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Abstract

Important variants and complements to the original Lyapunov and Lagrange sta-
bility concepts are corresponding notions concerning partial stability. For a given mo-
tion of a dynamical system, say x(t, x0, t0) = (y(t, x0, t0), z(t, x0, t0)), partial stability
concerns the qualitative behavior of the y-component of the motion, relative to distur-
bances in the entire initial vector x(t0, x0, t0) = x0 = (y0, z0), or relative to disturbances
in the initial component y0. In the former case we speak simply of y-stability, while in
the latter case, we speak more explicitly of y-stability under arbitrary z-perturbations.

In the present paper we establish new results for y-stability of invariant sets and
y-stability under arbitrary initial z-perturbations for dynamical systems defined on
metric space, using stability preserving mappings. Our results are applicable to a
much larger class of systems than existing results, including to dynamical systems that
cannot be determined by the usual classical (differential) equations and inequalities.
In contrast to existing results which pertain primarily to the analysis of equilibria,
the present results apply to invariant sets (including equilibria as special cases). To
demonstrate the applicability of the method advanced herein, we apply our results in
the analysis of a class of discrete event systems (a computer load balancing problem).

1 Introduction

With the emergence of the Second Method of Lyapunov (resp., the Direct Method of Lya-

punov) as an indispensable tool in science, engineering, and applied mathematics (see, e.g.,

[1], [2], [3], [4], [5]), several interesting and important variants and complements to Lya-

punov’s original concepts of stability were proposed. One of these involves the notion of

partial stability. This type of stability is of interest, e.g., in applications where only the

qualitative behavior of a prespecified component (say, component y(t, x0, t0)) of a motion

(say, x(t, x0, t0) = (y(t, x0, t0), z(t, x0, t0)) is of interest or in applictions where stability with

respect to only such a component (component y(t, x0, t0)) is in fact possible. The initial work

in this area concerned partial stability, resp., y-stability, with respect to disturbances in the

entire initial motion x(t0, x0, t0) = x0 = (y0, z0) (see [6]), while in subsequent work, partial

stability with respect to disturbances in only part of the initial motion, y0, is of interest

(see, e.g., [7], [8]). To simplify matters, we will refer to the former simply as partial stability,

or y-stability and to the latter as partial stability under arbitrary initial z-perturbations, or

y-stability under arbitrary initial z-perturbations.
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The initial work concerning y-stability [6] addresses the partial stability of an equilibrium

for continuous-time finite dimensional dynamical systems determined by ordinary differential

equations. Subsequent results on partial stability (of an equilibrium) concern discrete-time

finite dimensional dynamical systems determined by ordinary difference equations (see, e.g.,

[9], [10]), functional differential equations [11], systems with impulse effects (see, e.g., [12],

[13], [14]), Ito differential equations [11], and others. The work in [7], [8] on y-stability of an

equilibrium under arbitrary initial z-perturbations concerns dynamical systems determined

by ordinary differential equations. For additional sources concerning the work described

above, the reader should consult the references cited in [11]. We note in passing that problems

concerning partial stability of dynamical systems are closely related to problems of stability

with respect to two measures [15].

In this paper, to explore the y-stability and y-stability under arbitrary initial z-perturbations

properties of the system under study, we utilize, as was done in earlier work [5], [16], [19],

stability preserving mappings, i.e., mappings that preserve the stability properties of two dy-

namical systems. The domain of such a mapping is the dynamical system under study while

its range is a well understood dynamical system, the comparison system. In this approach,

the qualitative properties of the system under investigation are deduced from the qualitative

properties of the comparison system. Next, we use the above results to establish the Prin-

cipal Lyapunov Theorems of general motions for y-stability of invariant sets and y-stability

under arbitrary initial z-perturbations. Finally, we analyze a class of discrete event systems,

using some of these results (with particular application to a load balancing problem in a

computer network [18]).

2 Preliminaries

Let (X, d) be a metric space, where X denotes the underlying set and d denotes the distance

function. Throughout, we will find it convenient to view (X, d) as a product of two metric

spaces (Y, dy) and (Z, dz). Then X = Y × Z, i.e., for every x ∈ X, x = (y, z), where

y ∈ Y , z ∈ Z. The distance function d may be defined in a variety of ways, e.g., d(x1, x2) =

(dy(y1, y2)
p + dz(z1, z2)

p)1/p for all x1 = (y1, z1), x2 = (y2, z2) ∈ X, 1 ≤ p ≤ ∞, where for

p = ∞ we have d(x1, x2) = max{dy(y1, y2), dz(z1, z2)}. Recall that the distance between

x0 ∈ X and a set M ⊂ X is defined as d(x0,M) = infx̃∈Md(x0, x̃). We assume that M is the

product of two sets My ⊂ Y and Mz ⊂ Z, i.e., M = My ×Mz. For x0 = (y0, z0), we define

the distance between y0 and My by dy(y0,My) = infỹ∈Mydy(y0, ỹ). The distance dz(z0,Mz)

is defined similarly. Throughout, we let T = R+ = [0,∞) or T = N = {0, 1, 2, ...}.

Definition 2.1. Let A ⊂ X. For any fixed a ∈ A, t0 ∈ T , a mapping p(., a, t0) : Ta,t0 → X

is called a motion if p(t0, a, t0) = a, where Ta,t0 = [t0, t1)
⋂
T , t1 > t0 and t1 is finite or

infinite.

Note that for p(t, a, t0) ∈ X, we have p(t, a, t0) = (py(t, a, t0), pz(t, a, t0)), where py(t, a, t0) ∈
Y and pz(t, a, t0) ∈ Z.

2



Definition 2.2. Let S be a family of motions, i.e.,

S ⊂ {p(., a, t0) ∈ Λ : p(t0, a, t0) = a}, where

Λ =
⋃

(a,t0)∈A×T{Ta,t0 × {a} × {t0} → X}
and Ta,t0 × {a} × {t0} → X denotes a mapping from Ta,t0 × {a} × {t0} into X. The

four-tuple {T,X,A, S} is called a dynamical system.

When T = R+, {T,X,A, S} is called a continuous-time dynamical system while when

T = N , one speaks of a discrete-time dynamical system. When all is clear from context, we

will usually refer to a “dynamical system S”, rather than a “dynamical system {T,X,A, S}”.

Definition 2.3. Let {T,X,A, S} be a dynamical system. A set M ⊂ A is said to be

invariant with respect to system S if a ∈ M implies that p(t, a, t0) ∈ M for all t ∈ Ta,t0 , all

t0 ∈ T and all p(., a, t0) ∈ S. A set M ⊂ A is said to be y-invariant with respect to system S

if a ∈M implies that py(t, a, t0) ∈My for all t ∈ Ta,t0 , for all t0 ∈ T and all p(., a, t0) ∈ S.

When M is invariant (resp., y-invariant) with respect to S, we will frequently say (S,M)

is invariant (resp., y-invariant).

In studying partial stability, we will require the following concepts.

Definition 2.4. Let {T,X,A, S} be a dynamical system and let M ⊂ A. We say that

(S,M) is y-stable with respect to S, or more compactly, (S,M) is y-stable, if for every ε > 0

and t0 ∈ T there exists a δ = δ(ε, t0) > 0 such that dy(py(t, a, t0),My) < ε for all t ∈ Ta,t0

and for all p(., a, t0) ∈ S, whenever d(a,M) < δ. We say that (S,M) is y-uniformly stable if

δ = δ(ε). We say that (S,M) is y-attractive if for any t0 ∈ T there exists an η = η(t0) > 0

such that limt→∞dy(py(t, a, t0),My) = 0 for all p(., a, t0) ∈ S, whenever d(a,M) < η. If

(S,M) is y-stable and y-attractive, we say (S,M) is y-asymptotically stable. We call (S,M)

y-uniformly asymptotically stable if (S,M) is y-uniformly stable and y-uniformly attractive.

In this case for every ε > 0 and every t0 ∈ T , there exists a δ > 0, independent of t0 and ε,

and a τ = τ(ε) > 0, independent of t0 such that dy(py(t, a, t0),My) < ε for all t ∈ Ta,t0+τ and

all p(., a, t0) ∈ S, whenever d(a,M) < δ.

The definitions of partial stability given above are relative to the disturbances in the entire

initial vector x0 = (y0, z0), while the definitions of partial stability under arbitrary initial z-

perturbations are only relative to the disturbances in the initial component y0 and this is the

only difference between these two kinds of notions. In the following, we give the definition

of y-stability under arbitrary initial z-perturbations. Other notions for y-stability under

arbitrary initial z-perturbations follow from Definition 2.4, making obvious modifications.

Definition 2.5. Let {T,X,A, S} be a dynamical system and letM ⊂ A. We say that (S,M)

is y-stable under arbitrary initial z-perturbations, if for every ε > 0 and t0 ∈ T there exists

a δ = δ(ε, t0) > 0 such that dy(py(t, a, t0),My) < ε for all t ∈ Ta,t0 and for all p(., a, t0) ∈ S,

whenever dy(ay,My) < δ.
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The various notions of partial stability (partial stability under arbitrary initial

z-perturbations) given above, are natural adaptations of the well known concepts of the cor-

responding types of stability of invariant sets for general dynamical systems, as discussed,

e.g., in [4], [5]. Similarly as above, concepts for y-exponential stability, y-asymptotic stability

in the large, y-uniform asymptotic stability in the large, y-exponential stability in the large, y-

uniform boundedness of motions and y-uniform ultimate boundedness and the corresponding

y-stability under arbitrary initial z-perturbations notions can also be introduced in a natural

manner. We will not do this here due to space limitations. Note further that the present

definitions constitute generalizations of the corresponding concepts of partial stability and

partial stability under arbitrary initial z-perturbations of finite dimensional dynamical sys-

tems determined by systems of ordinary differential equations with X = Rn, T = R+ and

M = {0} ⊂ Rn (refer, e.g., to [11] and the references cited therein).

3 Stability Preserving Mapping Theorem for Partial

Stability under Arbitrary Initial Z-perturbations

We will utilize dynamical systems {T,X1, A1, S1} and {T,X2, A2, S2}, sets M1 ⊂ A1 and

M2 ⊂ A2, and a function V : X1 × T → X2. Define

S̃2 = V(S1)
4
= {q(., b, t0) : q(t, b, t0) = V (p(t, a, t0), t), p(., a, t0) ∈ S1, t ∈ T, with

b = V (a, t0) and Tb,t0 = Ta,t0 , a ∈ A1, t0 ∈ T}; (3.1)

M̃2 = {x2 ∈ X2 : x2 = V (x1, t
′) for some x1 ∈M1 and t

′ ∈ T}; and (3.2)

Ã2 = {x2 ∈ X2 : x2 = V (x1, t
′) for some x1 ∈ A1 and t

′ ∈ T}. (3.3)

Note that V : S1 → S2 is induced by the mapping V : X1 × T → X2.

We will also require the following types of comparison functions.

Definition 3.1. A continuous function ψ : R+ → R+ belongs to class K if ψ(0) = 0 and

if ψ is strictly increasing on R+. If ψ belongs to class K, and if limr→∞ψ(r) = ∞, then ψ

belongs to class KR. We express this compactly as ψ ∈ K and ψ ∈ KR, respectively.

Theorem 3.1. Let {T,X1, A1, S1} and {T,X2, A2, S2} be two dynamical systems with Xi =

Yi×Zi, i = 1, 2 and letM1 = My1×Mz1 ⊂ A1 ⊂ X1, My1 ⊂ Y1, Mz1 ⊂ Z1 andM2 ⊂ A2 ⊂ X2.

Assume there exists a function V : X1 × T → X2 which satisfies the following hypotheses:

i) S2 = S̃2 (see (3.1));

ii) M2 = M̃2 (see (3.2)) and A2 = Ã2 (see (3.3));

iii) there exist ψ1, ψ2 ∈ K defined on R+, such that

ψ1(dy1(y,My1)) ≤ d2(V (x, t),M2) ≤ ψ2(dy1(y,My1)) (3.4)

for all x = (y, z) ∈ X1, and t ∈ T , where dy1 and d2 are the metrics on Y1 andX2, respectively.

If My1 an M2 are closed, then the following statements are true:

(a) the invariance of (S2,M2) is equivalent to the y-invariance of (S1,M1), i.e., (S2,M2) is

invariant if and only if (S1,M1) is y-invariant ;
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(b) the stability, uniform stability, asymptotic stability and uniform asymptotic stability

of (S2,M2) are equivalent to the y-stability under arbitrary initial z-perturbations, y-uniform

stability under arbitrary initial z-perturbations, y-asymptotic stability under arbitrary initial

z-perturbations, and y-uniform asymptotic stability under arbitrary initial z-perturbations of

(S1,M1), respectively.

Proof For the definitions of stability, uniform stability, etc., refer, e.g., to [5]. Since

V(S1) = S2, there exists for every motion p(., a, t0) ∈ S1, a motion q(., b, t0) ∈ S2, such that

q(t, b, t0)
4
= V (p(t, a, t0), t) for all t ≥ t0 with b = V (a, t0). Furthermore, for every motion

q(., b, t0) ∈ S2, we can find a motion p(., a, t0) ∈ S1, such that q(t, b, t0) = V (p(t, a, t0), t)

for all t ≥ t0 with b = V (a, t0). Subsequently, we will use the notation a = (ay1, az1) ∈ A1,

where ay1 ∈ Y1, az1 ∈ Z1, and b ∈ A2. Also, we let p(t, a, t0) = (py1(t, a, t0), pz1(t, a, t0)) ∈ X1,

where py1(t, a, t0) ∈ Y1 and pz1(t, a, t0) ∈ Z1.

(a) We prove that the invariance of (S2,M2) implies the y-invariance of (S1,M1). Assume

that (S2,M2) is invariant. For any a ∈ M1, t0 ∈ T , we have b = V (a, t0) ∈ M2. By

the invariance of (S2,M2), we have that q(t, b, t0) ∈ M2 for all t ∈ Tb,t0 . From (iii), this

implies py(t, a, t0) ∈ My1 for all t ∈ Ta,t0 = Tb,t0 since My1 is closed. Therefore (S1,M1) is

y-invariant.

Next, we prove that the y-invariance of (S1,M1) implies the invariance of (S2,M2). For

every b ∈M2, t0 ∈ T , from (ii), there is a corresponding a ∈M1. From the the y-invariance

of (S1,M1), we have that dy1(py1(t, a, t0),My1) = 0 for all t ∈ Ta,t0 , and from (iii), we have

that d2(q(t, b, t0),M2) = 0 for all t ∈ Tb,t0 . Since M2 is closed, we know that q(t, b, t0) ∈M2.

Hence (S2,M2) is invariant. We conclude that the invariance of (S2,M2) is equivalent to the

y-invariance of (S1,M1).

(b) We first prove that the stability of (S2,M2) implies the y-stability of (S1,M1) under arbi-

trary initial z-perturbations. Assume that (S2,M2) is stable. Then for every ε2 > 0 and every

t0 ∈ R+, there exists a δ2 = δ2(ε2, t0) such that d2(q(t, b, t0),M2) < ε2 for all q(., b, t0) ∈ S2

and t ∈ Tb,t0 whenever d2(b,M2) < δ2. We show that (S1,M1) is y-stable under arbitrary ini-

tial z-perturbations. For every ε1 > 0 and every t0 ∈ R+, let ε2 = ψ1(ε1) and let δ1 = ψ−1
2 (δ2).

If dy1(ay1,My1) < δ1, then by (iii), d2(b,M2) ≤ ψ2(dy1(ay1,My1)) < ψ2(δ1) = δ2. It now fol-

lows that for all p(., a, t0) ∈ S1 and for all t ∈ Ta,t0 = Tb,t0 , where b = V (a, t0),

dy1(py1(t, a, t0),My1) ≤ ψ−1
1 (d2(V (p(t, a, t0), t),M2)) ≤ ψ−1

1 (ε2) = ε1
whenever dy1(ay1,My1) < δ1. Therefore, (S1,M1) is y-stable under arbitrary initial

z-perturbations.

We now prove that the y-stability of (S1,M1) under arbitrary initial z-perturbations im-

plies the stability of (S2,M2). Assume that (S1,M1) is y-stable under arbitrary initial

z-perturbations. For every ε2 > 0 and every t0 ∈ R+, let ε1 = ψ−1
2 (ε2) and let δ2 =

ψ1(δ1). If d2(b,M2) < δ2, then dy1(ay1,My1) < ψ−1
1 (δ2) = δ1. From the y-stability of

(S1,M1) under arbitrary initial z-perturbations, dy1(py1(t, a, t0),My1) < ε1. We therefore

have d2(q(t, b, t0),M2) < ψ2(ε1) = ε2. Hence, (S2,M2) is stable.

We conclude that the stability of (S2,M2) is equivalent to the y-stability of (S1,M1) under

5



arbitrary initial z-perturbations.

The proof that the uniform stability of (S2,M2) is equivalent to the y-uniform stability of

(S1,M1) under arbitrary initial z-perturbations follows readily from the proof of the stability

properties given above, choosing δ1 and δ2 to be independent of t0.

Next, we prove that the asymptotic stability of (S2,M2) is equivalent to the y-asymptotic

stability of (S1,M1) under arbitrary initial z-perturbations. Since we have already shown

that the stability of (S2,M2) is equivalent to the y-stability of (S1,M1) under arbitrary ini-

tial z-perturbations, it suffices to prove that the attractivity of (S2,M2) is equivalent to the

y-attractivity of (S1,M1) under arbitrary initial z-perturbations.

If (S2,M2) is attractive, there exists an η2 = η2(t0) > 0 such that limt→∞ d2(q(t, b, t0),M2) =

0 for every q(., b, t0) ∈ S2, whenever d2(b,M2) < η2. Let η1(t0) = ψ−1
2 (η2(t0)). If

dy1(ay1,My1) < η1, then d2(b,M2) ≤ ψ2(dy1(ay1,My1)) < ψ2(η1) = η2, so that

limt→∞ d2(q(t, b, t0),M2) = 0. From (iii), dy1(py1(t, a, t0),My1) ≤ ψ−1
1 (d2(q(t, b, t0),M2)), so

that limt→∞ dy1(py1(t, a, t0),My1) = 0. Therefore (S1,M1) is y-attractive under arbitrary

initial z-perturbations, and hence, (S1,M1) is y-asymptotically stable under arbitrary initial

z-perturbations.

If (S1,M1) is y-attractive under arbitrary initial z-perturbations, there exists an η1 =

η1(t0) > 0 such that limt→∞ dy1(py1(t, a, t0),My1) = 0 for every p(., a, t0) ∈ S1, whenever

dy1(ay1,My1) < η1. Let η2 = ψ1(η1). If d2(b,M2) < η2, then dy1(ay1,My1) ≤ ψ−1
1 (d2(b,M2)) <

η1, so that limt→∞ dy1(py1(t, a, t0),My1) = 0. Then

0 ≤ limt→∞ d2(q(t, b, t0),M2) ≤ limt→∞ ψ2(dy1(py1(t, a, t0),My1)) = 0. Hence (S2,M2) is

attractive, and therefore asymptotically stable.

We now show that the uniform asymptotic stability of (S2,M2) is equivalent to the y-

uniform asymptotic stability of (S1,M1) under arbitrary initial z-perturbations. We have

already shown that the uniform stability of (S2,M2) is equivalent to the y-uniform stability

of (S1,M1) under arbitrary initial z-perturbations. Therefore we only need to prove the

uniform attractivity property.

Assume that (S2,M2) is uniformly attractive, i.e., for every ε2 > 0 and t0 ∈ R+, there exist

a δ2 > 0 and a τ2 = τ2(ε2) > 0, such that d2(q(t, b, t0),M2) < ε2 for all t ∈ Tb,t0+τ2 whenever

d2(b,M2) < δ2. For every ε1 > 0 and t0 ∈ R+, let ε2 = ψ1(ε1), δ1 = ψ−1
2 (δ2) = δ1(ε1)

and τ1 = τ2 = τ1(ε1). When dy1(ay1,My1) < δ1, we have d2(b,M2) ≤ ψ2(dy1(ay1,My1)) <

ψ2(δ1) = δ2, and thus dy1(py1(t, a, t0),My1) ≤ ψ−1
1 (d2(q(t, b, t0),M2)) < ψ−1

1 (ε2) = ε1 for

every t ∈ Ta,t0+τ1 . Therefore, (S1,M1) is y-uniformly asymptotically stable under arbitrary

initial z-perturbations.

Assume that (S1,M1) is y-uniformly attractive under arbitrary initial z-perturbations. For

every ε2 > 0 and t0 ∈ R+, let ε1 = ψ−1
2 (ε2), δ2 = ψ1(δ1) = δ1(ε2) and τ2 = τ1 = τ2(ε2). When

d2(b,M2) < δ2, dy1(ay1,My1) ≤ ψ−1
1 (d2(b,M2)) < ψ−1

1 (δ2) = δ1, and thus d2(q(t, b, t0),M2) ≤
ψ2(dy1(py1(t, a, t0),My1)) < ψ2(ε1) = ε2 for every t ∈ Tb,t0+τ2 . Therefore, (S2,M2) is uni-

formly asymptotically stable.

This completes the proof of the theorem.

In Theorem 3.1, we utilized stability preserving mappings to identify dynamical systems
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with equivalent qualitative properties. Although this result is of great theoretical interest, its

applicability is significantly limited because of the severe assumptions that S̃2 = S2 = V(S1)

and M2 = M̃2 and A2 = Ã2. However, when proving that the qualitative properties of

(S2,M2) imply the qualitative properties of (S1,M1) in Theorem 3.1, we actually used the

relation V(S1) ⊂ S2 (rather than V(S1) = S2) (and M2 ⊃ M̃2 and A2 ⊃ Ã2 rather than

M2 = M̃2 and A2 = Ã2). This obervation yields the following easily applied comparison

theorem for y-stability under arbitrary initial z-perturbations.

Theorem 3.2. In Theorem 3.1, replace (i) and (ii) by

(i) S2 ⊃ V(S1) = S̃2; and

(ii) M2 ⊃ M̃2 and A2 ⊃ Ã2.

Then the following statements are true:

(a) the invariance of (S2,M2) implies the y-invariance of (S1,M1);

(b) the stability, uniform stability, asymptotic stability and uniform asymptotic stability

of (S2,M2) imply the same corresponding types of y-stability of (S1,M1) under arbitrary

initial z-perturbations.

4 Comparison Theorem for Partial Stability

In the case of y-stability, it is no longer possible to establish a stability preserving result

which is in the spirit of Theorem 3.1. The reason for this is because of the asymmetry in

assumption (iii) of Theorem 3.1 (see relation (3.4)). However, we are still able to establish

an easily applied comparison theorem for y-stability which is in the spirit of Theorem 3.2.

Similarly as before, we will utilize dynamical systems {T,X1, A1, S1} and {T,X2, A2, S2},
sets M1 ⊂ A1 and M2 ⊂ A2, related by a function V : X1×T → X2, in the following manner:

(i) S2 ⊃ V(S1), where

V(S1) = {q(., b, t0) : q(t, b, t0) = V (p(t, a, t0), t), p(., a, t0) ∈ S1 with b = V (a, t0) and

Tb,t0 = Ta,t0 , a ∈ A1, t0 ∈ T}. (4.1)

Thus, V : S1 → S2 denotes the mapping of S1 into S2 induced by the mapping V : X1×T →
X2;

(ii) the sets M1, M2 and A1, A2 satisfy

M2 ⊃ {x2 ∈ X2 : x2 = V (x1, t
′)for some x1 ∈M1 and t

′ ∈ T} (4.2)

A2 ⊃ {x2 ∈ X2 : x2 = V (x1, t
′) for some x1 ∈ A1 and t

′ ∈ T}. (4.3)

Theorem 4.1. Let {T,Xi, Ai, Si}, i = 1, 2 be two dynamical systems with Xi = Yi × Zi,

i = 1, 2, and let Mi ⊂ Ai ⊂ Xi, i = 1, 2. Assume there exists a function V : X1 × T → X2

which satisfies the following hypotheses:

(i) V(S1) ⊂ S2, where V(S1) is defined in (4.1); also, M1, M2 and A1, A2 satisfy (4.2) and

(4.3), respectively; and
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(ii) there exist ψ1, ψ2 ∈ K, such that

ψ1(dy1(y,My1)) ≤ d2(V (x, t),M2) ≤ ψ2(d1(x,M1)) (4.4)

for all x = (y, z) ∈ X, t ∈ T where dy1, d1 and d2 are the metrics on Y1, X1 and X2,

respectively, where My1 ⊂ Y1, M1 = My1 ×Mz1 ⊂ A1, and My1 is closed.

Then the following statements are true:

(a) the invariance of (S2,M2) implies the y-invariance of (S1,M1);

(b) the stability, uniform stability, asymptotic stability and uniform asymptotic stability

of (S2,M2) imply the same corresponding types of y-stability for (S1,M1).

The proofs of the various parts of Theorem 4.1 are very similar to the proofs of corre-

sponding parts of Theorem 3.1 and will therefore not be repeated here.

5 Principal Lyapunov Results

To establish Lyapunov-type theorems for partial stability of general dynamical systems we

employ dynamical systems determined by scalar differential equations as comparison systems

when T = R+, and dynamical systems determined by scalar difference equations when

T = N . To this end, we consider differential equations

Dx = g(t, x) (E)

where g ∈ C[R+×R+, R] (i.e., g is a continuous mapping from R+×R+ into R), g(t, 0) = 0

for all t ∈ R+ (so that x = 0 is an equilibrium), and D is a fixed Dini derivative (i.e., any

one of the Dini derivatives D+, D+, D
−, D−). Let SE denote the set of all solutions of (E).

Then {T,X,A, SE} is a dynamical system with T = R+, X = A = R+, and (SE, {0}) is

invariant.

We also consider difference equations

x(k + 1) = h(k, x(k)) (F )

where h : N ×R+ → R+ and h(k, 0) = 0 for all k ∈ N (so that x = 0 is an equilibrium). Let

SF denote the set of all solutions of (F ). Then {T,X,A, SF} is a dynamical system with

T = N , X = A = R+, and (SF , {0}) is invariant.

In the following results, we still view (X, d) as a product space of (Y, dy) and (Z, dz) and

M = My ×Mz.

Proposition 5.1. Let {T,X,A, S} be a dynamical system, where X = Y × Z, M = My ×
Mz ⊂ A and My is closed. Let T = R+ or N . Assume that there exists a function

V : X × T → R+ and functions ψ1, ψ2 ∈ K such that when T = R+,

ψ1(dy(y,My)) ≤ V (x, t) ≤ ψ2(d(x,M))

and when T = N ,

ψ1(dy(y,My)) ≤ V (x, k) ≤ ψ2(d(x,M))

for all x ∈ X and t ∈ R+, resp., k ∈ N .

(a) When T=R+, if for any p(., a, t0) ∈ S, V (p(t, a, t0), t) is continuous and nonincreasing

for all t ∈ Ta,t0 , then (S,M) is y-invariant and y-uniformly stable.
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When T = N , if for any p(., a, k0) ∈ S, V (p(k, a, k0), k) is nonincreasing for all k ∈ Ta,k0 ,

then (S,M) is y-invariant and y-uniformly stable.

(b) When T = R+, assume that for any p(., a, t0) ∈ S, V (p(t, a, t0), t) is continuous and

there exists a ψ3 ∈ K such that

DV (p(t, a, t0), t) ≤ −ψ3(d(p(t, a, t0),M))

for all p(., a, t0) ∈ S, t0 ∈ R+ and t ∈ Ta,t0 .

When T = N , assume there exists a ψ3 ∈ K such that

DV (p(k, a, k0), k)
4
= V (p(k+1, a, k0), k+1)−V (p(k, a, k0), k) ≤ −ψ3(d(p(k, a, k0),M))

for all p(., a, k0) ∈ S, k ∈ Ta,k0 and k0 ∈ N .

Then (S,M) is y-uniformly asymptotically stable.

The proofs of the above results are direct consequences of Theorem

4.1, letting S2 = SE when T = R+ and S2 = SF when T = N .

Similarly, we can establish the principal Lyapunov results for partial stability under arbi-

trary initial z-perturbations.

Proposition 5.2. Let {T,X,A, S} be a dynamical system defined on a metric space (X, d),

where X = Y × Z. Let M = My ×Mz ⊂ A ⊂ X, where My ⊂ Y and Mz ⊂ Z. Let T = R+

or T = N . Assume that there exists a function V : X × T → R+ and functions ψ1, ψ2 ∈ K
defined on R+ such that when T = R+,

ψ1(dy(y,My)) ≤ V (x, t) ≤ ψ2(dy(y,My)) (5.1)

for all x ∈ X and t ∈ R+, and when T = N ,

ψ1(dy(y,My)) ≤ V (x, k) ≤ ψ2(dy(y,My)) (5.2)

for all x ∈ X and k ∈ N .

If My is closed, then the following statements are true:

(a) When T = R+, if for any p(., a, t0) ∈ S, the function V (p(t, a, t0), t) is continuous

and nonincreasing for all t ∈ Ta,t0 , then (S,M) is y-invariant and y-uniformly stable under

arbitrary initial z-perturbations.

When T = N , if for any p(., a, k0) ∈ S, the function V (p(k, a, k0), k) is nonincreasing

for all k ∈ Ta,k0 , then (S,M) is y-invariant and y-uniformly stable under arbitrary initial

z-perturbations.

(b) When T = R+, if for any p(., a, t0) ∈ S, V (p(t, a, t0), t) is continuous and there exists

a ψ3 ∈ K defined on R+ such that

DV (p(t, a, t0), t) ≤ −ψ3(d(p(t, a, t0),M))

for all p(., a, t0) ∈ S, t0 ∈ R+ and t ∈ Ta,t0 , where D denotes a fixed Dini derivative with

respect to t ∈ R+, then (S,M) is y-uniformly asymptotically stable under arbitrary initial

z-perturbations.

When T = N , assume that there exists a ψ3 ∈ K defined on R+ such that

DV (p(k, a, k0), k)
4
= V (p(k+1, a, k0), k+1)−V (p(k, a, k0), k) ≤ −ψ3(d(p(k, a, k0),M))
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for all p(., a, k0) ∈ S, k ∈ Ta,t0 and k0 ∈ N . Then (S,M) is y-uniformly asymptotically stable

under arbitrary initial z-perturbations.

The proofs of the above results are direct consequences of Theorem 3.2, letting S2 = SE

when T = R+ and S2 = SF when T = N .

6 Applications to DES

Discrete event systems (DES) are systems whose evolution is characterized by the occurrence

of events at possibly irregular time intervals. The behavior of DES can generally not be

captured by conventional nonlinear discrete-time systems defined on Rn. We consider DES

described by

G = (X, E , fe, g, Ev) (6.1)

where X denotes the set of states, E is the set of events, fe : X → X for e ∈ E are operators,

g : X → P (E)− φ is the enable function and Ev ⊂ EN is the set of valid event trajectories.

(For an arbitrary set Z, ZN denotes the set of all sequences {zk}k∈N , and P (Z) denotes the

power set of Z.) We require that fe(x) be defined only when e ∈ g(x). If for some physical

system it is possible that at some state no events occur, we model this by appending a null

event e0. When this occurs, the state remains the same while time advances. We associate

“time” indices with states, xk ∈ X, and corresponding enabled events, ek ∈ E , at time k ∈ N
if ek ∈ g(xk). Thus, if at state xk ∈ X, event ek ∈ E occurs at time k ∈ N , then the next state

is given by xk+1 = fek
(xk). Any sequence {xk} ∈ XN such that for all k, xk+1 = fek

(xk),

where ek ∈ g(xk), is a state trajectory. The set of event trajectories, E ⊂ EN , is composed

of sequences {ek} ∈ EN having the property that there exists a state trajectory {xk} ∈ XN

where for all k, ek ∈ g(xk). We define the set of valid event trajectories Ev ⊂ E ⊂ EN

as those event trajectories that are physically possible in the DES G. We let Ev(x0) ⊂ Ev

denote the set of all event trajectories in Ev that initiate at x0 ∈ X. We shall also utilize

a set of allowed event trajectories, Ea ⊂ Ev, and correspondingly, Ea(x0). All such event

trajectories must be of infinite length.

Next, for fixed k ∈ N , let Ek denote an event sequence of k events that have occurred

(E0 = φ, the empty sequence). If Ek = e0, e1, · · · , ek−1, let EkE ⊂ Ev(x0) denote the

concatenation of Ek and E = ek, ek+1, · · · , i.e., EkE = e0, e1, · · · , ek−1, ek, ek+1, · · · . We

let x(x0, Ek, k) denote the state reached at time k from x0 ∈ X by application of an event

sequence Ek such that EkE ∈ Ev(x0). By definition, x(x0, φ, 0) = x0 for all x0 ∈ X. We call

x(x0, Ek, .) a DES motion. Presently, we assume that for all x0 ∈ X, if EkE ∈ Ev(x0) and

Ek′E ′ ∈ Ev(x(k0, Ek, k)), then EkEk′E ′ ∈ Ev(x0). Consequently, for all x0 ∈ X, we have

x(x(x0, Ek, k), Ek′ , k′) = x(x0, EkEk′ , k + k′) for all k, k′ ∈ N .

We now define SG,Ev by

SG,Ev = {p(., x0, k0) : p(k, x0, k0) = x(x0, Ek−k0 , k − k0), k ≥ k0, k ∈ N, x0 ∈ X,
Ek−k0E ∈ Ev(x0)}. (6.2)
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Let T = N and A = X. Then {T,X,A, SG,Ev} is a dynamical system in the sense of

Definition 2.2. Indeed, it is an autonomous dynamical system [5]. In the interests of brevity,

we refer to this henceforth as a dynamical system {X,SG,Ev}. We define SG,Ea ⊂ SG,Ev and

{X,SG,Ea} similarly.

Example (Computer Network Load Balancing)

Consider a network of computers specified by a diagraph, (C,A), where C = {1, · · · , n}
represents a set of computers labeled by i ∈ C and A ⊂ C × C specifies the set of connec-

tions (if (i, j) ∈ A, then computer i is connected with computer j). It is assumed that each

computer has a buffer which holds tasks (its load) which can be processed by any of the

computers in the network. Let xi ≥ 0 denote the load of computer i ∈ C. We also identify

a special group of computers, C ′ ⊂ C, and we assume that after appropriate relabeling, we

have C ′ = {1, ..., ny < n} and C̄ ′ = {ny + 1, · · · , n}. We assume that for each computer pair

(i, j) such that i, j ∈ C ′ or such that i ∈ C ′ and j ∈ C̄ ′ (resp., i ∈ C̄ ′ and j ∈ C ′), computer

i (computer j) is capable of passing a portion of its load to computer j (computer i). It is

also assumed that for each (i, j) with i, j ∈ C ′ or with i ∈ C ′, j ∈ C̄ ′ (resp., i ∈ C̄ ′, j ∈ C ′),
computer i can sense the size of the load of computer j, and vice versa. Furthermore, it is

assumed that the total load of computer group C ′,
∑ny

l=1 xl, is known to all affected pairs

(i, j) at all time. It is also assumed that at any given time k, only one load may be exchanged.

We assume that initially (k = k0), the distribution of loads across the computer network

is uneven. In the following, we establish Rules for load exchange (by specifying g and fe)

which will result in a more even distribution of tasks across the computers in set C ′, subject

to the total load constraint

0 < K1 ≤
∑
i∈C′

xi ≤ K2. (6.3)

We assume a continuous load model, where tasks can be subdivided arbitrarily. The discrete

load case can be analyzed similarly. Let X = (R+)n and let xk = (x1,k, · · · , xn,k)
T and

xk+1 = (x′1,k, · · · , x′n,k)
T denote the states at time k and k + 1, respectively. Let eij

αk
denote

the event that an amount αk of load is passed from computer i to computer j. If the state

is xk, then for some (i, j) ∈ A, eij
αk

occurs to produce the next state xk+1. Let E = {eij
α :

(i, j) ∈ A,α ∈ R+} denote the set of events. (Notice that eij
0 are valid events.) In the

following, when we say “an event of type eij
α ”, we mean any event eij

α that represents the

passing of an amount of load α ≥ 0, between i and j. We let Ea ⊂ Ev denote the set of

valid event trajectories having the property that events of each type eij
α occur infinitely often

on each trajectory in Ea and that the initial load distribution does not violate the bound∑ny

i=1 xi ≥ K1.

We will show (using Proposition 5.1) that under the Rules enumerated below, load bal-

ancing, as described above, is achieved.

Rules

A) Assume that at time k, constraint (6.3) is satisfied.

11



1) If i, j ∈ C ′ and xi > xj, then eij
α ∈ g(xk), x

′
i = xi − α (i.e., xi,k+1 = xi,k − α) and

x′j = xj + α, α = 1
2
|xi − xj|.

2) If i, j ∈ C ′ and xi = xj, then eij
0 ∈ g(xk), x

′
i = xi and x′j = xj.

3) If i ∈ C ′ and j ∈ C̄ ′, then eij
0 ∈ g(xk), x

′
i = xi and x′j = xj.

4) If i, j ∈ C̄ ′, then eij
0 ∈ g(xk), x

′
i = xi and x′j = xj.

B) Assume that at time k,
∑ny

i=1 xi > K2.

1) If i, j ∈ C ′ and xi > xj, then Rule A 1 applies.

2) If i, j ∈ C ′ and xi = xj, then Rule A 2 applies.

3) If i ∈ C ′ and j ∈ C̄ ′, we distinguish between two cases:

i) If xi ≤ K2/ny, e
ij
0 ∈ g(xk). Then x′i = xi and x′j = xj.

ii) If xi >K2/ny, e
ij
β ∈ g(xk). Then x′i =xi − β and x′j =xj + β, where β = min{

∑ny

i=1 xi −
K2, xi −K2/ny}.

4) If i, j ∈ C̄ ′, then Rule A 4 applies.

C) Assume that at time k,
∑ny

i=1 xi < K1.

1) If i, j ∈ C ′ and xi > xj, then Rule A 1 applies.

2) If i, j ∈ C ′ and xi = xj, then Rule A 2 applies.

3) If i ∈ C ′ and j ∈ C̄ ′, we distinguish between two cases:

i) If xi ≥ K1/ny, e
ij
0 ∈ g(xk). Then x′i = xi and x′j = xj.

ii) If xi < K1/ny, e
ji
β ∈ g(xk). Then x′i = xi + β and x′j = xj − β, where β = min{K1 −∑ny

i=1 xi, K2/ny − xi, xj}.
4) If i, j ∈ C̄ ′, then Rule A 4 applies.

Now let X = Rn, Y = Rny , Z = Rnz , n = ny + nz, X = Y × Z, and choose d(x(1), x(2)) =∑n
i=1 |x

(1)
i − x

(2)
i | for all x(i) = (y(i), z(i)) ∈ X, i = 1, 2. Let dy(y

(1), y(2)) =
∑ny

i=1 |x
(1)
i − x

(2)
i |.

Choose

M = {x = (y, z) ∈ (R+)n : x1 = · · · = xny = cy and K1 ≤
ny∑
i=1

xi ≤ K2} (6.4)

My = {y ∈ (R+)ny : x1 = · · · = xny = cy andK1 ≤
ny∑
i=1

xi ≤ K2}. (6.5)

In view of the Rules for g and fe enumerated above, it is clear that M is invariant and

y-invariant with respect to both Ev and Ea. Let

V (x) = d(x,M) = inf{
n∑

i=1

|xi − x̃i|, x̃ = (x̃1, · · · , x̃n) ∈M} (6.6)

dy(y,My) = inf{
ny∑
i=1

|xi − x̃i|, ỹ = (x̃1, · · · , x̃ny) ∈My}. (6.7)

Then V (x) = d(x,M) = dy(y,My). Also, for all x = (y, z) ∈ Rn and y ∈My,

ψ1(dy(y,My)) ≤ V (x) ≤ ψ2(d(x,M)) (6.8)
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where ψ1(r) = ψ2(r) = r, r ∈ R+, i.e., ψ1, ψ2 ∈ K.

Let M∗ ⊂ M denote the set of points x̃∗ ∈ M where the infimum in (6.6) is achieved.

Then for any x ∈ Rn and x̃∗ ∈M∗,

V (x) = d(x,M) =
∑ny

i=1 |xi − x̃i
∗| =

∑ny

i=1 |xi − c∗y|
where x̃i

∗ = c∗y, i = 1, · · · , ny.

For Rules A 2, 3, 4, B 2, 3i, 4 and C 2, 3i, 4, it is clear that V (x(k+1)) = V (x(k)). We can

show that for Rules A 1, B 1, C 1, if xi > xj ≥ c∗y or xj < xi ≤ c∗y, then V (x(k+1)) ≤ V (x(k))

and when xi > c∗y > xj, then V (x(k + 1)) < V (x(k)). We can show that for Rule B 3ii,

if xi > K2/ny, then V (x(k + 1)) < V (x(k)), and for Rule C 3ii, if xi < K1/ny, then

V (x(k + 1)) < V (x(k)). We omit the details due to space limitations. Finally, we note that

since in each event trajectory of Ea, each type of event eij
α occurs infinitely often, it follows

in view of the properties of the Rules that limk→∞ V (x(k)) = 0. For a detailed proof, please

refer to [20]

All conditions of Proposition 5.1 are satisfied, yielding the following results.

Corollary 6.1. For the computer network load balancing problem with continuous load

obeying the Rules,

i) M is invariant, y-invariant andy-stable with respect to Ev; and

ii) M is invariant and y-asymptotically stable with respect to Ea.

Similarly as in the above discussion, we can also establish results for partial stability under

arbitrary initial z-perturbations.

Corollary 6.2. For the computer network load balancing problem with continuous load

obeying the Rules,

i) M is y-invariant and y-stable under arbitrary initial z-perturbations with respect to Ev;

ii) M is y-asymptotically stable under arbitrary initial z-perturbations with respect to Ea.

Remark 6.1 Conclusion (i) in Corollary 6.2 asserts that under the indicated assumptions

and rules, arbitrarily small constraint violations and arbitrarily small initial load inbalances

in computer group C ′ will remain arbitrarily small, even though the initial load inbalances in

computer group C̄ ′ may be arbitrarily large. Conclusion (ii) asserts that if there is sufficient

load in computer group C ′ (
∑

i∈C′ xi ≥ K1) and if in every event trajectory, each type

of event eij
α occurs infinitely often, the computer group C ′ will eventually have balanced

load, satisfying the load constraint (6.3), no matter what the initial load inbalances in

group C̄ ′ may be. In contrast to this, in the case of Corollary 6.1, the interpertation for

y-stability demands that arbitrarily small constraint violations and arbitrarily small initial

load inbalances in the entire computer group C will result in inbalances in computer group

C ′ that remain arbitrarily small (even though this restriction was not used in proving the

present example).
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