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Abstract

The paper provides a multivariable extremum seeking scheme, the first for systems with

general time-varying parameters. We derive a stability test in a simple SISO format and develop

a systematic design algorithm based on standard LTI control techniques to satisfy the stability

test. We also supply an analytical quantification of the level of design difficulty in terms of the

number of parameters and in terms of the shape of the unknown equilibrium map. Moreover,

we remove the requirement of slow forcing for plants with strictly proper output dynamics (and

consequent slow convergence) present in earlier works.

1 Introduction

Extremum seeking, an adaptive control technique with several successful applications (See [3] and

references therein) has witnessed a resurgence of interest after the publication of the first stability

studies in [3] and [2]. Though we now have the means to check for stability of these schemes [2, 4, 6],

the need for rigorous design guidelines guaranteeing performance has been strongly felt [2, 4].

The first stability analysis of extremum seeking for a general nonlinear plant was developed

in [3]. In [2], dynamic compensation was proposed for providing stability guarantees and fast

tracking of changes in plant operating conditions for single parameter extremum seeking. However,

the analysis is valid only for step changes in plant parameters and the result led to a very difficult

design problem.

Rotea [4] and Walsh [6] provided the first studies of multivariable extremum seeking schemes.

Their results were for plants with constant parameters. Furthermore, for strictly proper output

dynamics, their stability criteria would require use of slow forcing and consequent slow convergence,

a limitation inherited from the analysis method introduced in [3]. A systematic design procedure

is absent in both [2, 3] and [4, 6].

This paper solves an array of problems remaining after [2, 3, 4, 6]:

1. Provides the first multivariable extremum seeking scheme for general time-varying parameters

by applying averaging on a system in a form different than [2].

2. Derives a stability test in a simple SISO format.

3. Develops a systematic design algorithm based on standard LTI control techniques to satisfy

the stability test.

1This work was supported in part by grants from AFOSR, ONR, and NSF.
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Figure 1: Extension of the extremum seeking algorithm to non-step changes in θ∗ and f∗

4. Supplies an analytical quantification of the level of design difficulty in terms of the number

of parameters and in terms of the shape of the unknown equilibrium map.

5. Removes the requirement of slow forcing for plants with strictly proper output dynamics

(and consequent slow convergence) present in earlier works. This is achieved by using the

modulation properties of the Laplace transform.

For ease of understanding of the analysis, design and implementation, and also for its impor-

tance, the single parameter case is presented first. Section 2 provides the problem formulation,

Subsection 2.1 the stability analysis and Subsection 2.2 the design algorithm. Section 4 presents

the analysis and Section 5 the design for a general multivariable scheme.

2 Output Extremization in Single Parameter Extremum Seeking

Figure 1 shows the nonlinear plant with linear dynamics along with the extremum seeking loop.

We let f(θ) be a function of the form:

f(θ) = f ∗(t) +
f ′′

2
(θ − θ∗(t))2 , (2.1)

where f ′′ > 0 is constant but unknown. Any function f(θ) that has a quadratic minimum at θ∗ can

be approximated locally by Eqn. (2.1). The assumption f ′′ > 0 is made without loss of generality.

If f(θ) has a maximum, we just replace Ci(s) in Figure 1 with −Ci(s). The purpose of extremum

seeking is to make θ−θ∗ as small as possible, so that the output Fo(s)[f(θ)] is driven to its extremum

Fo(s)[f
∗(t)]. We pause to remark here that it is not essential that the map f(θ) be locally quadratic.

The analysis below can be modified for any locally convex continuously differentiable map. We now

make assumptions upon the system in Figure 1 that underlie the analysis to follow:

Assumption 2.1 Fi(s) and Fo(s) are asymptotically stable and proper.

Assumption 2.2 L{f ∗(t)} = λfΓf (s) and L{θ∗(t)} = λθΓθ(s) are strictly proper rational func-

tions.

This assumption obviates delta function variations in the map parameters.
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Assumption 2.3 Co(s)
Γf (s) and Ci(s)Γθ(s) are proper.

This assumption ensures that the filters Co(s)
Γf (s) and Ci(s)Γθ(s) in Figure 1 can be implemented.

Since Ci(s) and Co(s) are at our disposal to design, we can always satisfy this assumption.

The perturbation signal a sinωt into the plant helps to give a measure of gradient information

of the map f(θ). This is obtained by removing from the output the variation of f ∗ using the

output filter Co(s)
Γf (s) , and then demodulating the signal with sin(ωt− φ). In a sense, this can also be

thought of as the online extraction of a Fourier coefficient. The analysis below makes this extraction

explicit by using the modulation properties of the Laplace transform (the results used are supplied

in Section 3).

2.1 Single Parameter Stability Analysis

We first provide background for the result on output extremization below. The equations describing

the single parameter extremum seeking scheme in Fig. 1 are:

y = Fo(s)

[
f∗(t) +

f ′′

2
(θ − θ∗(t))2

]
(2.2)

θ = Fi(s) [a sin(ωt)− Ci(s)Γθ(s)[ξ]] (2.3)

ξ = sin(ωt− φ)
Co(s)

Γf (s)
[y + n] . (2.4)

For the purpose of analysis, we define the tracking error θ̃ and output error ỹ:

θ̃ = θ∗(t)− θ + θ0 (2.5)

θ0 = Fi(s) [a sin(ωt)] (2.6)

ỹ = y − Fo(s)[f
∗(t)]. (2.7)

In terms of these definitions, we can restate the goal of extremum seeking as driving output error

ỹ to a small value by tracking θ∗(t) with θ. With the present method, we cannot drive ỹ to zero

because of the sinusoidal perturbation θ0. We are now ready for our single parameter result:

Theorem 2.1 (Single Parameter Extremum Seeking) For the system in Figure 1, under As-

sumptions 2.1, 2.2, and 2.3, the output error ỹ achieves local exponential convergence to an O(a2 +

1/ω2) neighbourhood of the origin provided n = 0 and:

1. Perturbation frequency ω is sufficiently large, and ±jω is not a zero of Fi(s).

2. Zeros of Γf (s) that are not asymptotically stable are also zeros of Co(s).

3. Poles of Γθ(s) that are not asymptotically stable are not zeros of Ci(s).

4. Co(s) and 1
1+L(s) are asymptotically stable, where

L(s) =
af ′′

4
Hi(s)

(
ejφFi(jω)Ho(s+ jω) + e−jφFi(−jω)Ho(s− jω)

)
, (2.8)

and Hi(s) = Ci(s)Γθ(s)Fi(s), Ho(s) = Co(s)
Γf (s)Fo(s).
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We omit the proof as it is subsumed in the stability proof of the multiparameter extremum

seeking scheme in Theorem 4.1 below. From Eqn. (2.8), we notice that Ci(s) appears linearly

in L(s) (through Hi(s) = Ci(s)Γθ(s)Fi(s)). This property allows systematic design using linear

control tools. The conditions of Theorem 2.1 motivate the steps of a rigorous design algorithm

below that achieves output extremization.

2.2 Single Parameter Compensator Design

In the design guidelines that follow, we set φ = 0 which can be used separately for fine-tuning.

Algorithm 2.1 (Single Parameter Extremum Seeking)

1. Select the perturbation frequency ω sufficiently large and not equal to any frequency in noise,

and with ±jω not equal to any imaginary axis zero of Fi(s).

2. Set perturbation amplitude a so as to obtain small steady state output error ỹ.

3. Design Co(s) asymptotically stable, with zeros of Γf (s) that are not asymptotically stable as

its zeros, and such that Co(s)
Γf (s) is proper.

4. Design Ci(s) by any linear SISO design technique such that it does not include poles of Γθ(s)

that are not asymptotically stable as its zeros, Ci(s)Γθ(s) is proper, and 1
1+L(s) is asymptoti-

cally stable.

We examine these design steps in detail:

Step 1: Since the averaging assumption is only qualitative, we may be able to choose ω only

slightly larger than the plant time constants. Choice of ω equal to a frequency component persistent

in the noise n can lead to a large steady state tracking error θ̃. In fact, our analysis can be adapted

to include a bounded noise signal satisfying limT→∞
1
T

∫ T
0 n sinωtdt = 0. Finally, if ±jω is a zero

of Fi(s), we will not be able to perturb the plant.

Step 2: The perturbation amplitude a should be designed such that a|Fi(jω)| is small; a itself

may have to be large so as to produce a measurable variation in the plant output.

Step 4: We see from Algorithm 2.1 that Ci(s) has to be designed such that Ci(s)Γθ(s) is proper;

hence, for example, if Γθ(s) = 1
s2

, an improper Ci(s) = 1 + d1s + d2s
2 is permissible. In the

interest of robustness, it is desirable to design Ci(s) and Co(s) to ensure minimum relative degree

of Ci(s)Γθ(s) and Co(s)
Γf (s) . This will help to provide lower loop phase and thus better phase margins.

Simplification of the design for Ci(s) is achieved by setting φ = − 6 (Fi(jω)), and obtaining L(s) =
af ′′

4 |Fi(jω)|Hi(s) (Ho(s+ jω) +Ho(s− jω)).

The attraction of extremum seeking is its ability to deal with uncertain plants. In our design,

we can accommodate uncertainties in f ′′, Fo(s), and Fi(s), which appear as uncertainties in L(s).

Methods for treatment of these uncertainties are dealt with in texts such as [7]. Here we only show

how it is possible to ensure robustness to variations in f ′′. Let f̂ ′′ denote an a priori estimate

of f ′′. Then we can represent 1
1+L(s) as 1

1+L(s) = 1

1+

(
1+∆f ′′

f̂ ′′

)
P (s)

, where ∆f ′′ = f ′′ − f̂ ′′, and

P (s) = f̂ ′′

f ′′
L(s), which is at our disposal because f ′′ in P (s) gets cancelled by f ′′ in L(s). We design

Ci(s) to minimize ‖ P
1+P ‖H∞ which maximizes the allowable ∆f ′′ < f̂ ′′/| P

1+P ‖H∞ under which the

system is still asymptotically stable.
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Figure 2: Multiparameter extremum seeking with p = 1, 2, . . . , l. For p odd, ωp+1 = ωp, βp = 0,

and βp+1 = π/2.

3 Modulation Lemmas

Lemma 3.1 ([2]) If the transfer function H(s) has all of its poles with negative real parts, then

for any real ψ,

H(s) [sin(ωt− ψ)] = Im
{
H(jω)ej(ωt−ψ)

}
+ ε−t, (3.9)

where ε−t denotes exponentially decaying terms.

Lemma 3.2 ([2]) If the transfer functions G(s) and H(s) have all of their poles with negative real

parts, the following statement is true for any real φ and any uniformly bounded z(t):

G(s) [(H(s)[sin(ωt− φ)]) z(t)]] = Im
{
ej(ωt−φ)H(jω)G(s+ jω)[z(t)]

}
+ ε−t.

Lemma 3.3 (generalization of Lemma 3.3 in [2]) For any two rational functions A(·) and

B(·, ·), the following is true:

Im
{
ej(ωat−ψ)A(jωa)

}
Im

{
ej(ωbt−φ)B(s, jωb)[z(t)]

}

=
1

2
Re

{
ej((ωb−ωa)t+ψ−φ)A(−jωa)B(s, jωb)[z(t)]

}
− 1

2
Re

{
ej((ωb+ωa)t−ψ−φ)A(jωa)B(s, jωb)[z(t)]

}
.

4 Output Extremization in Multivariable Extremum Seeking

Figure 2 shows the multiparameter extremum seeking scheme. Analogous to the single parameter

case in Section 2, we let f(θ) be a function of the form:

f(θ) = f ∗(t) + (θ − θ∗(t))TP(θ − θ∗(t)), (4.10)

where Pl×l = PT > 0, θ = [θ1 . . . θl]
T , θ∗(t) = [θ∗1(t) . . . θ

∗
l (t)]

T , L{θ∗(t)} = Γθ(s) = [λ1Γθ1(s) . . .

λlΓθl(s)]
T , and L{f ∗(t)} = λfΓf (s). Any vector function f(θ) with a quadratic minimum at θ∗ can

be approximated by Eqn. (4.10). In seeking maxima, i.e., P < 0, we only need to replace Cip(s)

with −Cip(s). Further, the method need not confine itself to seeking only extrema; convergence to

saddle points, and any points with zero first derivative may be attained using the designs developed
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here simply by setting Cip(s) the same sign as Ppp. We further note here that we propose diagonal

compensation in the scheme in Figure 2 for two reasons: while we can obtain a MISO sensitivity

design problem, there are no systematic means of multiparameter design when there is an unknown

matrix gain (P) in the plant; use of a MIMO compensator also leads to an O(l) increase in the

steady-state output deviation from the extremum.

The broad principle of using m frequencies for identification/tracking of 2m parameters holds

here. Forcing frequencies ω1 < ω3 < . . . < ω2m−1 are used, where m =
[
l+2
2

]
([x] is the greatest

integer less than x). We make assumptions analogous to the single parameter case:

Assumption 4.1 Fi(s) = [Fi1(s) . . . Fil(s)]
T and Fo(s) are asymptotically stable and proper.

Assumption 4.2 Γθ(s) and Γf (s) are strictly proper.

Assumption 4.3 Cip(s)Γθp(s) and Cop(s)
Γf (s) are proper for all p = 1, 2, . . . , l.

In the multiparameter case, we make an additional assumption upon the perturbation frequencies:

Assumption 4.4 ([4]) ωp + ωq 6= ωr for any p, q, r = 1, 2, . . . , l.

The purpose of this assumption is to preclude bias terms arising from demodulation in the case

of a quadratic nonlinearity. We can always satisfy this assumption since the choice of frequencies

is at our disposal. We expatiate further upon this assumption at the end of this section.

The equations governing the pth loop of the multiparameter scheme in Figure 2 are as follows:

y = Fo(s)
[
f∗ + (θ − θ∗)TP(θ − θ∗)

]
(4.11)

θp = Fip(s) [ap sin(ωpt+ βp)− Cip(s)Γθp(s)[ξp]] (4.12)

ξp = sin(ωpt+ βp − φp)
Cop(s)

Γf (s)
[y + n], (4.13)

where

βp =

{
0 , p odd
π
2 , p even

(4.14)

and, for p odd, ωp+1 = ωp. The definitions of tracking error θ̃p and output error ỹ analogous to the

single parameter case are:

θ̃p = θ∗p − θp + θ0p; θ̃ = [θ̃1 . . . θ̃l]
T (4.15)

θ0p = Fip(s)[ap sin(ωpt+ βp)]; θ0
T = [θ01 . . . θ0l]

T (4.16)

ỹ = y − Fo(s)[f
∗] = Fo(s)

[
(θ − θ∗)TP(θ − θ∗)

]
. (4.17)

We now state our result on multiparameter output extremization:

Theorem 4.1 (Multiparameter Extremum Seeking) For the system in Figure 2, under As-

sumptions 4.1–4.4, the output error ỹ achieves local exponential convergence to an O(1/ω2
1 +

l
∑l
p=1 a

2
p) neighbourhood of zero provided n = 0 and:

1. Perturbation frequencies ω1 < ω3 < . . . < ω2m−1 are rational, sufficiently large, and ±jωp is

not a zero of Fip(s).
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2. Zeros of Γf (s) that are not asymptotically stable are also zeros of Cop(s), for all p = 1, . . . , l.

3. Poles of Γθp(s) that are not asymptotically stable are not zeros of Cip(s), for any p = 1, . . . , l.

4. Cop(s) are asymptotically stable for all p = 1, . . . , l and 1
det(Il+X(s)) is asymptotically stable,

where Xpq(s) denote the elements of X(s) and

Xpq(s) = PpqapLp(s) + Pp+δ,qap+δMp(s), q = 1, . . . , l (4.18)

Lp(s) =
1

2
Hip(s)

[
ejφpFip(jωp)Hop(s+ jωp) + e−jφpFip(−jωp)Hop(s− jωp)

]
(4.19)

Mp(s) =
1

2
Hip(s)

[
ej(φp+δ π

2
)Fi,p+δ(jωp)Hop(s+ jωp)

+ e−j(φp+δ π
2
)Fi,p+δ(−jωp)Hop(s− jωp)

]
, (4.20)

where δ = 1 for p odd and δ = −1 for p even, and Hip(s) = Cip(s)Γθp(s)Fip(s) and Hop(s) =
Cop(s)
Γf (s) Fo(s).

Proof: We expand θ̃n in Eqn. (4.15), substituting for θn, ξn, and y from Eqns. (4.12), (4.13),

and (4.11) respectively and get:

θ̃n = θ∗n +Hin(s)
[
sin(ωnt+ βn − φn)Hon(s)[f

∗ + (θ − θ∗)TP(θ − θ∗)]
]

= θ∗n +Hin(s)
[
sin(ωnt+ βn − φn)Hon(s)[f

∗ + (θ̃ − θ0)
TP(θ̃ − θ0)]

]
, (4.21)

using θ − θ∗ = θ0 − θ̃ from Eqn. (4.15). Here, in addition to terms encountered in the single

parameter case, we have to consider linear terms and higher order terms that arise due to coupling

from the quadratic form:

(θ̃ − θ0)
TP(θ̃ − θ0) =

l∑

p=1

l∑

q=1

Ppq
(
θ̃pθ̃q + θ0pθ0q − θ̃pθ0q − θ̃qθ0p

)
(4.22)

The term containing f ∗(t), and θ0pθ0q in Eqn. (4.21) can be simplified using Lemma 3.1 as in the

proof of Theorem 2.1 in the Appendix, using Assns. 4.1, 4.2, 4.3, and asymptotic stability of Con(s):

sin(ωnt+ βn − φn)Hon(s)[f
∗ +

l∑

p=1

l∑

q=1

Ppqθ0pθ0q] = wn(t) + ε−t, (4.23)

where ε−t denotes exponentially decaying terms, and

wn(t) =
l∑

p=1

l∑

q=1

Ppqapaq {Cpq1 sin [(ωn + ωp + ωq)t− µpq1] + Cpq2 sin [(ωn + ωp − ωq)t− µpq2]

+Cpq3 sin [(ωn − ωp + ωq)t− µpq3] + Cpq4 sin [ωn − ωp − ωq)t− µpq4]} , (4.24)

where

Cpq1 = Cpq4 = |Fip(jωp)Fiq(jωq)Hon(j(ωp + ωq))| (4.25)

Cpq2 = Cpq3 = |Fip(jωp)Fiq(jωq)Hon(j(ωp − ωq))|, (4.26)
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and the constants µpqr, r = 1, . . . , 4 depend upon φn and the phases of Fip(jωp), Fiq(jωq), and

Hon(j(ωp ± ωq)). The function wn(t) is of order O(
∑l
p=1

∑l
q=1 apaq) = O(l

∑l
p=1 a

2
p) and does

not contain constant terms since from Assn. 4.4, ωp + ωq 6= ωr for any p, q, r = 1, . . . , l. Using

Eqns. (4.22), (4.23), and symmetry of P, we can now rewrite Eqn. (4.21) as follows:

θ̃n = θ∗n+Hin(s)


sin(ωnt+ βn − φn)Hon(s)




l∑

p=1

l∑

q=1

2Ppqθ̃qθ0p + Ppqθ̃pθ̃q


 + wn(t) + ε−t


 . (4.27)

Using asymptotic stability of Hon(s) (from Assns. 4.1, 4.2, 4.3, and asymptotic stability of Con(s))

and applying Lemmas 3.1, 3.2, and 3.3 in succession to the term containing θ̃qθ0p in Eqn. (4.27),

we get2:

Hin(s)
[
sin(ωnt+ βn − φn)Hon(s)[2Ppq θ̃qθ0p]

]
= Hin(s)

[
Tnpq[θ̃q]−Knpq[θ̃q]

]
, (4.28)

where

Tnpq[θ̃q] = Ppqap
[
Re

{
ej((ωn+ωp)t+βn−φn+βp)vpq

}]
(4.29)

Knpq[θ̃q] = Ppqap
[
Re

{
ej((ωp−ωn)t−βn+φn+βp)vpq

}]
(4.30)

vpq = Fip(jωp)Hon(s+ jωp)[θ̃q]. (4.31)

Since we are proving a local result, we drop the second order terms containing θ̃pθ̃q and rewrite

Eqn. (4.27) as follows after moving terms linear in θ̃q to the left hand side:

θ̃n +Hin(s)

[∑

p

∑

q

(Knpq − Tnpq) [θ̃q]

]
= θ∗n +Hin(s)

[
wn(t) + ε−t

]
. (4.32)

We consider below the low frequency second terms Hin(s)[Knpq] in Eqn. (4.28) in the following

cases to explicitly show the time invariant terms:

1. q = n, p = n: We get the term, Hin(s)[Knpq] = PnnanLn(s).

2. q = n, p = n+ δ: We get Hin(s)[Knpq] = Pn+δ,nan+δMn(s).

3. q 6= n, p = n: We get a term Hin(s)[Knpq] = PnqanLn(s).

4. q 6= n, p = n+ δ: We get a term Hin(s)[Knpq] = Pn+δ,qan+δMn(s).

5. q 6= n, p 6= n+ δ: Knpq is time-varying.

Using the above, we can rewrite Eqn. (4.27) in a form that shows separately the time invariant

terms:

θ̃n +
∑

q

Xnq(s)[θ̃q] +Hin(s)


 ∑

p6=n,n+δ

∑

q

(Knpq − Tnpq) [θ̃q]−
∑

p=n,n+δ

∑

q

Tnpq[θ̃q]



= θ∗n +Hin(s)
[
wn(t) + ε−t

]
. (4.33)

2Note that Eqn. (4.28) contains additional terms of the form Hin(s)[sin(ωnt+βn−φn)Hon(s)[ε−tθ̃q]] which comes

from ε−t in θ0p(t) = aIm{Fip(jωp)e
jωpt} + ε−t. We drop this term from subsequent analysis because it does not

affect closed loop stability or asymptotic performance. It can be accounted for in three ways. One is to perform

averaging over an infinite time interval in which all exponentially decaying terms disappear. The second way is to

treat ε−tθ̃q as a vanishing perturbation via Corollary 5.4 in Khalil [1], observing that ε−t is integrable. The third

way is to express ε−t in state space format and let ε−tθ̃q be dominated by other terms in a local Lyapunov analysis.
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The rest of the proof shows how only the time invariant terms in Eqn. (4.33) need be considered

for stability of the system. We now proceed to put the Eqns. (4.32) in a form suitable for applying

averaging. Dividing both sides of Eqn. (4.32) with det(I + X(s)), we get

1

det(I + X(s))
[θ̃n] + Yin(s)

[∑

p

∑

q

(Knpq − Tnpq) [θ̃q]

]
=

1

det(I + X(s))
[θ∗n] + Yin(s)

[
wn(t) + ε−t

]
,

(4.34)

where Yin(s) = Hin(s)
det(I+X(s)) = num{Yin(s)}

num{det(I+X(s))} is asymptotically stable because poles of Hin(s) that

are not asymptotically stable are cancelled by zeros in 1
det(I+X(s)) (using condition 3 of Theorem 4.1),

and 1
det(I+X(s)) is asymptotically stable. By noting also that zeros in 1

det(I+X(s)) cancel poles in

θ∗n(s) = λθΓθn(s) that are not asymptotically stable (using condition 3 of Theorem 4.1), and using

asymptotic stability of 1
det(I+X(s)) , we get

1

det(I + X(s))
[θ̃n] + Yin(s)

[∑

p

∑

q

(Knpq − Tnpq) [θ̃q]

]
= ε+ Yin(s) [wn(t)] (4.35)

ε =

[
1

det(I + X(s))
[θ∗n] + Yin(s)

[
ε−t

]]
, (4.36)

where ε is exponentially decaying. Multiplying both sides of Eqn (4.35) with num{det(I + X(s))},
and expanding operators Knpq and Tnpq, we rewrite Eqn. (4.35) as

den{det(I + X(s))}[θ̃n]

+num{Yin(s)}
[∑

p

∑

q

Ppqap
(
Re

{
en((ωp−ωn)t−βn+φn+βp)vpq

}
−Re

{
ej((ωn+ωp)t+βn−φn+βp)vpq

})]

= num{det(I + X(s))}[ε] + num{Yin(s)} [wn(t)] . (4.37)

Now, there exist polynomials Zj(ωp−ωn)(s), Zj(ωp+ωn)(s) whose order is the same as that of num{Yin(s)},
whose coefficients are dependent on (ωp − ωn), (ωp + ωn) respectively, and such that

num{Yin(s)}
[∑

p

∑

q

Ppqap
(
ej((ωp−ωn)t−βn+φn+βp)vpq − ej((ωn+ωp)t+βn−φn+βp)vpq

)]

=
∑

p

∑

q

Ppqap
(
ej((ωp−ωn)t−βn+φn+βp)Zj(ωp−ωn)(s)[vpq]

−ej((ωn+ωp)t+βn−φn+βp)Zj(ωp+ωn)(s)[vpq]
)
, (4.38)

and Z0(s) = num{Yin(s)}. Hence we can write the system of Eqns. (4.37) as

den{det(I + X(s))}[θ̃n] +
∑

p

∑

q

Ppqap
(
Re

{
ej((ωp−ωn)t+φn+βp)Zj(ωp−ωn)(s)[vpq]

}

−Re
{
ej((ωn+ωp)t−φn+βp)Zj(ωp+ωn)(s)[vpq]

})

= num{det(I + X(s))}[ε] + num{Yin(s)} [wn(t)] . (4.39)

The system of Eqns. (4.39) can be written as a set of time-varying linear differential equations,

and this, along with Eqns. (4.31) for vpq and v̄pq (for all n, p, q = 1, . . . , l) can be put into the state

space form:

ẋ = A(t)x + A12xe + Bw(t); θ̃ = Cx + C12xe + Dw(t) (4.40)

ẋe = Aexe, (4.41)
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where w(t)T = [w1(t), . . . , wl(t)], and Eqn. (4.41) is a representation for the exponentially decaying

term ε. As all forcing frequencies ω1, . . . , ωm, and consequently their linear combinations, are

rational, there exists a period T , which is the lowest common multiple of all the time-periods in

the system, such that the system in Eqn. (4.40) is T -periodic3. We get Eqns. (4.40), (4.41) into

the standard form for averaging by using the transformation τ = ω1t, and then averaging the right

hand side of the equations w.r.t time from 0 to T , i.e., 1
T

∫ T
0 (·)dτ treating states x, xe as constant.

The averaged equations are:

dxav
dτ

=
1

ω1
(Aavxav + A12xeav) , θ̃av = Cxav + C12xeav (4.42)

dxeav
dτ

=
1

ω1
Aexeav, (4.43)

where Aav = 1
T

∫ T
0 A(τ)dτ . This yields

den{det(I + X(s))}[θ̃nav ] + num{Yin(s)}

 ∑

p=n,n+δ

∑

q

PpqapRe
{
ej(φn−βn+βp)[vpqav]

}



= den{det(I + X(s))}
[
θ̃nav +

∑

q

Xnq(s)[θ̃qav]

]

= num{det(I + X(s))}[ε−t], (4.44)

in the original time-scale, using Z0(s) = num{Yin(s)} and substituting for vpq from Eqn. (4.31).

Expanding the right hand side of Eqn. (4.44) as

num{det(I + X(s))}[ε−t] = num{det(I + X(s))}
[

1

det(I + X(s))
[θ∗n] + Yin(s)

[
ε−t

]]
,

and dividing both sides with num{det(I + X(s))} (which is asymptotically stable), we get

1

det(I + X(s))

[
θ̃nav +

∑

q

Xnq(s)[θ̃qav ]

]
=

1

det(I + X(s))
[θ∗n] + Yin(s)

[
ε−t

]

=
1

det(I + X(s))

[
θ∗n +Hin(s)

[
ε−t

]]
, (4.45)

using Yin(s) = Hin(s)
det(I+X(s)) . Eqn. (4.45) represents a system of equations that can be written in

matrix form as

θ̃av = (I + X(s))−1
[
θ∗ + Hi(s)

[
ε−t

]]
, (4.46)

where Hi(s) = [Hi1(s), . . . ,Hil(s)]. θ̃av decays to zero because (I+X(s))−1 is asymptotically stable

(owing to asymptotic stability of 1
det(I+X(s)) ), and zeros in (I+X(s))−1 cancel unstable poles in θ∗

and Hi(s). Hence, by a standard averaging theorem such as Theorem 8.3 in Khalil [1], we see that

if ωp, ap, φp, Cip(s) and Cop(s) for all p = 1, . . . , l are such that 1
det(I+X(s)) is asymptotically stable,

Cop(s) is asymptotically stable, ω1 is sufficiently large relative to parameters of the state-space

3The frequencies ω1, . . . , ωm, being rational, can be written as ω1,
p1

q1
ω1,

p2

q2
ω1, . . . ,

pm−1

qm−1

ω1. The time periods

in the system are 2π
ωp

, 2π
(ωp−ωq)

, ωp 6= ωq,
2π

(ωp+ωq)
, 2π

(ωp+ωq−ωr)
, and 2π

(ωp+ωq+ωr)
, p, q, r = 1, . . . , m, all of which are

rational multiples of 2π. Thus, T can be calculated as the lowest common multiple of these time-periods.
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representation, solutions starting from small initial conditions converge exponentially to a periodic

solution in an O(1/ω1) neighbourhood of zero. Hence, θ̃ goes to O(1/ω1). Further, the output error

ỹ decays to O(1/ω2
1 + l

∑l
p=1 a

2
p):

ỹ = Fo(s)[(θ − θ∗)TP(θ − θ∗)] = Fo(s)[(θ̃ − θ0)
TP(θ̃ − θ0)]

= Fo(s)[θ̃
TPθ̃ + θT0 Pθ0 − 2θ̃TPθ0]

= O(1/ω2
1 +

l∑

p=1

l∑

q=1

apaq) = O(1/ω2
1 + l

l∑

p=1

a2
p), (4.47)

Q. E. D.

We have proved Theorem 4.1 for the case where a single frequency is used for tracking of two

parameters. Because of the coupling this introduces through the Mp(s) terms in each of the

Xpq(s), the process of multiparameter design may become difficult. When it is possible to use more

frequencies, the design may be simpler. Hence, we provide here a corollary to Theorem 4.1 when a

forcing frequency is dedicated to tracking only one parameter instead of two:

Corollary 4.1 If forcing frequencies ω1 < ω2 < . . . < ωs, 2m − 1 < s ≤ l are chosen for the

scheme in Figure 2, and all the other conditions of Theorem 4.1 hold, its result also holds with

Xpq(s) = PpqapLp(s) for each p where ωp 6= ωr for any r 6= p, and Xpq(s) is given by Eqn (4.18)

otherwise.

The result follows from the fact that the coupling terms Mp(s) vanish when a forcing frequency

is used only for one tracking loop.

Now, we briefly discuss Assumption 4.4. From Eqns. (4.23), (4.24) it is clear that the assumption

precludes constant terms in wn(t) only when the nonlinearity is quadratic. For a general nonlinear-

ity, the frequencies can be designed incommensurate, and the analysis result arrived at by infinite

time averaging. Even without this assumption, exponential convergence of ỹ to a neighbourhood

of the origin can be attained if the constant terms in wn(t) are small, but the analysis is longer,

since we would have to linearize equations for θ̃n about those constant terms, and then perform

averaging.

5 Multiparameter Design

The process of design for the multiparameter case can be divided into the following sequential steps:

selection of frequencies ω1, ω2, . . . , ωl, selection of perturbation amplitudes a1, a2, . . . , al, design of

compensators Cop(s) and Cip(s) for each p, to satisfy the conditions of Theorem 4.1.

The complexity of multiparameter design arises from the need for asymptotic stabilization of
1

det(I+X(s)) , which is intricately coupled. Methods of decentralized control, as those in [5] do not

apply to our problem because the coupling between different subsystems enters through the com-

pensators Cip(s) due to a single output being used for measurement. We propose here a method of

reducing the general problem to allow independent SISO design of each of the compensators Cip(s).

The method involves domination of the off diagonal terms in I + X(s) by the diagonal terms, and

may be termed diagonal domination design.
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l 2 3 4 5 6 7 8 9 10

ρ∗l 1 0.5 0.3239 0.2367 0.1855 0.1520 0.1284 0.1111 0.0978

Table 1: Design difficulty in general design increases with dimension l

Proposition 5.1 Let ρ∗l denote the unique solution in the interval (0, 1] of the polynomial equa-

tion4 per (Σ(ρ)) = 2, Σ(ρ) =




1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1




l×l

. If
Xpp(s)

1+Xpp(s) are asymptotically stable and

‖ Xpq

1+Xpp
‖H∞ < ρ∗l for all p 6= q, then 1

det(I+X(s)) is asymptotically stable, where Xpq(s) are defined

in Eqn. (4.18).

From the definition of the permanent of a matrix, per (Σ(ρ)) is a polynomial with positive integer

coefficients and thus a monotonically increasing function of ρ when ρ > 0. Since per (Σ(0)) = 1

and per (Σ(1)) ≥ 2 , we have by continuity, a unique solution to the equation per (Σ(ρ)) = 2 in

the interval (0, 1] . The equation per (Σ(ρ)) = 2 expands as ρ2 = 1 and 2ρ3 + 3ρ2 = 1 in two and

three dimensions, respectively, yielding ρ∗2 = 1, and ρ∗3 = 0.5. Thus the crux of Proposition 5.1 is

that if the transfer functions
Xpq(s)

1+Xpp(s) are norm bounded by a number ρ∗l that depends only upon

the dimension of the problem l, we have asymptotic stability of 1
det(I+X(s)) . For convenience, we list

values of ρ∗l upto l = 10 in Table 1. It can be shown that 1
ρ∗

l
≤
√
l!− 1.

Proof of Proposition 5.1: We first rewrite the determinant of (I + X(s)) as follows:

det(I + X(s)) = det




1 X12(s)
1+X11(s)

X13(s)
1+X11(s) · · · X1l(s)

1+X11(s)
X21(s)

1+X22(s) 1 X23(s)
1+X22(s) · · · X2l(s)

1+X22(s)
...

. . .
. . .

. . .
...

Xl1(s)
1+Xll(s)

Xl2(s)
1+Xll(s)

Xl3(s)
1+Xll(s)

· · · 1




l∏

p=1

(1 +Xpp(s))(5.48)

= det(Y(s))
l∏

p=1

(1 +Xpp(s)) (5.49)

= (1 +W (s))
l∏

p=1

(1 +Xpp(s)), (5.50)

where Eqns. (5.48), (5.49), and (5.50) define Y(s) and W (s). Therefore, we have

1

det(I + X(s))
=

1

(1 +W (s))
∏l
p=1(1 +Xpp(s))

. (5.51)

Now, we note that as
Xpp(s)

1+Xpp(s) ∈ H∞ for each p, each of 1
1+Xpp(s) is asymptotically stable. Hence,

if we can achieve ‖W‖H∞ < 1, we have asymptotic stability of 1
det(I+X(s)) . Using 1 + W (s) =

4The permanent of a matrix A is defined as perA =
∑

σ

∏n

i=1
ai,σ(i), where the sum runs over all n! permutations

σ of {1, . . . , n}, and σ(i) is the ith element of the permutation σ. We note that the permanent of a matrix is simply

the sum of all the terms in its determinant, with all the products
∏n

i=1
ai,σ(i) entering with coefficient 1 instead of a

power of −1.
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det(Y(s)), we have:

W (s) =
∑

σ

sgnσ
l∏

i=1

yi,σ(i)(s), (5.52)

where the sum runs over l! − 1 permutations σ of {1, . . . , l} excluding the permutation {1, . . . , l}
to account for the cancellation of unity in Eqn. (5.52), sgnσ is positive or negative depending

upon whether the number of pairwise interchanges needed to arrive at the permutation σ from the

permutation {1, . . . , l} is even or odd, and σ(i) is the ith element of the permutation σ.

We are now in a position to bound the H∞ norm of W (s) through repeated application of the

triangle inequality and the submultiplicative property of the H∞ norm:

‖W‖H∞ ≤
∑

σ

‖
l∏

i=1

yi,σ(i)(s)‖H∞ ≤
∑

σ

l∏

i=1

‖yi,σ(i)(s)‖H∞ . (5.53)

Substituting ‖ Xpq

1+Xpp
‖H∞ < ρ∗l for all p, q, in Eqn. (5.53), and using the fact that ρ∗l is the unique

solution of the equation per (Σ(ρ)) = 2 in the interval (0, 1] , we have

‖W‖H∞ < perΣ(ρ∗l )− 1 = 1. (5.54)

From asymptotic stability of each of 1
1+Xpp(s) , and of 1

1+W (s) , we have asymptotic stability of
1

det(I+X(s)) from Eqn. (5.51). Q.E.D.

While Proposition 5.1 provides a sufficient condition for asymptotic stability of 1
det(I+X(s)) , it

does not provide means to guarantee it. Hence the problem has now to be transformed to permit

systematic design of the compensators Cip(s) to achieve ‖ Xpq

1+Xpp
‖H∞ < ρ∗l for all p, q. To this end,

we express the off diagonal terms of X(s) as perturbations of the diagonal terms in the case where

different forcing frequencies ω1 < ω2 < . . . < ωl are chosen for each of the parameter tracking loops.

In this case, from Corollary 4.1, we have

Xpq(s) = PpqapLp(s) (5.55)

because the coupling terms Mp(s) do not arise. Thus, we have

Xpq(s)

1 +Xpp(s)
=
Ppq
Ppp

Xpp(s)

1 +Xpp(s)
. (5.56)

Taking the H∞ norm of both sides of Eqn. (5.56), and using the submultiplicative property of the

H∞ norm, we get the following corollary to Proposition 5.1:

Theorem 5.1 Consider the system from Theorem 4.1 with separate forcing frequencies ω1 < ω2 <

. . . < ωl for each of the parameter tracking loops. If
Xpp(s)

1+Xpp(s) are asymptotically stable and |Ppq| <
ρ∗

l

‖
Xpp

1+Xpp
‖H∞

Ppp for each q 6= p, then 1
det(I+X(s)) is asymptotically stable.

Hence, we can design Cip(s) to minimize ‖ Xpp

1+Xpp
‖H∞ for each p which maximizes the allowable

|Ppq

Ppp
|. Diagonal dominance in a positive definite matrix P simply means that the coordinate axes

of the level surfaces (θ − θ∗)TP(θ − θ∗) are close to the principal axes in orientation. The need

for dominance of diagonal terms in the Hessian of the nonlinearity P thus has a simple geometric
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interpretation: the inputs θ should be close to being along the principal axes of the level surfaces of

the nonlinearity. Clearly, the difficulty of control design increases with dimension as ρ∗l decreases

roughly as 1/l. For high dimensions, the problem may not have a solution. For the important case

of optimizing a static map, where Fip(s) = Fo(s) = 1, Γθp(s) = 1/s for each p, and Γf (s) = 1/s,

we can choose separate forcing frequencies for each of the parameter tracking loops, Cop(s) =

1/(s+ h), h > 0, for all p, Cip(s) = kp > 0, and obtain Xpp(s) =
kpapPpp(s2+hs+ω2

p)

s((s+h)2+ω2
p) . If kpapPpp < h,

we have ‖ Xpp

1+Xpp
‖H∞ = 1 and this yields the condition for stability as |Ppq| < ρ∗l Ppp for each q 6= p

from Theorem 5.1. To sum up the process of design, we state a multiparameter design algorithm:

Algorithm 5.1 (Multiparameter Design Algorithm)

1. Select ω1, ω2, . . . , ωl sufficiently large, not equal to frequencies in noise, and with ±jωp not

equal to imaginary axis zeros of Fip(s).

2. Set perturbation amplitudes ap so as to obtain small steady state output error ỹ.

3. Design each Cop(s) asymptotically stable, with zeros that include the zeros of Γf (s) that are

not asymptotically stable, and such that
Cop(s)
Γf (s) is proper.

4. For each p = 1, . . . , l, design Cip(s) such it does not include poles of Γθp(s) that are not

asymptotically stable as its zeros, Cip(s)Γθp(s) is proper, and 1
det(I+X(s)) is asymptotically

stable. Asymptotic stability of 1
det(I+X(s)) may be achieved by designing Cip(s) to minimize

‖ Xpp

1+Xpp
‖H∞ for each p, using the result in Theorem 5.1.

We note that the theory permits the forcing frequencies to be very close. Further, the condition

ωp + ωq 6= ωr for each p, q, r = 1, . . . , l used in [4] is not necessary for the output to converge

to a neighbourhood of the extremum, but helpful in simplifying the analysis; it ensures that the

averaged Eqn. (4.42) has its equilibrium at the origin, in the case of a quadratic nonlinearity.

We can either use a separate frequency for each parameter tracking loop or use one frequency for

every two parameter tracking loops, or something in between. In general, using a single frequency

to force two parameter tracking loops leads to greater coupling, and consequent difficulty of design.

Design Variations. The design procedure for multiparameter extremum seeking offers theoreti-

cal guarantees of local stability and performance. The results rest upon an averaging analysis that

averages out oscillatory terms in Yin(s)[wn(t)] = O(
∑l
p=1

∑l
q=1 apaq) and in Yin(s)

[∑
p

∑
q Tnpq[θ̃q]−

Knpq[θ̃q]
]

(see Eqn. (4.35)). The magnitude of these oscillations can be large, and can mean a highly

oscillatory output about the extremum, or even loss of stability. Here we propose design variations

within the framework of the analysis above that enhance the practical utility of the design algo-

rithm by attenuation of the oscillatory terms by a factor ε as they pass through the plant (Fi(s)

and Fo(s)) and filters (Con(s)
Γf (s) and Cin(s)Γθn(s)):

1. Attenuation through plant dynamics, Fi(s) and Fo(s) (High frequency design):

(a) Select ω1 such that Fin(jΩ) < ε for each n = 1, . . . , l, and |Fo(jΩ)| < ε for all Ω > ω1.

(b) Choose each of the other frequencies ωn large enough to attain |ωn − ωp − ωq| ≥ ω1 for

all n, p, q = 1, . . . , l. This will yield |Fin(j(ωn − ωp − ωq))|, |Fo(j(ωn − ωp − ωq))| ≤ ε.
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(c) Perform steps 2, 3, 4 in Algorithm 5.1.

If both Fi(s) and Fo(s) are relative degree zero, we will not be able to achieve arbitrary

attenuation ε.

2. Attenuation through tracking compensator Cin(s):

(a) Perform steps 1, 2, 3 of Algorithm 5.1 and write Cin(s) = C ′
in(s)FLPn(s).

(b) Design an asymptotically stable, minimum phase low-pass filter FLPn(s) such that

|FLPn(jΩ)| ≤ ε for all Ω > |ωn − ωp − ωq| for all n, p, q = 1, . . . , l.

(c) Design each C ′
in(s) as the Cin(s) in step 4 of Algorithm 5.1 with Γθn(s) replaced by

FLPn(s)Γθn(s) with the additional constraint that poles and zeros in it do not cancel

any poles or zeros of FLPn(s).

3. Attenuation through output compensator Con(s):

(a) Perform steps 1, and 2 of Algorithm 5.1 and write Con(s) = C ′
on(s)FBPn(s).

(b) Design an asymptotically stable, minimum phase band-pass filter FBPn(s) such that

|FBPn(jΩ)| ≤ ε for all Ω 6= ωn, where Ω ∈ {ωp, ωp ± ωq, ωn ± ωp ± ωq}, n, p, q = 1, . . . , l.

(c) Design each C ′
on(s) as the Con(s) in step 3 of Algorithm 5.1 with Γf (s) replaced by

Γf (s)
FBPn(s) , with the additional constraint that poles and zeros in it do not cancel any poles

or zeros of FBPn(s).

(d) Perform step 4 of Algorithm 5.1 as before.

It is clear that each one of these three design variations, whose objective is to attenuate the effect

of the probing signals, will make stability harder to achieve.
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