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Abstract

Unlike conventional optimal control problems, optimal control problems of switched

systems require the solutions of not only the optimal continuous inputs but also the

optimal switching sequences. In a previous paper by the authors, an approach for an

important class of switched systems optimal control problems, namely, general switched

linear quadratic (GSLQ) problems where each subsystem is linear and the cost func-

tionals are in general quadratic forms, was reported. In this paper, we extend the

approach to GSLQ problems with state jumps at the switching instants. For such

problems, the cost functionals include not only the general quadratic cost terms for

the state and the input but also the costs for state jumps. The approach in this paper

allows us to derive the derivatives of the optimal cost with respect to the switching

instants based on the solution of the discontinuous Riccati equation parameterized by

the switching instants along with its differentiations. With the knowledge of the deriva-

tives, nonlinear optimization methods can be applied to locate the optimal switching

instants. An example is provided to illustrate the approach.

1 Introduction

A switched system is a particular kind of hybrid system that consists of several subsystems

and a switching law orchestrating the active subsystem at each time instant. The system

states can be continuous or have discontinuous jumps at the switching instants. Many

real-world processes such as mechanical systems, automotive systems, and electrical circuit

systems, etc., can be modeled as such systems.

Optimal control problems are one of the most challenging and important classes of prob-

lems for switched systems. Unlike conventional optimal control problems, optimal control

problems of switched systems require the solutions of not only the optimal continuous inputs

but also the optimal switching sequences. Many literature results have appeared for prob-

lems without state discontinuities (see e.g., [6, 7, 9, 10, 11, 12]). In a previous paper [13], we

proposed an approach to an important class of switched systems optimal control problems,

namely, general switched linear quadratic (GSLQ) problems where each subsystem is linear

and the cost functionals are in general quadratic forms. However, theoretical or practical

results for optimal control of switched systems with state jumps have rarely be reported

in the literature (see e.g., [2, 3, 4, 5, 8]; [3, 4] deal with autonomous switched systems and
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[2, 5, 8] propose some theoretical results). In such problems, the discontinuities of the system

states at the switching instants pose additional difficulties.

In this paper, we extend the approach in [13] to GSLQ problems with state jumps. Since

many practical problems only involve optimization where the sequence of active subsystems

are prespecified, we focus on such problems. We first carefully formulate the problem so that

linear jumps and quadratic costs for switchings are taken into consideration. An algorithm

is then given. In order to apply it, the derivatives of the optimal cost with respect to

the switching instants need to be known. Our approach first transcribes a GSLQ problem

into an equivalent conventional problem parameterized by the switching instants and then

obtains the derivative values based on the solution of the discontinuous Riccati equation

parameterized by the switching instants along with its differentiations.

The structure of the paper is as follows. In Section 2, we introduce the model of switched

systems with state jumps and formulate the GSLQ problems. In Section 3, we review an

algorithm proposed in [13]. In Section 4, we propose a method that transcribes a GSLQ

problem into an equivalent conventional optimal control problem with state jumps. In Sec-

tion 5, it is shown how to obtain the derivatives of the optimal cost with respect to the

switching instants based on the solution of the discontinuous Riccati equation along with

its differentiations. Section 6 provides an example to illustrate our approach. Section 7

concludes the paper.

2 Problem Formulation

2.1 Switched Systems

In this paper, we consider switched linear systems consisting of the subsystems

ẋ = Aix +Biu (2.1)

where Ai ∈ R
n×n, Bi ∈ R

n×m, i ∈ I
4

= {1, 2, · · · ,M}. In order to control such a switched

system, one needs to choose not only a continuous input but also a switching sequence. A

switching sequence in t ∈ [t0, tf ] regulates the sequence of active subsystems and can be

defined as

σ = ((t0, i0), (t1, i1), · · · , (tK, iK)) (2.2)

where 0 ≤ K < ∞, t0 ≤ t1 ≤ t2 ≤ · · · ≤ tK ≤ tf , ik ∈ I for k = 0, 1, · · · , K. Note here

(ik, tk) indicates that at instant tk, the system switches from subsystem ik−1 to subsystem

ik; during the time interval [tk, tk+1) ([tK , tf ] if k = K), subsystem ik will be active. For

a switched system to be well-behaved, we only consider nonZeno sequences which switch

at most a finite number of times in [t0, tf ], though different sequences may have different

numbers of switchings. If we regard σ as a discrete input, then the overall control input to

the system is a pair (σ, u).
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Note that at the switching instants, the system state may exhibit discontinuous jumps. In

the sequel, we are particularly interested in switched linear systems with state jumps at the

switching instants. The class of state jumps at switching instant tk considered in this paper

are linear and are described by

x(tk+) = Θik,ik+1
x(tk−) + Γik,ik+1

(2.3)

where Θik,ik+1
∈ R

n×n, Γik,ik+1
∈ R

n, k = 1, 2, · · · , K.

2.2 General Switched Linear Quadratic (GSLQ) Optimal Control

Problems with State Jumps

In the sequel, we define define U[t0,tf ]
4
= {u|u ∈ Cp[t0, tf ], u(t) ∈ R

m}; in other words,

U[t0,tf ] is the set of all piecewise continuous functions for t ∈ [t0, tf ] that take values in R
m.

Since many practical problems only involve optimizations in which a prespecified sequence

of active subsystems (i.e., the untimed sequence (i0, i1, · · · , iK)) is given, we concentrate on

such problems. (Such problems appear, e.g., in the speeding up of an automobile power

train which only requires switchings from gear 1 to 2 to 3 to 4.)

Problem 2.1. Consider a switched linear system with state jumps. Given a fixed time

interval [t0, tf ] and given a prespecified sequence of active subsystems (i0, i1, · · · , iK), find

switching instants t1, · · · , tK and a continuous input u ∈ U[t0,tf ] such that the corresponding

continuous state trajectory x departs from a given initial state x(t0) = x0 and the cost

functional

J = ψ(x(tf )) +

∫ tf

t0

L(x(t), u(t)) dt+

K
∑

k=1

ψk(x(tk−)) (2.4)

where

ψ(x(tf)) =
1

2
xT (tf )Qfx(tf) +Mfx(tf ) +Wf , (2.5)

L(x, u) =
1

2
xTQx + xTV u+

1

2
uTRu+Mx +Nu+W, (2.6)

ψk(x(tk−)) =
1

2
xT (tk−)Qik ,ik+1

x(tk−) +Mik,ik+1
x(tk−) +Wik,ik+1

, (2.7)

is minimized. Here t0, tf and x(t0) = x0 are given; Qf ,Mf ,Wf ,Q,V ,R,M ,N ,W ,Qik,ik+1
’s,

Mik ,ik+1
’s, and Wik,ik+1

’s are matrices of appropriate dimensions with Qf ≥ 0, Q ≥ 0,

Qik,ik+1
≥ 0, and R > 0. �

Remark 2.1. In (2.4), the term
∑K

k=1 ψk(x(tk−)) denotes the sum of the costs incurred

at the switching instants. It is without loss of generality that we denote each ψk as a

quadratic function in x(tk−). In the case that the switching cost is a quadratic function

in (x(tk+) − x(tk−)), we can utilize the relationship (2.3) to reduce the expression into a

quadratic function in x(tk−). �
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3 An Algorithm

In previous papers [12, 13], we proposed an idea which decomposes Problem 2.1 into two

stages. Stage (a) is a conventional optimal control problem which seeks for the minimum

value of J with respect to u under a given switching sequence σ= ((t0, i0), (t1, i1), · · · , (tK , iK)).

In the sequel, we denote the corresponding optimal cost as a function J1(t̂), where t̂
4

=

(t1, t2, · · · , tK)T . Stage (b) is a constrained nonlinear optimization problem

mint̂ J1(t̂)

subject to t̂ ∈ T
(3.1)

where T
4

= {t̂ = (t1, t2, · · · , tK)T |t0 ≤ t1 ≤ t2 ≤ · · · ≤ tK ≤ tf}.

Based on the two stage idea, the following algorithm (see [13]) provides a framework for

the optimization in the subsequent sections.

Algorithm 3.1.

(1). Set the iteration index j = 0. Choose an initial t̂j.

(2). By solving an optimal control problem (stage (a)), find J1(t̂
j).

(3). Find ∂J1

∂t̂
(t̂j) (and ∂2J1

∂t̂2
(t̂j) if second-order method is to be used).

(4). Use the gradient projection method or the constrained Newton’s method to update t̂j

to be t̂j+1 = t̂j + αjdt̂j (here the stepsize αj is chosen using the Armijo’s rule [1]). Set

the iteration index j = j + 1.

(5). Repeat Steps (2), (3), (4) and (5), until a prespecified termination condition is satisfied.

�

Note that in the above algorithm, step (2) corresponds to stage (a) and steps (3), (4)

correspond to stage (b). It should be pointed out that the key elements of the above algorithm

are

(a). An optimal control algorithm for step (2).

(b). The derivations of ∂J1

∂t̂
and ∂2J1

∂t̂2
for step (3).

(c). A nonlinear optimization algorithm for step (4).

Note that (a) can be dealt with by using numerical methods for conventional optimal control

problems and (c) can be dealt with by using for example feasible direction methods for

constrained nonlinear optimization. However, (b) poses an obstacle because the analytical

expressions of J1(t̂) are almost impossible to obtain except for very few classes of problems.

The unavailability of analytical expressions of J1(t̂) hence makes the values of ∂J1

∂t̂
and ∂2J1

∂t̂2

difficult to obtain. It is the task of the subsequent sections to address (b) and derive an

approach for deriving the values of ∂J1

∂t̂
and ∂2J1

∂t̂2
.

4



Remark 3.1. Note that for the GSLQ Problem 2.1, the optimal cost function J1(t̂) can be

proven to be smooth (hence we can take its derivatives). The proof can be carried out by

the variational arguments. We do not include the proof here for the brevity of the paper. �

4 An Equivalent Problem Formulation

Henceforth, we develop an approach for finding the derivative values of J1 so that Algorithm

3.1 can be applied. In this section, we transcribe a GSLQ problem with state jumps into

an equivalent conventional optimal control problem with state jumps parameterized by the

unknown switching instants. A specific feature of the equivalent problem is that the inde-

pendent time variable has the property that the switching instants are fixed with respect to

it.

For convenience of notation and clarity of the presentation of the main idea of our approach,

in Sections 4 and 5, we will concentrate on the case of two subsystems where subsystem 1 is

active in the interval [t0, t1) and subsystem 2 is active in the interval [t1, tf ] (t1 is the switching

instant to be determined). The approach works similarly for more than one switchings, and

at the end of Section 5 we will comment on this.

Problem 4.1. For a switched system

ẋ = A1x +B1u, t0 ≤ t < t1, (4.1)

ẋ = A2x +B2u, t1 < t ≤ tf , (4.2)

with state jump

x(t1+) = Θ1,2x(t1−) + Γ1,2, (4.3)

find an optimal switching instant t1 and an optimal u(t) such that the cost functional

J = ψ(x(tf )) +

∫ tf

t0

L(x(t), u(t)) dt+ ψ1(x(t1−)) (4.4)

where ψ, L, and ψ1 are in general quadratic forms (as in (2.5)-(2.7)) is minimized. Here t0,

tf and x(t0) = x0. �

As in [13], we transcribe Problem 4.1 into an equivalent problem in the followings.

We introduce a new variable xn+1 corresponding to the switching instant t1. Let xn+1

satisfy
dxn+1

dt
= 0, xn+1(0) = t1. (4.5)

Next a new independent time variable τ is introduced. A piecewise linear correspondence
relationship between t and τ is established as follows.

t =

{

t0 + (xn+1 − t0)τ, 0 ≤ τ ≤ 1,

xn+1 + (tf − xn+1)(τ − 1), 1 ≤ τ ≤ 2.
(4.6)
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Note τ = 0 corresponds to t = t0, τ = 1 to t = t1, and τ = 2 to t = tf . By introducing xn+1

and τ , Problem 4.1 can be transcribed into

Problem 4.2 (Equivalent Problem). For a system with dynamics

dx(τ)

dτ
= (xn+1 − t0)(A1x + B1u), (4.7)

dxn+1

dτ
= 0, (4.8)

for τ ∈ [0, 1) and

dx(τ)

dτ
= (tf − xn+1)(A2x +B2u), (4.9)

dxn+1

dτ
= 0, (4.10)

for τ ∈ (1, 2] with state jump

x(1+) = Θ1,2x(1−) + Γ1,2, (4.11)

find optimal xn+1 and u(t) such that the cost functional

J = ψ(x(2))+

∫ 1

0

(xn+1− t0)L(x(t), u(t)) dτ +

∫ 2

1

(tf −xn+1)L(x, u) dτ +ψ1(x(1−)) (4.12)

is minimized. Here x(0) = x0 is given. �

Remark 4.1. Problem 4.2 and 4.1 are equivalent in the sense that a solution for Problem

4.2 is also a solution for Problem 4.1 by a proper change of independent variables as in (4.6)

and by regarding xn+1 = t1, and vice versa. �

Remark 4.2. Problem 4.2 provides us with the advantage that it no longer has a varying

switching instant. Actually, because xn+1 is actually an unknown constant throughout τ ∈

[0, 2], Problem 4.2 can be regarded as a conventional optimal control problem with state

jumps parameterized by xn+1. The problem is conventional because it has fixed time instant

when the system dynamics changes. �

5 The Approach

In this section, based on the equivalent problem formulation in Section 4, we develop an

approach for finding ∂J1

∂t1
by studying the equivalent Problem 4.2.

As indicated in Remark 4.2, the equivalent Problem 4.2 can be regarded as a GSLQ problem

with state jump discontinuity parameterized by the switching instant xn+1. Assume we are

given a fixed xn+1 and assume the optimal value function is

V ∗(x, τ, xn+1) =
1

2
xTP (τ, xn+1)x + S(τ, xn+1)x+ T (τ, xn+1) (5.1)
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where P T (τ, xn+1) = P (τ, xn+1). By using the dynamic programming approach we have the

following equations

−V ∗τ = (xn+1 − t0)[V
∗

x (A1x +B1u) + L(x, u)], for t ∈ [0, 1) (5.2)

−V ∗τ = (tf − xn+1)[V
∗

x (A2x +B2u) + L(x, u)], for t ∈ (1, 2] (5.3)

V ∗(x, 1−, xn+1) = V ∗(Θ1,2x + Γ1,2, 1+, xn+1) + ψ1(x) (5.4)

and solving the resultant HJB equation for τ ∈ [0, 1) we can obtain the optimal control

u(x, τ, xn+1) = −K(τ, xn+1)x(τ, xn+1)− E(τ, xn+1) (5.5)

where

K(τ, xn+1) = R−1[BT
1 P (τ, xn+1) + V T ], (5.6)

E(τ, xn+1) = R−1[BT
1 S

T (τ, xn+1) +NT ], (5.7)

and P (τ, xn+1), S(τ, xn+1) and T (τ, xn+1) (abbreviated as P , S and T ) satisfy the following

parameterized general Riccati equation (parameterized by xn+1)

−
∂P

∂τ
= (xn+1 − t0)[Q + PA1 + AT

1 P − (PB1 + V )R−1(BT
1 P + V T )], (5.8)

−
∂S

∂τ
= (xn+1 − t0)[M + SA1 − (N + SB1)R

−1(BT
1 P + V T )], (5.9)

−
∂T

∂τ
= (xn+1 − t0)[W −

1

2
(N + SB1)R

−1(BT
1 S

T +NT )]. (5.10)

The optimal control for τ ∈ (1, 2] is

u(x, τ, xn+1) = −K(τ, xn+1)x(τ, xn+1)− E(τ, xn+1) (5.11)

where

K(τ, xn+1) = R−1[BT
2 P (τ, xn+1) + V T ], (5.12)

E(τ, xn+1) = R−1[BT
2 S

T (τ, xn+1) +NT ], (5.13)

and P , S and T satisfies the following parameterized general Riccati equation

−
∂P

∂τ
= (tf − xn+1)[Q + PA2 + AT

2 P − (PB2 + V )R−1(BT
2 P + V T )], (5.14)

−
∂S

∂τ
= (tf − xn+1)[M + SA2 − (N + SB2)R

−1(BT
2 P + V T )], (5.15)

−
∂T

∂τ
= (tf − xn+1)[W −

1

2
(N + SB2)R

−1(BT
2 S

T +NT )]. (5.16)

At the switching instant τ = 1, from (5.4), we have discontinuous jumps for P , S and T

as

P (1−, xn+1) = ΘT
1,2P (1+, xn+1)Θ1,2 +Q1,2, (5.17)

S(1−, xn+1) = ΓT
1,2P (1+, xn+1)Θ1,2 + S(1+, xn+1)Θ1,2 +M1,2, (5.18)

T (1−, xn+1) = 0.5ΓT
1,2P (1+, xn+1)Γ1,2 + S(1+, xn+1)Γ1,2 + T (1+, xn+1) +W1,2.(5.19)
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Note that the equations (5.8-5.10) and (5.14-5.16) along with the discontinuity conditions

(5.17-5.19) for a discontinuous Riccati equation (for a fixed xn+1). By solving it, we can

obtain the parameterized optimal cost at τ = 0, i.e., the optimal J1 under fixed xn+1 as

J1(t1) = J1(xn+1) = V ∗(x0, 0, xn+1) =
1

2
xT

0 P (0, xn+1)x0 + S(0, xn+1)x0 + T (0, xn+1). (5.20)

From (5.20), we have

dJ1

dxn+1
(xn+1) =

∂V ∗

∂xn+1
(x0, 0, xn+1) =

1

2
xT

0

∂P

∂xn+1
(0, xn+1)x0+

∂S

∂xn+1
(0, xn+1)x0+

∂T

∂xn+1
(0, xn+1).

(5.21)
In order to obtain the value of dJ1

dxn+1
from (5.21), we need to know ∂P

∂xn+1
, ∂S

∂xn+1
and ∂T

∂xn+1

at (0, xn+1). To obtain these values, we differentiate (5.8-5.10) and (5.14-5.16) with respect
to xn+1 to obtain

−
∂

∂τ
(

∂P

∂xn+1
) = [Q + PA1 + AT

1 P − (PB1 + V )R−1(BT
1 P + V T )] + (xn+1 − t0)[

∂P

∂xn+1
A1 +

AT
1

∂P

∂xn+1
− (

∂P

∂xn+1
B1)R

−1(BT
1 P + V T ))− (PB1 + V )R−1(BT

1

∂P

∂xn+1
)], (5.22)

−
∂

∂τ
(

∂S

∂xn+1
) = [M + SA1 − (N + SB1)R

−1(BT
1 P + V T )] + (xn+1 − t0)[

∂S

∂xn+1
A1

−(
∂S

∂xn+1
B1)R

−1(BT
1 P + V T )− (N + SB1)R

−1(BT
1

∂P

∂xn+1
)], (5.23)

−
∂

∂τ
(

∂T

∂xn+1
) = [W −

1

2
(N + SB1)R

−1(BT
1 ST + NT )] + (xn+1 − t0)[−

1

2
(

∂S

∂xn+1
B1)R

−1(BT
1 ST

+NT )−
1

2
(N + SB1)R

−1(BT
1 (

∂S

∂xn+1
)T )], (5.24)

for τ ∈ [0, 1) and

−
∂

∂τ
(

∂P

∂xn+1
) = −[Q + PA2 + AT

2 P − (PB2 + V )R−1(BT
2 P + V T )] + (tf − xn+1)[

∂P

∂xn+1
A2 +

AT
2

∂P

∂xn+1
− (

∂P

∂xn+1
B2)R

−1(BT
2 P + V T ))− (PB2 + V )R−1(BT

2

∂P

∂xn+1
)], (5.25)

−
∂

∂τ
(

∂S

∂xn+1
) = −[M + SA2 − (N + SB2)R

−1(BT
2 P + V T )] + (tf − xn+1)[

∂S

∂xn+1
A2

−(
∂S

∂xn+1
B2)R

−1(BT
2 P + V T )− (N + SB2)R

−1(BT
2

∂P

∂xn+1
)], (5.26)

−
∂

∂τ
(

∂T

∂xn+1
) = −[W −

1

2
(N + SB2)R

−1(BT
2 ST + NT )] + (tf − xn+1)[−

1

2
(

∂S

∂xn+1
B2)R

−1(BT
2 ST

+NT )−
1

2
(N + SB2)R

−1(BT
2 (

∂S

∂xn+1
)T )], (5.27)

for τ ∈ (1, 2].
We also differentiate the discontinuity conditions (5.17-5.19) with respect to xn+1 to obtain
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the conditions

∂P

∂xn+1
(1−, xn+1) = ΘT

1,2

∂P

∂xn+1
(1+, xn+1)Θ1,2, (5.28)

∂S

∂xn+1
(1−, xn+1) = ΓT

1,2

∂P

∂xn+1
(1+, xn+1)Θ1,2 +

∂S

∂xn+1
(1+, xn+1)Θ1,2, (5.29)

∂T

∂xn+1
(1−, xn+1) = 0.5ΓT

1,2

∂P

∂xn+1
(1+, xn+1)Γ1,2 +

∂S

∂xn+1
(1+, xn+1)Γ1,2

+
∂T

∂xn+1
(1+, xn+1). (5.30)

Now that we have the discontinuous Riccati equation parameterized by xn+1 formed by

(5.8-5.10), (5.14-5.16) and (5.17-5.19), along with its differentiation (5.22-5.24), (5.25-5.27)

and (5.28-5.30), we can solve these equations together with the following boundary conditions

at τ = 2
P (2, xn+1) = Qf , S(2, xn+1) = Mf ,

T (2, xn+1) = Wf ,
∂P

∂xn+1
(2, xn+1) = 0,

∂S
∂xn+1

(2, xn+1) = 0, ∂T
∂xn+1

(2, xn+1) = 0,

(5.31)

form ordinary differential equation with discontinuities for P , S, T , ∂P
∂xn+1

, ∂S
∂xn+1

and ∂T
∂xn+1

which can be solved efficiently using the function ode45 in MATLAB. From the solution of

this differential equation, values of ∂P
∂xn+1

, ∂S
∂xn+1

and ∂T
∂xn+1

at (0, xn+1) can be obtained and

substituted into (5.21) to obtain the value of dJ1

dt1
. Algorithm 3.1 can then be applied.

Remark 5.1. (Several Subsystems and More Than One Switchings) For GSLQ

problems with state jumps consisting of K subsystems and more than one switchings, we

can similarly transcribe the problem into an equivalent problem in τ ∈ [0, K + 1]. It is

then straightforward to differentiate the discontinuous Riccati equation parameterized by

xn+1,· · · ,xn+K (i.e., t1,· · · ,tK) to obtain additional differential equations for ∂P
∂xn+k

’s, ∂S
∂xn+k

’s

and ∂T
∂xn+k

’s. Along with the boundary conditions P = Qf , S = Mf , T = Wf ,
∂P

∂xn+k
= 0,

∂S
∂xn+k

= 0 and ∂T
∂xn+k

= 0 all at (K + 1, xn+1, · · · , xn+K) for all 1 ≤ k ≤ K, we can solve

the resultant discontinuous Riccati equation along with its differentiations backwards in τ

to find their values at τ = 0. Once we have their values at τ = 0, we can substitute them

into

∂J1

∂xn+k

=
∂V ∗

∂xn+k

(x0, 0, xn+1, · · · , xn+K)

=
1

2
xT

0

∂P

∂xn+k

(0, xn+1, · · · , xn+k)x0 +
∂S

∂xn+k

(0, xn+1, · · · , xn+k)x0

+
∂T

∂xn+k

(0, xn+1, · · · , xn+k) (5.32)

to derive the accurate values of ∂J1

∂tk
’s. �
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Remark 5.2. (Second Order Derivatives) If we take second order partial derivatives of

equation (5.20), we obtain

d2J1

dx2
n+1

(t1) =
∂2V ∗

∂x2
n+1

(x0, 0, xn+1) =
1

2
xT

0

∂2P

∂x2
n+1

(0, xn+1)x0

+
∂2S

∂x2
n+1

(0, xn+1)x0 +
∂2T

∂x2
n+1

(0, xn+1). (5.33)

Following similar ideas of differentiation of the parameterized discontinuous Riccati equation,

we can take first and second-order differentiations of (5.8-5.10), (5.14-5.16) and (5.17-5.19)

with respect to xn+1 and form a set of differential equations with discontinuities. Along

with the initial conditions (5.31) and 0’s at τ = 2 for ∂2P
∂x2

n+1

, ∂2S
∂x2

n+1

and ∂2T
∂x2

n+1

, the resultant

differential equation for P , S, T , ∂P
∂xn+1

, ∂S
∂xn+1

, ∂T
∂xn+1

, ∂2P
∂x2

n+1

, ∂2S
∂x2

n+1

and ∂2T
∂x2

n+1

can be solved

and hence the accurate value of d2J1

dx2
n+1

can be obtained and the constrained Newton’s method

can be applied in step (4) in Algorithm 3.1. �

6 An Example

The following example illustrate the approach developed in the previous section.

Example 6.1. Consider a switched linear system consisting of

subsystem 1: ẋ =

[

2 0

0 −1

]

x+

[

1

0

]

u, (6.1)

subsystem 2: ẋ =

[

−1 0

0 2

]

x+

[

0

1

]

u. (6.2)

Assume that t0 = 0, tf = 2 and the system switches once at t = t1 (0 ≤ t1 ≤ 2) from

subsystem 1 to 2. Also assume that when the system switches from subsystem 1 to 2, the

system state has discontinuous jump

x(t1+) =

[

1 0

0 −1

]

x(t1−) +

[

0.2

0.2

]

. (6.3)

We want to find optimal t1 and u such that

J =
1

2
(x1(2)− 1)2 +

1

2
(x2(2) + 4)2 +

1

2

∫ 2

0

u2(t) dt+
1

2
x2

2(t1−)

is minimized. Here x(0) = [4, 4]T .

We use the approach in this paper to obtain the value of dJ1

dt1
. From an initial nominal

t1 = 1.5, by using Algorithm 3.1 with the gradient projection method, after 9 iterations we

find that the optimal switching instant is t1 = 0.6375 and the corresponding optimal cost

is 10.7165. The corresponding optimal continuous control and state trajectory are shown in

Figure 1 (a) and (b), respectively. Figure 2 shows the optimal cost for different t1’s. �
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Figure 1: Example 6.1: (a) The control input. (b) The state trajectory.
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Figure 2: The optimal cost for Example 6.1 for different t1’s.

7 Conclusion

In this paper, an approach for solving GSLQ optimal control problems with state jumps

is proposed. The approach is an extension of our previous approach to GSLQ problems

without jumps. The approach is based on solving the discontinuous Riccati equation pa-

rameterized by the switching instants and its differentiations. Derivatives of the optimal

cost with respect to the switching instants can be obtained accurately, therefore nonlinear

optimization algorithms can be used to find the optimal switching instants. We believe that

the approach proposed here is new and is among the very few results that address problems

with state jumps. Further research topics include the study of optimal control problems of

general switched systems with state jumps.
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