving formation. We guarantee an upper bound on the

Lyapunov function as well as convergence to the desired final state.

Our stabilized motion results go beyond those in [10] where motion of the virtual leader (and thus

the formation) was limited to translation. Here we exploit the symmetry in the framework of [9] to

extend the notion of virtual leader motion (and thus formation motion) to formation rotation and

formation contraction and expansion. The idea is to consider a web of virtual leaders that move

together like a rigid body. The motion of the virtual body is described by a position vector, an

orientation matrix and a scale factor that characterizes the size and spacing of the web. Stabilized

motion then includes the translation, orientation and scale factor variables so that the formation

can be made to stably translate, rotate, expand and contract.

We push the framework even further to enable formation missions. Of particular interest are

those missions that benefit not just from a translating formation but also from a formation that

can perform a desired rotation and/or expansion and contraction (e.g., gradient climbing with

adaptive spacing). To do so we use the remaining freedom in the virtual leader dynamics, that is,

we prescribe the direction of the virtual leader variables (position, orientation and scale factor).

The problems of maintaining a formation during virtual leader motion and controlling the motion

of the virtual leaders to successfully perform a mission are partially decoupled in this framework.
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Formation maintenance is guaranteed independent of the direction of the virtual leaders. This eases

the problem of designing the mission control law since the formation error is bounded. We prove

convergence in the case of gradient climbing missions.

There are a number of researchers who use artificial potentials and/or virtual leaders as part of a

multi-agent control scheme (see, for example, references in [9]). Translation, rotation and expansion

of a group is treated in [14] using a similar notion of a virtual rigid body called a virtual structure

which has dynamics dependent on a formation error function. However, the formation control laws

and the dynamics of the virtual structure differ from those presented here. For example, an ordering

of vehicles is imposed in [14]. Gradient climbing with a vehicle network is also a topic of growing

interest in the literature (see, for example, [5] and [2] and references therein), although adaptive

expansion and contraction in this context is not addressed in these papers. In [3], the authors use

Voronoi diagrams and information about a known environment to design control laws for a vehicle

network to optimize sensor coverage.

The remainder of this paper is organized as follows. In §2, we review the formation framework

of [9] based on artificial potentials and virtual leaders. Formation motion is introduced in §3
and the partially decoupled problems of formation stabilization and mission control are described.

Formation stabilization is addressed in §4 followed by a simulation example for a group rotation in

§5. Gradient climbing missions with adaptive formation spacing are treated in §6.

2 Artificial Potentials, Virtual Leaders and Symmetry

In this section we describe the underlying framework for decentralized formation control based

on artificial potentials and virtual leaders. The framework follows that presented in [9] (with

some variation in notation). Each vehicle in the group is modelled as a point mass with fully

actuated dynamics. Extension to underactuated systems is possible. For example, in [8], the

authors consider the dynamics of an off-axis point on a nonholonomic robot and use feedback

linearization to transform the resulting system dynamics into fully actuated double integrator

equations of motion.

Let the position with respect to an inertial frame of the ith vehicle in a group of N vehicles be

given by a vector xi ∈ R
l, i = 1, . . . , N where l = 1, 2 or 3 as shown in Figure 1. The control force

on the ith vehicle is given by ui ∈ R
l. Since we assume full actuation, the dynamics can be written

for i = 1, . . . , N as

ẍi = ui.

We introduce a web of M reference points called virtual leaders and define the position of the

kth virtual leader with respect to the inertial frame to be bk ∈ R
l, for k = 1, . . . ,M . Assume that

the virtual leaders are connected, i.e., let them form a virtual body. The position vector from the

origin of the inertial frame to the center of mass of the virtual body is denote r ∈ R
l as shown in

Figure 1. In [9] the virtual leaders move with constant velocity. In this section we specialize to the

case in which all virtual leaders are at rest. Motion of the virtual leaders will be introduced in §3.
Let xij = xi − xj ∈ R

l and hik = xi − bk ∈ R
l. Between every pair of vehicles i and j we define

an artificial potential VI(xij) which depends on the distance between the ith and jth vehicles.

Similarly, between every vehicle i and every virtual leader k we define an artificial potential Vh(hik)

which depends on the distance between the ith vehicle and kth virtual leader.
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Figure 1: Notation for framework. Solid circles are vehicles and shaded circles are virtual leaders.

The control law ui is defined as minus the gradient of the sum of these potentials plus a linear

damping term:

ui = −
N
∑

j 6=i

∇xi
VI(xij)−

M
∑

k=1

∇xi
Vh(hik)−Kẋi (2.1)

= −
N
∑

j 6=i

fI(xij)

‖xij‖
xij −

M
∑

k=1

fh(hik)

‖hik‖
hik −Kẋi

where K is a positive definite matrix.

We consider the form of potential VI that yields a force that is repelling when a pair of vehicles

is too close, i.e., when ‖xij‖ < d0, attracting when the vehicles are too far, i.e., when ‖xij‖ > d0

and zero when the vehicles are very far apart ‖xij‖ ≥ d1 > d0, where d0 and d1 are constant design

parameters. The potential Vh is designed similarly with possibly different design parameters h0

and h1 (among others). Typical forms for fI and fh are shown in Figure 2.

Figure 2: Representative control forces derived from artificial potentials.

Note that each vehicle uses exactly the same control law and is influenced only by near neighbor

vehicles, i.e., those within a distance d1, and nearby virtual leaders, i.e., those within a distance h1.
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The global minimum of the sum of all the artificial potentials consists of a configuration in which

neighboring vehicles are spaced a distance d0 from one another and a distance h0 from neighboring

virtual leaders.

The global minimum will not in general be unique. Since any vehicle can play any role in the

network, any permutation of vehicles in a given configuration that corresponds to a global minimum

will also be a global minimum. Further, because the potentials only depend upon relative distance,

there may be rotational symmetry and therefore a continuous family of global minimizing solutions.

This rotational symmetry can, if desired, be broken with additional virtual leaders. For example,

Figure 3(a) shows two solutions in the S1 family of solutions in the case of two vehicles and one

virtual leader in 2D. In Figure 3(b) a second virtual leader is added which breaks the S 1 symmetry

and fixes the orientation of the global minimum.

Figure 3: Equilibrium solutions for a formation in 2D with two vehicles. (a) With one virtual leader

there is S1 symmetry and a family of solutions. (b) With two virtual leaders the S1 symmetry can

be broken and the orientation of the group fixed.

We remark that it is sometimes of interest to have the option of breaking symmetry or not. Break-

ing symmetry by introducing additional virtual leaders can be useful for enforcing an orientation,

but it may mean increased input energy for the individual vehicles. Under certain circumstances,

it may not be feasible to provide such input energy and instead more practical to settle for a group

shape and spacing without a prescribed group orientation. This was the case in an implementa-

tion of this control strategy for maintaining a uniform density of stratospheric balloons over the

Northern Hemisphere [6]. These balloons have very limited control authority as compared with the

magnitude of the winds in the stratosphere and so minimum energy use is critical.

The state of the vehicle group is x = (x1, . . . , xN , ẋ1, . . . , ẋN ). In [9], local asymptotic stability

of x = xeq corresponding to the vehicles at rest at the global minimum of the sum of the artificial

potentials is proved with the Lyapunov function

V (x) =
1

2

N
∑

i=1



ẋi · ẋi +

N
∑

j 6=i

VI(xij) + 2

M
∑

k=1

Vh(hik)



 . (2.2)

3 Formation Motion: Translation, Rotation, Expansion and Con-

traction

In this section we introduce motion of the formation by prescribing motion of the virtual leader body.

This motion can include group translation, rotation, expansion and contraction. By parametrizing
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the motion by the scalar variable s, we enable a decoupling of the problem of formation stabilization

from the problem of formation maneuvering and mission control. In §4 we prescribe the dynamics

ds/dt which depend on a feedback of a formation error, and we prove convergence properties of the

formation. In §6 we prescribe the direction of the virtual leader motion, e.g., dr/ds, for gradient

climbing and prove convergence properties of the virtual leaders to the source of the gradient field.

3.1 Translation and Rotation

The stability proof of [9] is invariant with respect to SE(l), l = 2, 3 (R in the case l = 1) symmetries

of the virtual leader body. Specifically, this means that given the positions bk of the virtual leaders,

every set of virtual leader positions

b′k = Rbk + r, k = 1, . . . ,m

where (R, r) ∈ (SO(l)×R
l) = SE(l), l = 2, 3 also works in the proof. This can be viewed as fixing

the positions of the virtual leaders with respect to a “virtual body frame” and then moving the

“virtual body” around in SE(l).

Let b̄k = bk(ss)− r(ss), k = 1, . . . ,m, be the initial position of the kth virtual leader with respect

to a virtual body frame oriented as the inertial frame but with origin at the virtual body center of

mass. A trajectory in SE(l) paramaterized by s is defined by (R(s), r(s)) ∈ SE(l), ∀s ∈ [ss, sf ]

such that

bk(s) = R(s)b̄k + r(s).

Note that R(ss) is the l × l identity matrix.

3.2 Expansion and Contraction

For expansion and contraction we observe that the stability proof is still valid when we scale all

distances between the virtual leaders and all distance parameters (di, hi), i = 0, 1, by a factor

k(s) ∈ R. Incorporating this into the framework yields:

bk(s) = k(s)R(s)b̄k + r(s)

hi(s) = k(s)hi

di(s) = k(s)di, (3.3)

where R(s) governs rotation, r(s) translation and k(s) expansion and/or contraction.

3.3 Retained Symmetries

As discussed in §2, it may be desirable to keep certain symmetries while controlling the formation.

This can be accomplished by allowing the vehicles to influence the virtual leader dynamics. For

instance, to keep the translational symmetry but break the rotational symmetry one can let r(t)

evolve according to dynamics with forces, derived from the artificial potentials, that the vehicles

exert on the virtual leaders. These forces are equal in magnitude and opposite in direction to the

forces the virtual leaders exert on the vehicles. For example, let m be the total mass of the virtual
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body (if each virtual leader has unit mass then m = M). Then, we could set

r̈ = − 1

m

M
∑

k=1

N
∑

i=1

∇bk
Vh(hik)

At the same time R(s) would be made to evolve along a prescribed trajectory according to the

dynamics of s.

Analogously, to keep the rotational symmetry and break the translational symmetry, one would

let R(t) evolve according to dynamics given by the moments, associated with forces derived from

artificial potentials, that the vehicles exert on the virtual body. For example, suppose that I ∈ R
3×3

is the body-fixed inertia matrix for the virtual body about its center of mass, and let Ω denote the

angular velocity of the virtual body with respect to the virtual body fixed frame. Then, we could

set

Ṙ = RΩ̂

IΩ̇ = IΩ× Ω−RT
M
∑

k=1

N
∑

i=1

((bk − r)×∇bk
Vh(hik)) ,

where Ω̂z = Ω× z for z ∈ R
3. At the same time, r(s) would be made to evolve along a prescribed

trajectory according to the dynamics of s.

To prove stability in this case, one would add to the Lyapunov function the rotational and/or

translational kinetic energies of the virtual leaders.

3.4 Mission Trajectories

A third option, apart from prescribed trajectories and free variables, would be to let translation,

rotation, expansion and contraction evolve with feedback from sensors on the vehicles to carry out

a mission such as gradient climbing. This would result in an augmented state space for the system

given by (x, s, r, R, k). However, it is only the directions and not the magnitude of the virtual

body vector fields that we can influence since ds/dt will already be prescribed to enforce formation

stability. To see this decoupling of the mission control problem from the formation stabilization

problem, note that the total vector fields for the virtual body motion can be expressed as

ṙ =
dr

ds
ṡ, Ṙ =

dR

ds
ṡ, k̇ =

dk

ds
ṡ.

The prescription of ṡ, given in §4, controls the speed of the virtual body in order to guarantee

formation stability and convergence properties. For the mission control problem, we design the

directions
dR

ds
,

dr

ds
,

dk

ds
.

In §6 we choose rules for directions and prove convergence in gradient climbing problems.

4 Speed of Traversal and Formation Stabilization

We now explore how fast we can move along a trajectory while staying within some estimated

subset of the region of attraction. In the next theorem we prove that traversing the trajectory
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r(s), R(s), k(s) from s = ss to s = sf with the speed governed by equation (4.4) below will allow

the formation to converge to the final destination while always remaining within the region of

attraction, formulated as an upper bound VU on the Lyapunov function V (x, s). Here we will be

interested in the Lyapunov function V (x, s) that extends the Lyapunov function V (x) given by

equation (2.2) where bk, di and hi are replaced with bk(s), di(s) and hi(s) according to (3.3).

4.1 Convergence and Boundedness

Theorem 4.1 (Convergence and Boundedness) Let V (x, s) be a Lyapunov function for every

fixed choice of s with V (xeq(s), s) = 0. Let VU be a desired upper bound on the value of this Lyapunov

function such that the set {x : V (x, s) ≤ VU} is bounded. Let v0 be a nominal desired speed for the

formation. Let ṡ be given by

ṡ = min

{

v0, h(V (x, s)) +
−
(

∂V
∂x

)T
ẋ

δ + |∂V
∂s
|

(

δ + VU

δ + V (x, s)

)

}

(4.4)

with the addition that ṡ = 0 at the endpoint, s = sf . Here h : IR+ → IR+ has compact support

within (V < VU/2) and h(0) > 0. Then, the system is stable and asymptotically converges to

(x, s) = (xeq(sf ), sf ) with V (x, s) ≤ VU throughout.

Proof: Boundedness We directly have

V̇ =

(

∂V

∂x

)T

ẋ +
∂V

∂s
ṡ(s, x)

≤
(

∂V

∂x

)T

ẋ +
∂V

∂s

(

−(∂V
∂x

)T ẋ

δ + |∂V
∂s
|

(

δ + VU

δ + V (s, x)

)

+ h(V (s, x))

)

.

Now, assume that V (s(t0), x(t0)) ≥ VU . This gives

h(V (s, x)) = 0,
δ + VU

δ + V (s(t0), x(t0))
≤ 1,

∂V (s(t0),x(t0))
∂s

(

δ +
∣

∣

∣

∂V (s(t0),x(t0))
∂s

∣

∣

∣

) ≤ 1,

(

∂V (s(t0), x(t0))

∂x

)T

ẋ(t0) ≤ 0.

Thus

V̇ ≤
(

∂V

∂x

)T

ẋ +

(

−(∂V
∂x

)T ẋ

1
1 + 0

)

= 0.

Therefore, if V (s, x) ≥ VU then V̇ (s, x) ≤ 0 along trajectories. Thus V (s(t), x(t)) ≤ VU for all

t ≥ t0 if V (s(t0), x(t0)) ≤ VU .

Asymptotic Stability

Let the extended state of the system be (x, s) ∈ R
n, n = 2N + 1, and

Ωc = {(x, s) ∈ IRn : s ∈ [ss, sf ], V (x, s) ≤ VU}
S = {(x, s) ∈ Ωc : ṡ = 0}.
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Since ṡ ≥ 0 and s ∈ [ss, sf ], the limit s0 = limt→∞ s(t) exists. By the boundedness property above,

Ωc is invariant and bounded. Thus, on Ωc the ω-limit set L exists, is invariant and (x, s) → L ⊂ Ωc.

For (xL, sL) ∈ L we must have sL = s0 and therefore L ⊂ S. We will now show that {(xeq(sf ), sf )}
is the largest invariant set in S and therefore (x, s) → {(xeq(sf ), sf )} = L.

ṡ = 0 implies that V (x, s) is a Lyapunov function with respect to x (since s is fixed). Therefore,

every trajectory candidate approaches xeq(s), where V (xeq(s), s) = 0. But this implies (by the

choice of ṡ in equation (4.4)) that ṡ > 0 (due to the h term, unless s = sf where the trajectory

is completed and we let s halt). Therefore, {(xeq(sf ), sf )} is the only invariant set in S. Thus,

(x, s) → (xeq(sf ), sf ) and the system is asymptotically stable.

Remark 4.1 A typical choice of h(V ) is

h(V ) =

{

1
2v0

(

1 + cos
(

π 2
VU

V
))

if |V | ≤ VU

2

0 if |V | > VU

2

As can be seen it fulfills h(0) = v0 > 0 guaranteeing asymptotic stability and giving ṡ = v0 at V = 0

(never more because of the ‘min’). Its support is limited to |V | ≤ VU

2 thus not affecting the V ≤ VU

property.

Remark 4.2 If the Lyapunov function V is locally positive definite and decresent and −V̇ is locally

positive definite, then one can find a class K function σ such that

−
(

∂V
∂x

)T
ẋ

σ(V (x, s))
≥ 1 ,→∞ as V → 0.

In this case stronger results can be proved, as shown in [10].

5 Simulation: Formation Rotation

Simulation of a two-vehicle planar rotation using two virtual leaders is presented in this section.

To effect rotation about the center of mass of the virtual body, we parameterize a trajectory in

SO(2) by s with ṡ dynamics prescribed by equation (4.4).

In this example, the two virtual leaders comprise the virtual body, and the distance between the

two virtual leaders is chosen to be 2
√

h2
0 − d2

0/4. The center of mass of the virtual body is fixed

at the origin of the inertial frame, i.e., we take r = 0 ∈ R
2. The simulation is started with the two

virtual leaders in a line along the horizontal as shown in Figure 4(a). Initially, the two vehicles

are in the stable configuration corresponding to the global minimum of the sum of the artificial

potentials, i.e., they sit at a distance d0 from one another and a distance h0 from each of the virtual

leaders, see Figure 4(a).

The objective of the rotation is to produce the formation shown in Figure 4(b). This is achieved

by rotating the virtual body by 90◦. The path of the virtual body is counterclockwise rotation

R(s) ∈ SO(2), equivalently θ(s) = s ∈ S1, where s goes from s = ss = 0, to s = sf = π/2. The

nominal desired speed v0 was chosen to be v0 = .3 rad/s. Once the virtual leaders have rotated

about the virtual center of mass by 90◦, s is halted. The vehicles should then converge on the
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Figure 4: Formation rotation. Solid circles are vehicles and shaded circles are virtual leaders. The

dotted circle around each vehicle has radius d0 while the dashed circle around each virtual leader

has radius h0. a) Formation initially at global minimum of total potential. b) Formation after

rotation by 90◦.

new equilibrium configuration corresponding to the global minimum of the sum of the artificial

potentials. This is the formation shown in Figure 4(b).

The control for each vehicle is given by equation (2.1) and is composed of the sum of the gradient

of artificial potentials Vh and VI in addition to a damping force −Kẋi. The artificial potentials

used in this simulation are given by

VI =







αI

(

ln(xij) + d0

xij

)

0 < xij < d1

αI

(

ln(d1) + d0

d1

)

xij ≥ d1

(5.5)

Vh =







αh

(

ln(hik) + h0

hik

)

0 < hik < h1

αh

(

ln(h1) + h0

h1

)

hik ≥ h1.
(5.6)

These yield forces of the form shown in Figure 2.

The equations of motion were integrated in MATLAB for 20 seconds with parameters choices of

αI = 1 N-m, αh = 10 N-m, d0 = 2
√

2 m, d1 = 10 m, h0 = 2 m and h1 = 10 m. The damping

coefficient K was taken to be the K = 3I kg/s, where I is the identity matrix.

The Lyapunov function V (x, s) used in the ṡ dynamics is the Lyapunov function V (x) given by

(2.2) extended to include the s-dependence of hik = xi(t) − bk(s(t)). This Lyapunov function is

also modified by subtracting a constant so that V (xeq(s), s) = 0. The upper bound VU on V (x, s)

is chosen to be VU = 0.2 N-m in the simulation. Figure 5 shows the evolution of the Lyapunov

function (the formation error function) during the controlled rotation of the two-vehicle formation.

The dashed line is corresponds to V (x, s) = VU . Initially, V (x, s) = 0 since we start the vehicle at

the equilibrium configuration for the initial virtual body orientation. During the rotation, V (x, s)

increases, but as expected V (x, s) ≤ VU throughout.
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Figure 5: Formation function evolution for controlled group rotation.

6 Formation Mission: Gradient Climbing

One application in which formation motion and group expansion can be especially useful is that of

tracking a source of pollution, a heat source or a mineral plume in the sea. Gradient climbing is

an intuitive approach to solving this kind of problem. In the framework of this paper, the virtual

body is directed to climb the gradient based on the measurements from the vehicles. The vehicles

move with the virtual body and therefore climb the gradient as well. There are numerous options

for how much and what kind of data is passed from the vehicles to the computer that will compute

the gradient climb (or descent) algorithm that drives the virtual leaders. In this section we consider

two possibilities in two-dimensional space.

In the first case, we assume that each vehicle measures the field (e.g., temperature) T at its

current position and makes this information available for the calculation of the gradient at the

position of the center of mass of the virtual body r. In the second case we let each (ith) vehicle

use its history of measurements of T and approximate on its own the gradient of T at its position

xi. Assuming these gradient calculations can be communicated, they can be used to compute the

gradient of T at r. In the following we investigate algorithms for directing the position vector r

and the scaling variable k, the latter for adaptation of the spacing of the vehicles in the group.

Consider the first case in which each vehicle communicates its current measurement of T . Suppose

we have three vehicles (in, for example, a triangular-shaped formation about the virtual body center

of mass). Define Ti = T (xi), ∆xij = ‖xij‖ = ‖xi − xj‖ and eij = (xj − xi)/∆xij . Assume that e12

and e13 are linearly independent unit vectors (so that the matrix ( e12 e13 ) invertible). A first-order

estimate ∇Te of the gradient of T at r is given by

∇Te ( e12 e13 ) = ( T2−T1

∆x21

T3−T1

∆x32
)

⇒∇Te = ( T2−T1

∆x21

T3−T1

∆x32
) ( e12 e13 )−1

Then, we set dr
ds

= ∇Te and the formation will move in the direction of the steepest increase of T .
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Expansion of the formation can be used to improve the quality of the estimate by adjusting ∆xij

as a function of the variation of T in space. For instance, one would desire a tighter formation

where T varies greatly for increased measurement resolution. Alternatively, where the variation in

T is small over a large area, it may be best to expand the formation for more effective tracking.

Given a desired inter-vehicle distance ∆d, let k evolve according to

dk

ds
= −a(kd0 −∆d),

with a > 0 a scalar constant and d0 the inter-vehicle equilibrium distance defined by the potential

VI , see Figure 2. In the following lemma, we derive a rule for choosing ∆d.

Lemma 6.1 (Minimizing Error Bound ) Consider four vehicles moving in a square formation.

Define the position of one of the four vehicles as z = (x, y). Let the estimate of the gradient of T

at z = (x, y) be

∇Tm(x, y) =

(

1

2

Tm(x + ∆x, y)− Tm(x, y)

∆x
+

1

2

Tm(x + ∆x, y + ∆y)− Tm(x, y + ∆y)

∆x
,

1

2

Tm(x, y + ∆y)− Tm(x, y)

∆y
+

1

2

Tm(x + ∆x, y + ∆y)− Tm(x + ∆x, y)

∆y

)

,

where ∆x = ∆y = ∆ is the inter-vehicle distance (i.e., the length of the edge of the square),

Tm = T + d is the measurement of the field T and |d| ≤ ε is a disturbance. Then, the following

inequality holds (ignoring higher order terms):

||∇Tm −∇T ||2 ≤ ((Txx + Txy)
2 + (Tyy + Txy)

2)
∆2

4
+ |Txx + 2Txy + Tyy|

2ε

2
+ 2(

2ε

∆
)2,

where Tx = ∂T
∂x

(x, y), Txx = ∂Tx

∂x
(x, y), etc. Furthermore, this bound is minimized by choosing

∆2
d =

4
√

2ε
√

(Txx + Txy)2 + (Tyy + Txy)2
.

Proof: Using Tm = T + d we get

∇Tm(z) =

(

T (x + ∆x, y)− T (x, y) + T (x + ∆x, y + ∆y)− T (x, y + ∆y)

2∆x
+

∆d

∆x
,

T (x, y + ∆y)− T (x, y) + T (x + ∆x, y + ∆y)− T (x + ∆x, y)

2∆y
+

∆d

∆y

)

.

By a two-dimensional Taylor series expansion we have T (x+∆x, y +∆y) = T (x, y)+Tx(x, y)∆x+

Ty(x, y)∆y + Txx(x, y)∆x2/2 + Tyy(x, y)∆y2/2 + Txy(x, y)∆x∆y +O(∆3). The true gradient is, of

course, ∇T = (Tx, Ty) which gives the error

E = ∇Tm(x, y)−∇T (x, y)

=

(

Txx∆x/2 + Txy∆y/2 +O(∆2) +
∆d

∆x
, Tyy∆y/2 + Txy∆x/2 +O(∆2) +

∆d

∆y

)

.
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Now let ∆x = ∆y = ∆, ignore higher order terms and note that |∆d| ≤ 2ε. Then,

E =

(

Txx
∆

2
+ Txy

∆

2
+

∆d

∆
, Tyy

∆

2
+ Txy

∆

2
+

∆d

∆

)

||E||2 = (Txx + Txy)
2 ∆2

4
+ (Txx + Txy)

∆d

2
+

(

∆d

∆

)2

+ (Tyy + Txy)
2 ∆2

4
+ (Tyy + Txy)

∆d

2
+

(

∆d

∆

)2

≤ ((Txx + Txy)
2 + (Tyy + Txy)

2)
∆2

4
+ |Txx + 2Txy + Tyy|

2ε

2
+ 2

(

2ε

∆

)2

= f(∆).

Thus f(∆) is a bound for the squared estimation error. Minimizing this bound we get

f ′(∆) = ((Txx + Txy)
2 + (Tyy + Txy)

2)
∆

2
− 4

(

4ε2

∆3

)

= 0

∆2
0 =

4
√

2ε
√

(Txx + Txy)2 + (Tyy + Txy)2

which is the distance above.

Remark 6.1 This verifies the intuitive notion of moving towards larger inter-vehicle distances

when the second derivatives of T are small and the disturbances in the measurements, ε, are large.

Remark 6.2 Since estimations of second derivatives are very noise sensitive, these should either

be filtered over time or estimated on the basis of some prior knowledge.

Lemma 6.2 (Convergence of Gradient Climbing) In the setting of Lemma 6.1 above, using

the prescribed optimal distance ∆d, assume that the virtual leader is anywhere inside the square of

vehicles and moving in the direction dr
ds

= ∇Tm(x, y). Suppose that the following inequality holds

for the scalar field T (x, y)

||∇T ||2 ≥ 2
√

2ε
√

(Txx + Txy)2 + (Tyy + Txy)2 + ε|Txx + 2Txy + Tyy|.

Then, the virtual leader, and thus the formation, will converge to a local optimum of T .

Proof: First note that the estimation Tm is symmetric with respect to the four measurements.

The bound refers to the error from the true gradient in one of the corners, but this corner is

arbitrary. Furthermore, the estimate is an even better approximation for the gradient of T at a

point in the interior of the square. Thus, the bound holds for any position inside the square. Since
dr
ds

= ∇Tm(x, y) we can use V (x, y) = −T (x, y) as a Lyapunov function. It is clear that we need

∇T · ∇Tm ≥ 0 for V to be decreasing and thus guaranteeing convergence. This means we need

∇T · ∇Tm = ∇T · (∇T + E)

= ||∇T ||2 +∇T ·E
≥ ||∇T ||2 − ||∇T ||||E||
= ||∇T ||(||∇T || − ||E||) ≥ 0

Thus, we require ||∇T || ≥ ||E|| and plugging ∆d into the upper bound of ||E|| we get

||∇T || ≥ 2
√

2ε
√

(Txx + Txy)2 + (Tyy + Txy)2 + ε|Txx + 2Txy + Tyy|

which is the condition above.
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Remark 6.3 If one incorporates deviations from the perfect square in the above analysis the cal-

culations will get messier due to the loss of orthogonality and the fact that ∆x 6= ∆y. The above

result is however a good rule of thumb.

Alternatively, consider the situation where each vehicle can compute and communicate the gra-

dient of T at its current position. In practice such information could be obtained from multiple

sensors on each vehicle. In the case of a single sensor per vehicle, each vehicle could still compute

the gradient of T projected in its direction of motion [1, 2]. In the following lemma, we propose an

algorithm for gradient descent of a three-vehicle triangular formation in a quadratic gradient field

T (q) = 1
2qT Pq, q ∈ R

2 and prove convergence to the minimum of this field.

Lemma 6.3 (Gradient Descent in Quadratic Field) Consider three vehicles and a virtual leader

with artificial potentials defined with global minimum corresponding to the vehicles in a triangular

formation about the virtual leader. Let the control law be given by equation (2.1). Consider the

gradient field T (q) = 1
2qT Pq, q ∈ R

2, where P ∈ R
2×2 is positive definite. Let each (ith) vehicle be

capable of measuring the local gradient, ∇T (xi) = Pxi. Define ri = xi − r. For each of the three

vehicles, define ai to be the area of the triangle with vertices coincident with the other two vehicles

and virtual leader, i.e. ai = 1
2 ||rj × rk|| for i, j, k ∈ {1, 2, 3} and i 6= j, i 6= k, j 6= k. Additionally,

let a =
∑3

i=1 ai. If the virtual leader is given dynamics

ṙ =
dr

ds
ṡ

with
dr

ds
= −

3
∑

i=1

ai

a
∇T (xi)

and ṡ given by equation (4.4) where V (x, s) given by equation (2.2) with global minimum at zero,

the formation will asymptotically converge to the minimum of T, i.e., r will converge to the origin

and the formation will converge to the equilibrium at s = sf . Further, V (x, s) ≤ VU throughout.

Proof: Convergence of the virtual leader to the minimum of T can be proven with the Lyapunov

function Φ given by

Φ(r) = T (r) =
1

2
rT Pr.

We compute

Φ̇ = ∇T (r) · ṙ = − ṡ

a
∇T (r) ·

3
∑

i=1

ai∇T (xi)

= − ṡ

a
Pr ·

3
∑

i=1

aiPxi

= − ṡ

a
Pr ·

3
∑

i=1

aiP (ri + r) = −ṡ||Pr||2 ≤ 0

since
∑3

i=1 airi = 0. Boundedness and convergence of the formation Lyapunov function (V (x, s) ≤
VU ) follows from Lemma 4.1.
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Remark 6.4 The quantity
∑3

i=1
ai

a
∇T (xi) is essentially a first-order (linear) approximation of the

gradient field at r, ∇T (r). Thus, for a quadratic field T the approximation is exact.

Remark 6.5 The result in Lemma 6.3 holds locally near the minimum of a more general gradient

field when, near the minimum, the field can be approximated by a quadratic.
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