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Abstract

The paper discusses several Lyapunov-based controller and observer techniques that
enhance the conventional Speed-Gradient control design approach. Our developments
cover the treatment of the derivative action, time-delays, backstepping via dynamic sur-
face control, and feedforward governor to satisfy pointwise-in-time constraints. Some of
these enhancements have been already proposed in the prior literature in the context of
specific automotive applications but are generalized here; other developments such as
a feedforward governor are new. We also review several concrete applications of these
techniques to control of gasoline direct injection engines, including torque, air-to-fuel
ratio and charge control.

1 Introduction

This paper reviews several enhancements to the Speed-Gradient (SG) control design ap-

proach [4, 5] which is a Lyapunov design technique where a selected performance (or goal)

function Q is dynamically minimized with a choice of control input. Formally, SG approach

falls within the class of Control Lyapunov Function (CLF)-based methods wherein Q is a CLF

[14]; unlike in other CLF methods, Q is selected a priori to reflect and appropriately weight

different performance objectives while closed loop stability is verified a posteriori. The SG

design approach can also be intuitively interpreted as a form of one-step ahead Model Pre-

dictive Control. Traditionally, Speed-Gradient technique yields either proportional (SG-P)

or proportional plus integral (SG-PI) nonlinear controllers.

In this paper, we discuss several enhancements to the conventional SG approach, including

the treatment of derivative action (so that SG-PD controllers are obtained), time-delays,

backstepping via dynamic surface control, and feedforward governor to satisfy pointwise-

in-time constraints. Most of these enhancements (excluding feedforward governor) have

been already proposed in the treatment of special automotive applications in the literature,

including our own work. In this paper we review these ideas and extend them to more

general classes of systems and problems. We also review several applications to automotive

engine control where these techniques proved useful.

The SG-PD controllers are obtained via integration of the original SG-P controller with an

input observer for the unknown input additive to the control signal. This observer basically

estimates a derivative of a certain system input and the resulting SG-PD controller can reject
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additive disturbances with bounded rate of change. Assuming that there are no control

constraints, unbounded disturbances are allowed.

Backstepping via dynamic surface control requires that the integral state of the PI con-

troller be limited (via artificial saturation) and that the integral gain be sufficiently large. Our

special result on systems with time-delays basically requires that the proportional feedback

from the control not affected by the delay be sufficiently strong. The feedforward governor

is a modification of a concept of a reference governor [1, 6] but in our case the context is a

stabilization problem not a tracking problem and the governor adjusts the feedforward value

and not the reference command value.

The paper is organized as follows. We review the Speed-Gradient (SG) approach in Section

2. We then treat various design enhancements: SG-PD controllers in Section 3, backstepping

via dynamic surface control in Section 4, application to time-delayed in Section 5, and

feedforward governors in Section 6. Several of these ideas have been motivated by prior

applications in the area of gasoline direct injection (GDI) engine control, see [9, 10, 11, 13,

16, 18]. Section 7 will review specific applications of the design techniques to air-to-fuel ratio

and torque regulation and to charge control in the GDI engines.

2 Speed-Gradient Approach

Consider a nonlinear control system of the form

ẋ = f(x) + g(x)u, (2.1)

where x is an n-vector state and u is an m-vector control. Given the desired equilibrium

of (2.1), xd, suppose there is a feedforward control ud that can be used to maintain this

equilibrium, i.e.,

f(xd) + g(xd)ud = 0.

Suppose now the input u is generated by applying, in addition to the above feed-forward

control term, ud, a proportional feedback term, up, and an integral feedback term, θ. Fur-

thermore, suppose the effect of uncertainties and parameter variations can be represented

by a constant disturbance w additive to the control input. Thus

u = ud + up + θ + w. (2.2)

The feedback components up and θ are determined with the help of Speed-Gradient (SG)

approach [4, 5].

To be specific, consider a derivation of the SG controller motivated by one step ahead model

predictive control (MPC) considerations. Let Q(x) be the so called goal or performance

function. It satisfies Q(xd) = 0, Q(x) ≥ 0, and is chosen so that the requirement

Q(x(t)) → 0 as t →∞ (2.3)
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captures the control design objectives. For example, one possible choice for Q is

Q =
n∑

i=1

γi(xi − xd,i)
2,

where the weights γi reflect the relative priority of tracking in different state channels. As-

suming that u(t) is constant on [t, t + ∆t[, Q(x(t + ∆t)) can be approximated for small ∆t

as
Q(x(t + ∆t)) ≈ Q(x(t)) + Q̇(t)∆t

= Q(x(t)) +

(
LfQ(x(t)) + LgQ(x(t))u(t)

)
∆t,

(2.4)

where,

LfQ(x)
∆
=

∂Q

∂x
(x)f(x), LgQ(x)

∆
=

∂Q

∂x
(x)g(x).

The approximate cost (2.4) can be regularized by augmenting a penalty on the proportional

correction and on the incremental change of the integral correction:

Q(x(t)) +

(
LfQ(x(t)) + LgQ(x(t)) · (ud + up(t) + θ(t) + w)

)
·∆t+

1

2
uT

p (t)

(
Π

∆t

)−1

up(t) +
1

2
(θ(t)− θ(t−∆))TΓ−1(θ(t)− θ(t−∆t))

→ min,

(2.5)

where Π > 0, Γ > 0. The direct minimization of the cost (2.5) with respect to up(t) and θ(t)

yields

up = −Π(LgQ)T, (2.6)

and

θ(t) = θ(t−∆t)− Γ(LgQ)T∆t.

The last equation is a discrete-time version of the continuous-time update law

θ̇ = −Γ(LgQ)T. (2.7)

The term (LgQ)T = (∂Q
∂x

g)T that appears on the right-hand of (2.6), (2.7) can also be

computed as ∇uQ̇ which is the gradient of the speed of change of Q. Thus

up = −Π∇uQ̇, θ̇ = −Γ∇uQ̇.

Hence the control design (2.2),(2.6),(2.7) is referred to as “Speed-Gradient.” It can also be

interpreted as a version of nonlinear PI controller.

The stability analysis for the closed loop system typically proceeds by considering a Lya-

punov function candidate of the form

V = Q +
1

2
(θ + w)TΓ−1(θ + w). (2.8)
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Its time derivative along the trajectories of the system (2.1), (2.2), (2.6), (2.7), under an

additional assumption that ẇ ≡ 0, satisfies

V̇ = (LfQ + LgQud)− (LgQ)Π(LgQ)T.

The following sufficient stability conditions follows by application of the Barbalat’s lemma:

Proposition: Suppose that (i) Q(xd) = 0, Q(x) > 0 if x 6= xd and Q is twice continuously

differentiable in Υc = {x : Q(x) ≤ c}; (ii) the achievability condition [5] holds, i.e.,

−ρ(Q(x)) + LgQ(x)Λ(LgQ(x))T ≥ (LfQ(x) + LgQ(x)ud), (2.9)

for some m×m matrix Λ ≥ 0, a continuously differentiable function ρ that satisfies

ρ(0) = 0, ρ(z) > 0 if z > 0,

and for all x ∈ Υc; (iii) f, g are twice continuously differentiable and bounded together with

the first and second derivatives in Υc; (iv) the initial conditions (x(0), θ(0)) satisfy

Q(x(0)) +
1

2
(θ(0) + w)TΓ−1(θ(0) + w) ≤ c; (2.10)

(v) Π > Λ, Γ > 0; (vi) ẇ ≡ 0. Then the closed loop system is Lyapunov stable and the

closed loop trajectories satisfy

lim
t→∞

Q(x(t)) = 0, lim
t→∞

x(t) = xd,

Q(x(t)) ≤ c ∀t.

If, furthermore, the matrix g(xd) has a full column rank, then

lim
t→∞

θ(t) = −w.

The achievability condition (2.9) may be checked either analytically or numerically. The

purely numerical approach proceeds by setting Λ = 0, and maximizing (LfQ(x)+LgQ(x)ud)

subject to c̃ ≤ Q(x) ≤ c, where c̃ > 0. Let z(c̃) denote the maximum. By analyzing z(c̃) as a

function of c̃, a continuously differentiable function ρ, ρ(0) = 0, ρ(c̃) > 0 if c̃ > 0, that yields

z̃(c̃) ≤ −ρ(c̃) may be prescribed. If such ρ can be found, Λ = 0, ρ satisfy the inequality in

(2.9) for x ∈ Υc. If no such ρ can be found, Λ > 0 needs to be considered. As a heuristic

approach, tuning the controller to work well in simulations with a Π > 0 and then trying Λ

slightly less than Π works quite well.

In a situation when Q(x) ≥ 0 but Q(x) > 0 for all x 6= xd does not hold, x(t) may not, in

general, converge to xd. It is still possible, however, to demonstrate that LfQ(x(t)) → 0 and

LgQ(x(t)) → 0. Note that LfQ(x) = 0, LgQ(x) = 0 is a system of (m + 1) equations in n

unknowns. When (m + 1) ≥ n, this system may, frequently, have xd as the unique solution,

and, hence, x(t) → xd. If n = m and the m ×m matrix g(xd) is nonsingular, θ(t) → −w.
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If n > (m + 1), it is necessary to demonstrate that the closed loop trajectories are bounded

and that LfQ(x(t)) = 0, LgQ(x(t)) = 0, ẋ(t) = f(x(t)) + g(x(t))ud, for all t, imply that

x(t) ≡ xd. This can be checked through an observability-like condition in [15].

Note that the form of the feedback (2.6) suggests the connection with the conventional

Control Lyapunov Function methods, in particular, LgV -techniques [14]. The difference is

mainly in the approach: Q is selected by the designer to capture the transient performance

objectives in the SG approach; Q is constructed as a Control Lyapunov Function in the

methodologies covered in [14]. The strength of SG approach is in the strong linkage between

control objectives and the selection of the function Q. This greatly helps in the tuning

process. Specifically, if we are not satisfied with the transient response, we adjust the weights

in Q or augment barrier functions. The weakness of SG approach is that the procedures

to modify Q are not readily available if the achievability condition does not hold. The

achievability condition, on the other hand, is only sufficient and the stability may be verified

by other procedures. For example, numerical simulations followed up by the numerical

construction of a Lyapunov function can be used.

3 SG-PD Controllers

SG-PD controllers use an unknown input observer (of derivative type) to estimate unmea-

sured exogenous disturbance inputs or a model mismatch. If actuators are sufficiently fast,

they may be used to counteract the disturbance or the effect of uncertainty.

Specifically, consider a nonlinear control system (2.1) under the nominal feedforward, ud,

and SG-P feedback law, up = −Π(LgQ)T:

ẋ = f̃(x) + g(x)(ũ + w), f̃(x)
∆
= f(x) + g(x)(ud + up), (3.11)

and where the auxiliary control ũ is to be determined and where the disturbance vector w

may represent, for example, modeling errors, errors in the feedforward control, or actual

unknown inputs acting on the system. Unlike the case in Section 2 (see (2.2)) , here w may

be time-varying.

One approach to compensating for the effects of w is to first estimate w from the state

measurements and then compensate for w in the control law, i.e.,

ũ = −ŵ,

where ŵ is an estimate of w. To generate ŵ (an m-dimensional vector) suppose z is an

m-dimensional output of the system, which can be measured,

z = h(x).

Then,

ż = Lf̃h + Lgh(ũ + w).
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Thus one arrives at the following input estimation problem:

ż = y + v,

where

y = Lf̃h + Lgh · ũ, v = Lgh · w,

and where v needs to be estimated. An observer for v can be defined by

v̂ = γz − ε, γ > 0,

ε̇ = γ · (v̂ + y).

ŵ = (Lgh)−1v̂.

Here v̂, ε are vectors of the same dimension as z and w. For this estimation scheme to be

well-defined, the inverse of the square matrix (Lgh)(x) must exist and be uniformly bounded

for all x. The observer is similar to filters that estimate a signal derivative.

Technical conditions can be given guaranteeing that if supt |ẇ(t)| < ∞ then by selecting

γ > 0 sufficiently large, x(t) can be rendered ultimately bounded in any desired neighborhood

of xd. Stronger than needed sufficient technical conditions are, for example: (i) (Lgh)(x) is a

constant invertible matrix; (ii) a twice continuously differentiable performance function Q for

the nominal SG-P design satisfies Q(xd) = 0, Q(x) > 0 for x 6= xd; (iii) supx
||LgQ(x)||2

Q(x)
≤ c,

∞ > c > 0; (iv) Lf̃Q(x) ≤ −ρ ·Q, ρ > 0. These conditions if hold locally guarantee locally

(and if hold globally guarantee globally) that an inequality of the form

V̇ ≤ −ρ ·Q + LgQ(Lgh)−1(v − v̂)− γ(v − v̂)2 + (v̂ − v) ˙̂v

≤ −γ1V + γ2

holds, where V = Q + 1
2
(v − v̂)2, and γ2/γ1 can be made as small as desired by selecting γ

sufficiently large.

Note that if |w(t)| is bounded, it may be also possible to suppress it in (3.11) by a high gain

feedback. The disturbance compensation as opposed to disturbance suppression has several

advantages. Specifically, in our unknown input observer-based scheme it is only required

that the observer gain be sufficiently large and that |ẇ(t)| be bounded (boundness of |w(t)|
is not required). Furthermore, if |ẇ(t)| → 0 as t → ∞ then x(t) → xd as t → ∞. This is a

result resembling asymptotic properties of the integral control.

References [16, 17, 3] describe various automotive applications of this or a similar approach.

In [17] the application is idle speed control and w models the load torque due to auxiliaries

applied to engine cranshaft. In [3] the application is to vehicle speed control and w represents

the uncertainty in the road grade. The terminology SG-PD control is probably introduced

first in [3]. In [16] the application is to engine partial pressure of air control and w represents

an unknown EGR flow.
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4 Backstepping Via Dynamic Surface Control

The development of SG-PI controller assumes that the control u appears explicitly in the

expression for Q̇. Backstepping via dynamic surface control [19] can be used in systems

where the relative degree from u to Q is greater than one. Specifically, consider the case

when the system is described by the following equations.

ẋ = f(x) + g(x)(v + w),

v̇ = u,
(4.12)

where w is a constant unknown disturbance, u is the control input and the equation v̇ = u

represents (after appropriate transformations) the actuator dynamics.

Considering the system without the actuator dynamics, the SG-PI feedback law for v has

the following form
v0 = vd − Π(LgQ)T + θ,

θ̇ = −Γ(LgQ)T.
(4.13)

To extend this feedback law for v to the one for u, backstepping via the dynamic surface

control can be applied:
v̇s = −τvs + τv0

u = α(vs − v) + v̇s.
(4.14)

The control u forces v to follow vs, while vs, in turn, is forced to follow v0. The dy-

namic surface control represents a simplified backstepping procedure relying on dynamic,

differentiation-like filters in place of potentially more complicated nonlinear transformations

of the conventional backstepping procedure.

The properties of the closed loop system can be investigated using a Lyapunov function

V = Q(x) +
1

2
(vs − v0)

T(vs − v0) +
1

2
(v − vs)

T(v − vs) +
1

2
(θ + w)TΓ−1(θ + w).

It can be verified that

V̇ = LfQ + LgQ(v − vs) + LgQ(vs − v0)− (LgQ)Π(LgQ)T

+ LgQvd − τ ||vs − v0||2 − v̇0(vs − v0)− α||vs − v||2

≤ (LfQ + LgQvd − (LgQ)Π(LgQ)T) +
||LgQ||2

2c1

+
c1||v − vs||2

2
+
||LgQ||2

2c2

+
c2||vs − v0||2

2
+
||v̇d||
2c3

+
c3||vs − v0||2

2
− τ ||vs − v0||2 − α||vs − v||2,

for any positive c1, c2, c3. Let z = [x, v, vs]
T, Vz(z) = Q(x) + 1

2
||vs − v0||2 + 1

2
||v − vs||2.

It follows that if Vz(z) > c0 then V̇ ≤ 0, where c0 = c0(τ, α) → 0 as τ, α → ∞. These

inequalities guarantee ultimate boundness of z(t) in an arbitrary small neighboorhood of
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the origin provided that the integral state of the controller θ is saturated to the interval

[−wmax,−wmin] (where wmin and wmax are minimum and maximum a priori known bounds

on w, wmin ≤ w ≤ wmax) and the integral gain Γ > 0 is sufficiently large. Thus integrator

state limiting and large integrator gain may be required when extending the SG-PI controller

via dynamic surface control.

This observation is similar to the “bursting prevention” technique in adaptive control

through the use of parameter projections and large adaptation gains [7]. A similar proce-

dure and result for combining dynamic surface control with parameter adaptation has been

reported in [2] in the context of a specific vehicle speed control problem.

5 Treatment of delays

Consider a nonlinear control system with delays in the state variables:

ẋ = f(x(t), x(t−∆)) + g(x(t), x(t−∆))u. (5.15)

We assume that a performance function Q has been selected and the control (2.2)

u = ud + up + θ + w,

is defined by the SG method with

up = −Π(LgQ)T, θ̇ = −Γ(LgQ)T, (LgQ) = (
∂Q

∂x
)g(x(t), x(t−∆)). (5.16)

Consider a Lyapunov-like functional

V =
1

2
(θ + w)TΓ−1(θ + w) + Q +

∫ t

t−∆

S(x(τ))dτ,

where S(x) is to be determined. We obtain,

V̇ =
∂Q

∂x
f(x(t), x(t−∆))

+
∂Q

∂x
g(x(t), x(t−∆))ud +

∂Q

∂x
g(x(t), x(t−∆))up + S(x(t))− S(x(t−∆))

=
∂Q

∂x
f(x(t), x(t)) +

∂Q

∂x
g(x(t), x(t))(ud + up)

+
∂Q

∂x

(
(f(x(t), x(t−∆))− f(x(t), x(t))) + (g(x(t), x(t−∆))− g(x(t), x(t))(ud + up))

)
+ S(x(t))− S(x(t−∆)).

Suppose now the delay only affects the drift vector field f but not the control vector field g,

i.e., g(x(t), x(t−∆)) = g(x(t)). Suppose further there exist positive functions S(x) > 0 and

R(x) > 0 if x 6= xd such that

∂Q

∂x

(
f(x(t), x(t)) + g(x(t))ud − Π(

∂Q

∂x
g(x(t)))T

)
+ S(x(t)) + R(x(t)) < −ρ(Q), (5.17)
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and

R(x(t)) + S(x(t−∆)) ≥ ∂Q

∂x

(
f(x(t), x(t−∆))− f(x(t), x(t))

)
. (5.18)

Then the closed loop stability follows from the theorems in [8]. The use of large proportional

control gain Π can be essential in the applications to render (5.17) and (5.18) satisfied.

A somewhat different situation arises when there are two control inputs, with one acting

through a non-delayed control vector field and another one acting through a delayed control

vector field. Specifically, consider a system

ẋ = f(x(t), x(t−∆)) + g1(x(t))u1 + g2(x(t−∆))u2.

The nominal feedback

u2 = −Π2(Lg2Q)T,

converts the term g2(x(t−∆))u2 into a drift term. A strong feedback from the control u1 act-

ing through a non-delayed vector field is thus essential to ensure stability. The considerations

proved critical for charge control application in [13].

6 Feedforward Governor

The feedforward governor is a modification of a concept of a reference governor [1, 6] to deal

with pointwise-in-time state and control constraints. For simplicity, it is applied here to a

disturbance-free (i.e., w ≡ 0) system (2.1). In the subsequent treatment we assume that the

matrix g(xd) has full column rank.

The feedforward governor approach is to adjust an offset, ũd, to the feedforward term in

the controller,

u = (ud + ũd) + up + θ, up = −Π(LgQ)T, θ̇ = −Γ(LgQ)T

to ensure that poitnwise-in-time constraints of the general form

(x(t), u(t)) ∈ C, ∀t

are satisfied. The scheme for adjusting ũd can be based on a reference governor-like algorithm

of [6]. Since this application of the reference governor is in the context of the stabilization

problem and not a tracking problem, and since the governor adjusts the feedforward offset

as opposed to the reference command value, the governor is referred to as a feedforward

governor.

The governor operation is based on sets that are “safe” and ”strongly returnable”. The

“safe” sets are sets of initial conditions for which the ensuing trajectory with constant offset

ũd satisfies the pointwise-in-time constraints. With a Lyapunov function of the form

V (x, θ, ũd) = Q(x) +
1

2
(θ + ũd)

T(θ + ũd),
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the “safe” sets can be selected as subsets of V of the form

Π(ũd) = {(x, θ) : V (x, θ, ũd)− γ(ũd) ≤ 0}.

If the pointwise-in-time state constraints apply to x only, and Π(ũ1
d) 6= ∅ for some ũ1

d then

Π(ũd) 6= ∅ for any ũd. Specifically, if (x, θ) ∈ Π(ũ1
d) then (x, θ − ũd + ũ1

d) ∈ Π(ũd). This

suggests that the set
⋃

ũd
Π(ũd) has naturally a slab-like structure. The situation when there

are control constraints can be considerably more complex.

Suppose that the subsets Π(ũd) are “safe” for all ũd ∈ Ud, where Ud is a compact and

convex set with 0 ∈ intUd. If these subsets have a nonempty interior containing point

(xd,−ũd), and the strong achievability condition holds, it follows that these subsets are

“strongly returnable” in the sense of [6]. Specifically, any trajectory originating in Π(ũd)

with ũd maintained at a constant value is guaranteed to enter in a finite time and stay in

the interior of Π(ũd).

In each discrete decision step τ = 0, 1, 2, · · · , at time tτ = τ ·∆, the feedforward governor

defines the value of ũd(t) for the interval tτ ≤ t < tτ+1 by

ũd(t) = ūd(τ), tτ ≤ t < tτ+1, tτ = τ ·∆, τ = 0, 1, 2, · · · , (6.19)

where

ūd(τ + 1) = (1− κ(τ))ūd(τ), 0 ≤ κ(τ) ≤ 1. (6.20)

The parameter κ(τ) is selected so that it is a maximum value from the interval 0 ≤ κ(τ) ≤ 1

subject to (x(tτ ), θ(tτ )) ∈ Π((1− κ(τ))ūd(τ)). The initial values ūd(0) and θ(0) are selected

so that (x(0), θ(0)) ∈ Π(ūd(0)), ūd(0) ∈ Ud.

Thus ũd(t) exhibits a piecewise constant trajectory and its values are defined as a function

of system state, integral state of the controller and previous value of the feedforward offset.

The feedforward governor attempts to drive ũd to zero as fast as possible (so that nominal

control can be administered to the system) while avoinding pointwise-in-time constraint

violation. The results in [6] show that ũd(t) = 0 for all t sufficiently large and that the

region of initial states x(0) that are recoverable by the controller without violating the

constraints can be significantly enlarged compared to the situation when ũd(t) ≡ 0. The

region of recoverable initial conditions can be further enlarged by a proper initialization of

the integral state θ(0).

The procedure for selecting κ(τ) as the maximum possible value in the interval 0 ≤ κ(τ) ≤
1 aims at forcing ũd(t) to zero as soon as possible and it is also essential to guaranteeing

that κ(τ) = 1 for all τ sufficiently large. It may be possible to define other, also meaningful

procedures for selecting ūd(τ).

Suppose, in particular, that the quality of system state trajectories is evaluated using a

cost functional of the form

J(x(0), θ(0), ũd)) =

∫ +∞

0

G(x(t))dt,
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where x(t) denotes the state trajectory ensuing from the initial condition θ(0), x(0) and a

control trajectory ũd. Suppose further that ũd(τ) = ūd(t) ≡ ūd = const. Under reasonable

additional assumptions it can be guaranteed that x(t) → xd exponentially, independently

of ūd and J(x(0), θ(0), ũd)) is finite. While this property holds for the feedforward governor

case, it does not hold (in general) in the reference governor: If reference governor output is

constant and different from the actual reference input, then quality measures of integral type

for the state trajectory deviation from the commanded equilibrium are typically infinite.

We can similarly a candidate control sequence to be applied starting at time τ :

{ūd(τ |τ), ūd(τ + 1|τ), · · · , ūd(τ + L|τ), · · · },

with ūd(s|τ) = ūd(τ + L|τ) for s > τ + L. The values ūd(τ |τ), ūd(τ + 1|τ), · · · , ūd(τ + L|τ)

can be determined on-line using the model predictive control (MPC) approach. Specifically,

at time τ we can minimize the value of the cost-to-go subject to original pointwise-in-time

constraints and subject to (x(tτ+L|τ), θ(tτ+L|τ)) ∈ Π(ūd(τ + L|τ)). Then, we set ūd(τ) =

ūd(τ |τ) and repeat the procedure at time τ +1. Standard MPC properties such as constraint

satisfaction and incremental cost convergence to zero,
∫ ∆

0
H(x(t))dt → 0, can be guaranteed

under the usual MPC assumptions. Unlike the feedforward governor (6.19),(6.20), the on-

line optimization of the whole offset sequence may be difficult to implement in real-time due

to an extensive nature of the required on-line computations.

7 Gasoline direct injection engine applications

The enhancements to the basic Speed-Gradient approach described in this paper have been

useful in developing control functionality for gasoline direct injection engines. Two of these

applications are now briefly reviewed in more detail.

The approach to transient response shaping of the closed loop system by a proper choice

of the weights in the objective function Q has been demonstrated in [9]. Specifically, torque

control mode (with torque as the primary tracking objective) or air-to-fuel ratio control mode

(with air-to-fuel ratio as the primary tracking objective) can be enforced by proper selection

of the weights in Q which is a weighted sum of tracking errors in the torque τ , air-to-fuel

ratio, λ = Wcyl/Wf , and spark timing, δ:

Q =
1

2
γ1(τ − τd)

2 +
1

2
γ2(Wcyl − λdWf )

2 +
1

2
γ3(δ − δd)

2,

where Wcyl is the air flow into the engine cylinders, Wf is the fueling rate, and τd, λd and δd

are desired set-points for torque, air-to-fuel ratio and spark timing, respectively. Through

the augmentation of barrier functions to Q, soft state constraints can be enforced. In [10] this

approach was used to enforce state constraints on the admissible range of air-to-fuel ratio

and spark timing. Local closed loop stability was demonstrated with the help of a practical

numerical procedure that verified the achievability condition directly on a nonlinear system

model.
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The second application, to charge control in gasoline direct injection engines, has been

reported in [13]. In this application, the unmeasured flow through the EGR valve was

viewed as an unknown input, and estimated by an input observer. The SG-PI controller

was applied to regulate intake manifold pressure and EGR flow estimate to their respective

set-points. The design was based on a function Q weighting tracking errors in the intake

manifold pressure, pm, and EGR flow estimate, Ŵegr:

Q =
1

2
γ1(pm − pm,d)

2 +
1

2
γ2(Ŵegr −Wegr,d)

2,

where pm,d and Wegr,d are the desired set-points for the intake manifold pressure and EGR

flow rate. The estimate of the EGR flow, Ŵegr, is generated by an input observer from mea-

surements of intake manifold pressure and throttle flow. The closed loop stability was shown

despite the intake to exhaust delay under the assumption of sufficiently strong feedback

applied to the electronic throttle to enforce the intake manifold pressure command tracking.
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