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Abstract

A controlled hybrid automaton is a hybrid automaton whose continuous-state dy-

namics are described by inhomogeneous differential equations. This paper presents a

sufficient condition for the existence of global non-terminating solutions in controlled

hybrid automata. The condition is based on a recursive algorithm that can always ter-

minate after a finite number of iterations to a limit set of states called the inner viability

kernel. If the inner viability kernel is non-empty, then there exists a measurable control

under which the hybrid automaton generates a global non-terminating solution. The

inner viability kernel is easily computed for controlled hybrid automata whose under-

lying continuous dynamics have controllability manifolds of dimension n− 1 or higher

(where n is the dimension of the continuous state space). The more important is that

this result can also be used to infer the existence of global solutions to compositions

of controlled hybrid automata, thereby providing a foundation for the analysis of large

scale hybrid systems.

1 Introduction

Hybrid systems are dynamical systems whose states consist of discrete and continuous-state
variables. Hybrid automata [1] are commonly used mathematical models for the analysis and
design of hybrid dynamical systems. A hybrid automaton models the coupled interaction of
discrete event and continuous dynamical systems. The continuous state evolves according
to a differential equation called the modal equation. The discrete transition happens when
the continuous states satisfy a guard predicate on the hybrid automaton arc.

The original hybrid model[1] assumed that modal equations were homogeneous differential
equations. This paper studies hybrid automata whose modal equations are inhomogeneous
differential equations driven by an exogenous control signal. This paper calls this system
as a controlled hybrid automaton [9]. In particular, this paper investigates the existence of
measurable control signals under which the controlled hybrid automaton generates a global
non-terminating solution. Roughly speaking, a global non-terminating solution is a system
trajectory which has an infinite number of switches between the discrete states.

Prior work has addressed the existence of global solutions within the framework of algo-
rithmic verification [1, 2, 3]. In algorithmic verification, one first identifies a cycle of arcs
in the automaton’s graph and then one recursively computes the set of all states that can
satisfy the guard predicates on each arc of the cycle. If this recursive algorithm terminates
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in a non-empty set, then we know there exists a global solution generating the specified
cycle. If the recursion terminates in an empty set, then we know that no global solution
exists. This paper refers to the limiting set generated by the recursion as the cycle’s outer
viability kernel. Results on outer viability kernels have appeared for hybrid automata [7]
and impulsive hybrid systems [8].

There are numerous problems with the recursion used to compute the outer viability kernel.
In the first place, the computation of the kernel is expensive. The recursion actually computes
the set of all states from which a guard condition can be reached in finite time. Computing
this preset requires precise knowledge of the system flow. In practice, it is only feasible to
compute approximations to these flows and numerous verification tools have been proposed
which rely on flow-pipe or ellipsoidal approximations of the flow [4, 5, 6]. Another problem
with the existing recursion is that it rarely terminates after a finite number of iterations.
For all but the simplest class of hybrid automata, it has been shown that the outer viability
recursion is undecidable [3]. Finally, the outer viability kernels of two different cycles cannot
generally be used to compute the outer viability kernel of a sequential composition of these
cycles. In other words, the existing recursion does not lend itself to a compositional analysis
of hybrid automata.

This paper presents an alternative recursion that computes the so-called inner viability
kernel of a cycle. The inner viability kernel is the set of all states such that any point in the set
can be controlled to reach any point in this set. The inner viability kernel is always a subset
of the outer viability kernel and hence it provides a more restrictive sufficient condition on the
existence of global non-terminating solutions. In return for these restrictions, however, we
obtain some important benefits. In particular, the inner viability recursion always terminates
after a finite number of iterations so it provides a semi-decidable way to verify the existence
of global solutions. In addition to this, the inner viability kernel is easily computed for
controlled hybrid automata whose underlying continuous subsystems have controllability
manifolds of dimension n − 1 or greater. Finally, it can be shown that the inner viability
kernel supports a compositional analysis of hybrid automata. Composition in this paper
means that the inner viability kernels of two different cycles can be used to determine the
inner viability kernel of a concatenation of these two cycles.

The remainder of this paper is organized as follows. Section 2 presents the controlled hybrid
automaton. Section 3 uses a recursive algorithm to compute the outer and inner viability
kernels for a cycle accepted by the hybrid automaton. This section states that the inner
viability recursion is a semi-decidable algorithm for the existence of non-terminating solution
in controlled hybrid automata. Section 4 uses the inner viability kernel to demonstrate the
compositional analysis of hybrid automata. Section 5 presents a simple example illustrating
many of the points raised in this paper. Final conclusions and future research plans will be
found in section 6.

2 Controlled Hybrid Automaton

A controlled hybrid automaton [9] is a hybrid automaton whose underlying continuous dy-
namics are represented by inhomogeneous differential equations. A formal definition is given
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below:

Definition 2.1. (Controlled Hybrid Automaton) A controlled hybrid automaton, H, is
characterized by the 7-tuple, (X,Σ, U, A,G, F,Q0), where

• X is an n-dimensional manifold and an element x ∈ X is called the automaton’s
continuous state.

• Σ is a discrete set of integers and an element i ∈ Σ is called the automaton’s discrete
state or mode.

• U is a subset of <m and a vector u ∈ U is called the automaton’s controlled input.

• A ⊂ Σ × Σ consists of ordered pairs of integers. An element (i, j) ∈ A is called a
discrete event of the automaton, which is generated when the system’s discrete state
changes.

• G : A → P(X) is a map that takes each discrete event (i, j) ∈ A onto a closed subset
of X. The value that G takes at (i, j) is denoted as Gj

i , which is called the guard for
event (i, j).

• F : X×U×Σ→ <n is a map that takes an ordered triple, (x, u, i) ∈ X×U×Σ onto a
vector F (x, u, i) ∈ <n, (x, i) ∈ X×Σ is the current state and u ∈ U is current control.

• Q0 ⊂ X × Σ is a closed subset of the hybrid state space X × Σ that we refer to as the
automaton’s initial set.

For a given i ∈ Σ, we let Fi : X × U → <n denote the vector field associated with mode i
such that Fi(x, u) = F (x, u, i). We refer to the differential equation

ẋ(τ) = Fi(x(τ), u(τ))

as the ith modal equation.
A trajectory is a function q : I → X × Σ where I is an interval in <. The value that q

takes at time τ ∈ I is denoted as q(τ) = (x(τ), σ(τ)). We refer to x(τ) ∈ X and σ(τ) ∈ Σ
as the trajectory’s continuous and discrete state, respectively, at time τ .

Given a trajectory q, we say that time τ ∈ I is regular if q is continuous at τ . Otherwise
we say that τ is a switching instant. If a trajectory q has an infinite number of switching
instants, we say that q is non-blocking or non-terminating. If q is non-blocking with an
infinite number of switching instants occurring in a finite subinterval of I, then q is said to
be chattering.

A trajectory q : [0, T ) → X × Σ is a solution of the controlled hybrid automaton H if
and only if q(0) ∈ Q0 and the following conditions hold. First, for all closed subintervals
[τa, τb] ⊆ [0, T ), that contain no switching instants, there exists a mode i ∈ Σ, a function
x : [τa, τb]→ X, and a measurable function u : [τa, τb]→ U such that σ(t) = i and

x(t) =

∫ t

τa

F (x(τ), u(τ), i)dτ
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for all t ∈ [τa, τb]. Second at any switching instant τs ∈ [0, T ) there exist discrete modes
i, j ∈ Σ such that (i, j) ∈ A, x(τs) ∈ Gj

i and j = limt↓τs σ(t).
Given a non-blocking trajectory q that is a solution to the hybrid automatonH, there exists

a sequence of switching instants, {τj}∞j=0 such that τj < τj+1. Associated with this sequence
of switching instants, there is a sequence of discrete states {ij}∞j=0 such that ij = σ(τj) for
j = 1, . . . ,∞. For j = 0 we let i0 = σ(0). Define the trace of trajectory q as the sequence
of events arcs α = {αj}∞j=0 where the jth event is αj = (ij, ij+1) ∈ A for j = 0, . . . ,∞. We
say that this trace is logically accepted by the hybrid automaton, H = (X,Σ, U, A,G, F,Q0)
if the trace is accepted by the associated state machine (Σ, A).

Consider a controlled hybrid automaton H. A state qf ∈ X ×Σ is reachable from q0 ∈ Q0,
if there exists a finite time T ≥ 0 and a trajectory q : [0, T ]→ X×Σ such that q is a solution
to the hybrid automaton, q(0) = q0, and q(T ) = qf .

3 Global Non-blocking Solutions

This section derives conditions characterizing the existence of global non-terminating solu-
tions in controlled hybrid automata. We present a sufficient condition based on the use of
the inner viability recursion.

3.1 Outer and Inner Viability Recursion

Given a state xf ∈ X, we define the preset of xf under event (i, j) as the set of all states
x0 ∈ X such that (xf , j) is reachable from (x0, i). We denote the preset of xf under arc (i, j)
as Preji (xf). We will often denote this preset as Pre(xf) when the arc is understood from the
problem’s context. With respect to this preset we define the outer and inner precondition
of K ⊆ X, respectively, as

Pre(K) =
⋃

xf∈K
Pre(xf)

Pre(K) =
⋂

xf∈K
Pre(xf)

Consider the trace of N events

α = (i0, i1), (i1, i2), · · · , (iN−2, iN−1), (iN−1, i0)

and assume α is logically accepted by the hybrid automaton H = (X,U,Σ, A,G, F,Q0)
shown in figure 1. Let Gk

j denote the guard set Gik
ij

. Let mod(k) denote the integer k modulo
N . Let α∗ denote the trace obtained by concatenating an infinite number of α traces.

Let {Γj}∞j=0 denote the infinite sequence of sets in X generated by the recursion,

Γ0 = G1
0

Γj+1 = G
mod(N−j)
mod(N−j−1) ∩ Pre(Γj) (3.1)
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Figure 1: Controlled Hybrid Automaton H

for j = 0, . . . ,∞. The recursion in equation 3.1 is called the outer preset recursion. We
define the inner preset recursion by the equations,

Γ0 = G1
0

Γj+1 = G
mod(N−j)
mod(N−j−1) ∩ Pre(Γj) (3.2)

for j = 0, . . . ,∞.
We denote the set, ΓN , that is obtained after N iterations of the outer preset recursion;

the set ΓN , that is obtained after N iterations of the inner preset recursion. This paper
will study the use of the inner recursion (Eq. 3.2) to verify the existence of global non-
terminating solutions to a controlled hybrid automaton. The outer recursion method in
controlled hybrid automata was introduced in [13] is a minor extension of the prior work
in [7] and [8]. The limit set of the outer recursion is called “outer viability kernel” in this
paper, denoted by Γ

∗
. Roughly speaking, a set of states, Γ is called viable if for all initial

conditions in it there exists a solution of the dynamical system that still remains in Γ. The
largest subset of Γ which is viable is called the viability kernel. The term “outer viability
kernel” is not standard in the viability literature. We use it in order to distinguish Γ

∗
from

a smaller viable set, Γ∗, which is the limit point of the inner recursion of equation 3.2.

3.2 Inner Viability Kernel

This section will present the important properties with respect to the existence of global
non-blocking solutions in controlled hybrid automata. The first two lemmas are “inner”-
version of lemmas of the outer recursion [13]. To keep the flow of this paper, the proofs of
this subsection will be found in Appendix.

Lemma 3.1. If ΓN is non-empty, then for any xf ∈ G1
0, there exists a Tf ≥ 0 and a

trajectory q : [0, Tf ]→ X × Σ such that for any q0 = (x0, i0) ∈ Q0, where x0 ∈ ΓN ,

• q solves the hybrid automaton H,

• q has the trace α,

• and x(Tf) = xf

The lemma 3.1 states any points of G1
0 are reachable from ΓN . The next lemma shows ΓN

is the largest subset of G1
0 such that any point of ΓN can reach any point of G1

0.

Lemma 3.2. If x0 /∈ ΓN , then there exists at least one point xf in G1
0 that is not reachable

from x0 under a trajectory q with trace α.
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From the lemmas 3.2 we get the following lemma, which states that the inner recursion
terminates after a finite number of iterations.

Lemma 3.3. Γ2N = ΓN

Lemma 3.3 shows the inner recursion algorithm terminates after N steps. We can let the
limit of the inner recursion be denoted as limn→∞ ΓjN = Γ∗. From lemma 3.3, we know
that this limiting set is Γ∗ = ΓN . This lemma tells us the computation of the inner viability
recursion is much easier than the outer viability recursion, because it can always terminate
in a finite number of iterations.

Proposition 3.1. If Γ∗ is non-empty, then there exists a trajectory q : [0,∞)→ X×Σ such
that for any q0 = (x0, i0) ∈ Q0 where x0 ∈ Γ∗,

• q solves the hybrid automaton H,

• q has the trace α,

• and there exists a sequence of switching instants {τj}∞j=0 such that x(τj) ∈ Γ∗.

Proposition 3.1 states that the inner preset recursion is a semi-decidable algorithm. To
formally characterize the relationship between the above results and prior work in [7, 8], let’s
consider a map Qα : P(G1

0) → P(G1
0) that is associated with the hybrid automata H and

discrete trace α ∈ Σ∗. We define this map as follows. If x0 ∈ G1
0, then Qα(x0) is the set

of points x ∈ G1
0 such that there exists a trajectory q with trace α that solves H and there

exist times T0, T1, and T2 such that

• for all 0 < T0 < τ < T1, we know that x(τ) /∈ G1
0 and

• for all T1 ≤ τ ≤ T2, we know that x(τ) ∈ G1
0.

We refer to Qα as a first-return map. In that if K is a subset of the domain of Qα, then
there exists a measurable control that generates a trajectory q with trace α that returns
to Qα(K) ⊂ G1

0. With regard to the preceding definition, we say that a set K is viable
with respect to Qα if [Qα]n (K) ∈ K for all n ≥ 0. We say a set K is the viability kernel
of Qα if it is the largest viable set. From the construction of Γ∗, it should be clear that
it is a viable set under map Qα and moreover, it should be apparent that it is a subset of
the outer viability kernel Γ

∗
. Consider a set K ⊂ G1

0. We will say that this set is inner
viable if for all x0 ∈ K there exists a measurable control that can return to any point in G1

0.
Clearly Γ∗ is inner viable by lemma 3.1. But by lemma 3.2, we can clearly see that this is
the largest such inner viable set associated with trace α. We can therefore refer to Γ∗ as the
inner viability kernel associated with α. The inner viability kernel is smaller than the outer
viability kernel, Γ

∗
, and this is why the condition in proposition 3.1 is only sufficient whereas

the corresponding result in proposition 1 [13] is necessary and sufficient. Nevertheless, the
inner viability kernel (when it exists) has some important properties with respect to the
composition of event traces. These properties are studied in the next section.
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4 Compositional Analysis

This section presents the compositional analysis of the inner viability kernel. Composition in
this paper means the inner viability kernels of two different cycles can be used to determine
the inner viability kernel of a sequential composition of these cycles. Consider a hybrid
automaton H. Let V : Σ∗ → P(X) map a trace α, that is logically accepted by H, onto its
outer viability kernel. Let V : Σ∗ → P(X) map the string α onto its inner viability kernel.

Proposition 4.1. Consider a hybrid automaton H and let α and β be two traces

α = (i0, i1), (i1, i2), · · · , (iN−2, iN−1), (iN−1, i0)

β = (j0, j1), (j1, j2), · · · , (jM−2, jM−1), (jM−1, j0)

with i0 = j0. Then the string αβ is logically accepted by H and V (αβ) = V (α) ∩ V (β).

i N−1
........

G1 
0 

G
N−1
N−2

N−1
0 G

F0 
1 

........

F

F0 

M−2
M−1

M−1

j
M−1 i 0 = j 0

Figure 2: Hybrid Automaton H

Proposition 4.1 is the main result of this paper. Proofs will be found in Appendix. It is
important because it tells us that V is a homomorphism. On a practical level, this means
that the inner viability kernel supports a compositional analysis. This means that if we know
the inner viability kernels of α and β, we can use this information to immediately compute
the inner viability kernel for the composed string αβ. Moreover, we can now use this result to
establish conditions on the existence of non-blocking solutions to the hybrid automata that
are formed by the sequential composition of viable traces α and β. The following corollary
states this fact.

Corollary 4.1. Assume V (α) and V (β) are the inner viability kernels of controlled hybrid
automata H with trace α and β

α = (i0, i1), (i1, i2), · · · , (iN−2, iN−1), (iN−1, i0)

β = (j0, j1), (j1, j2), · · · , (jM−2, jM−1), (jM−1, j0)

with i0 = j0, if V (α) ∩ V (β) 6= ∅, then there exists a non-terminating solution for hybrid
automata H with trace αβ.

Actually, Proposition 4.1 is a stronger statement for the existence of non-terminating
solutions to controlled hybrid automata, because only V (αβ) ⊇ V (α)∩V (β) will be enough
to answer whether or not there exists a non-terminating solution in a controlled hybrid
automaton. If the intersection of V (α) and V (β) is non-empty, then obviously V (αβ) is not
an empty set. Therefore there exists a non-terminating solution to the controlled hybrid
automaton with trace α and β. The compositional nature of the inner viability kernel is
an important property that distinguishes it from the more commonly used outer viability
kernel. In particular, we show that V is not necessarily a homomorphism.
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Proposition 4.2. Consider a hybrid automaton H and let α and β be two traces

α = (i0, i1), (i1, i2), · · · , (iN−2, iN−1), (iN−1, i0)

β = (j0, j1), (j1, j2), · · · , (jM−2, jM−1), (jM−1, j0)

with i0 = j0. Then the string αβ is logically accepted by H and V (αβ) ⊆ V (α) ∩ V (β).

Proposition 4.2 not only shows that V is not necessarily a homomorphism, but it also
shows that the composition of two event traces does not hold for the outer viability kernel.
This means even if the intersection of two outer viability kernels is not empty, we still can
not determine whether the outer viability kernel of the concatenations of the two traces is
empty or not, because it is only a subset of the intersection of two outer viability kernels.
This means that given the information of the two outer viability kernels of two traces, we can
not determine the existence of non-terminating solution to the controlled hybrid automaton
with the concatenation of the two traces. This is the main difference between inner and
outer viability kernels.

5 Example

The previous sections state the principal results concerning the inner viability kernel ap-
proach to address the conditions on the existence of the non-blocking solutions in controlled
hybrid automata. We consider an example illustrating the use of the inner viability kernel
in evaluating the composition of sequential event traces. Compositional analysis is the main
advantage of the inner viability kernel approach. The following lemma formally identifies a
situation in which the inner viability kernel, Γ∗, is easily computed. Proofs will be found in
the Appendix.

Lemma 5.1. Let H be a controlled hybrid automaton. Assume trace α = (i0, i1), (i1, i2), · · · ,
(iN−2, iN−1), (iN−1, i0) is logically accepted by H whose underlying continuous-state dynamics
are stabilizable and ẋ(τ) = Aikx+Biku, k = 0, · · · , N − 1 have controllable subspaces R(Cik)
with dimension n− 1 , where Cik is a controllability matrix

Cik = [Bik AikBik · · · An−1
ik

Bik ]

associated with mode ik. Let eikj, j = 1, · · · , n−1 , be a standard basis vector for the subspace
R(Cik).

1. ∀k ∈ 1, · · · , N − 1, assume Γk ∩ R(Cik) = ∅, i.e. Γk ⊆ Hp or Hn, where Hp =
{x|cTx ≥ 0, c · eikl = 0} and Hn = {x|cTx ≤ 0, c · eikl = 0} are positive and negative
halfspaces associated with the controllability subspace R(Cik). Assume Γk is a convex
hull with the vertices vl, l = 1, · · · ,m.

• if Γk ⊆ Hp, then Pre(Γk) = {y|cTy ≥ D = max(d(vl,R(Cik)))};
• if Γk ⊆ Hn, then Pre(Γk) = {y|cTy ≤ D = max(d(vl,R(Cik)))};

2. ∀k ∈ 1, · · · , N − 1, if Γk ∩Hp 6= ∅ and Γk ∩Hn 6= ∅, then Pre(Γk) = ∅.
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This lemma shows that under certain assumptions, the inner presets of subsystems are
halfspaces. We can easily determine the inner viability kernel by taking the intersections
of G

mod(N−j)
mod(N−j−1) and the halfspaces. If all underlying continuous-state dynamics of a hybrid

automaton are controllable, we can easily prove Pre(Γj) = Pre(Γj) = Rn, j = 0, · · · ,∞. In
this case, the inner and the outer viability kernels are the same, so the outer viability kernel
supports composition of sequential event traces.

Mode 3Mode 1 Mode 2

G12 G 31

G 21 G 13

Figure 3: hybrid automaton model

Consider a controlled hybrid automaton H shown in figure 3 with subsystem 1:

ẋ =

[
−1 −2
0 1

]
x+

[
−1
1

]
u

and subsystem 2:

ẋ =

[
0 1
1 0

]
x+

[
1
1

]
u.

and subsystem 3:

ẋ =

[
1 0
0 −1

]
x+

[
1
0

]
u.

These three subsystems are uncontrollable but stabilizable, and their controllable subspaces
have dimension 1. The guard set is defined to be the union of convex hulls of subsets Lk of
R2, denoted ∪Kk=1conv(Lk). The subset Lk consists of a finite number of vectors l1k, l

2
k, · · · , lmk .

It is clear that the vectors in Lk are the extreme points(vertices) of its convex hull conv(Lk).
Let Gij, i, j = 1, 2, 3 denote the guard sets from i to j and

G12 = conv(

{[
4
2

]
,

[
4
0

]
,

[
9
4

1

]}
)

and

G21 = conv(

{[
3
2

]
,

[
3
3

]
,

[
4
3

]}
)

and

G13 = Ga
13

⋃
Gb

13

Ga
13 = conv(

{[
1
3

]
,

[
5
2
1
2

]
,

[
5
2
3
2

]}
)

Gb
13 = conv(

{[
4
1
2

]
,

[
4
−1

]
,

[
7
2

−1
2

]}
)
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and

G31 = conv(

{[
3
0

]
,

[
3
1

]
,

[
4
1

]
.

}
)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5
 inner viability kernel of trace α

x
1

x 2

 G13
a

 C1

 G31
 C3

G13
b

 kernel of α

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5
 inner viability kernel of trace β

x
1

x 2

 G12

 G21

 C1

 C
2

 kernel of β

Figure 4: The inner viability kernels of trace α and β

We define the trace α is the cycle from mode 1 to mode 3 and then to mode 1, and the trace
β is the cycle from mode 1 to model 2 and then to mode 1. We computed the inner viability
kernels, V (α), V (β), of trace α and β using the inner preset recursion and computation
methods of Lemma 5.1:

V (α) = conv(

{[
1
3

]
,

[
11
5

1

]
,

[
5
2

1

]
,

[
5
2
3
2

]}
)

and

V (β) = G12.

Figure 4 shows the geometry of the inner viability kernel of trace α and β. The left figure
shows the guard sets of the two arcs connecting modes 1 and 3. There are three sets in this
figure, Ga

13 and Gb
13 are the disconnected sets whose union is the guard G13. The set G31 is the

other arc’s guard. C1 and C3 are the controllable subspaces for modes 1 and 3, respectively.
The dotted lines in the figure are the affine varieties of the controllable subspaces. The dark
subsets shown in the figure are the inner viability kernels that we computed with trace α. In
a similar way, the right figure illustrates the inner viability kernels we computed with trace
β.

We used the inner recursion to compute the inner viability kernel for composed trace αβ.
The resulting set is

V (αβ) = conv(

{[
5
2
6
5

]
,

[
9
4

1

]
,

[
5
2

1

]}
).

We computed V (α)
⋂
V (β) and found that V (αβ) = V (α)

⋂
V (β). This illustrates the result

of Proposition 4.1. Because V (αβ) 6= ∅, then by proposition 3.1 there exists a non-blocking
solution to the hybrid automaton H.

Next, we computed the outer viability kernel for trace α and β using the outer preset
recursion. In this case we found that V (α) = Ga

13

⋃
V1, where
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V1 = conv(

{[
15
4

0

]
,

[
4
1
2

]
,

[
4
0

]}
)

and V (β) = G12. Taking the intersection of V (α) and V (β) we found that V (α)
⋂
V (β) =

V2

⋃
V3, where

V2 = conv(

{[
5
2
5
6

]
,

[
9
4

1

]
,

[
5
2
7
6

]}
)

V3 = conv(

{[
137
36
1
9

]
,

[
4
0

]
,

[
4
1
2

]}
).

Obviously, the point (4, 0) is in V (α)
⋂
V (β), but (4, 0) is not in V (αβ). This is because

the only points that point (4, 0) can reach in G13 are (5
2
, 1

2
) and y = −x + 3, x ∈ [3.5, 4].

From the figure 4 it can be seen that (4, 0) reaches ( 5
2
, 1

2
) and y = −x + 3, x ∈ [3.5, 4]

under a two part control that first moves the state along the controllable subspace C3 and
then along the affine variety of C1. Since (5

2
, 1

2
) and y = −x + 3, x ∈ [3.5, 4] are not in

V (α)
⋂
V (β) , the point (4, 1) can not be in the outer viability kernel V (αβ). So we can

conclude V (α)
⋂
V (β) 6= V (αβ).

We can also directly compute the outer viability kernel of trace αβ using the outer recur-
sion. This computation shows that V (αβ) = V2

⋃
V4, where

V4 = conv(

{[
15
4
1
4

]
,

[
4
1
2

]
,

[
4
1
4

]}
).

It can be seen that V (α)
⋂
V (β) ⊃ V (αβ), which demonstrates the result of Proposition

4.2.
This simple example demonstrates all of the principal properties of the inner viability

kernel. The inner preset recursion terminates after 2 steps; the inner viability kernel is
easily computed for the controlled hybrid automaton H whose underlying dynamics have
controllability manifold of dimension 1; the inner viability kernels of two different cycles,
V (α), V (β), can be used to obtain the inner viability kernel of a sequential composition
of these cycles, V (αβ). This example also verifies that the outer viability kernel can not
support the composition of event traces.

6 Conclusions

The principal result of this paper is a sufficient condition for the existence of global non-
blocking solutions to controlled hybrid automata. This condition is derived from the inner
recursion algorithm that terminates after a finite number of iterations to a limit set called
the inner viability kernel. The inner viability approach presented in this paper has the fol-
lowing advantages. First, the inner preset recursion always terminates after a finite number
of iterations. Second, the inner viability kernel is easily computed for controlled hybrid au-
tomata whose underlying continuous dynamics have controllability manifolds of dimension
n−1 or higher. Third, in our opinion, the major benefit is the composition property of inner
viability kernel. This property is useful to the analysis of large scale hybrid systems.
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There exist, however, problems with the inner viability approach. All of preceding benefits
of the inner viability approach rely on the fact that the inner viability kernel must be a
non-empty set. If it is empty, we can say nothing about the existence of non-terminating
solutions to controlled hybrid automata. Moreover, although the outer viability kernel does
not necessarily ensure the composition of sequential event traces, we may find it supports
cycle composition in some special cases. We have yet to answer under what conditions, the
outer viability kernel supports cycle composition.

The previous observations suggest future research directions. The first direction is to find
the conditions under which the inner viability kernels of a hybrid automaton are non-empty.
The second direction is to find a class of hybrid systems whose outer viability kernels support
cycle composition.

Acknowledgement: Research supported in part by National Science Foundation(ECS-99-
86918).
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Appendix:(Proofs)
Proof of Lemma 3.1: If ΓN is non-empty, then clearly Γj is also non-empty for j =
0, . . . , N−1. So we’ll assume q0 = (x0, i0) ∈ Q0 and assume that x0 ∈ ΓN = G1

0∩Pre(ΓN−1).
Since x0 ∈ Pre(ΓN−1) we know that for any x1 ∈ ΓN−1) there exists T1 ≥ 0 and trajectory

q1 : [0, T1]→ X × Σ such that x1 is reachable from x0 under α1 = (i0, i1).
The state x1 is any point in ΓN−1 = G2

1∩Pre(ΓN−2). So x1 lies in Pre(ΓN−2) which means
there exists T2 ≥ T1 ≥ 0, there exists trajectory q2 : [0, T2]→ X×Σ such that any x2 ∈ ΓN−2

is reachable from x0 under the trace (i0, i1), (i1, i2).
We can repeat the above argument a finite number of times to conclude that for any

xN ∈ Γ0 there exists TN ≥ 0 and there exists trajectory qN : [0, TN ] → X × Σ with trace
α such that xN is reachable from x0. The resulting qN clearly solves the hybrid automaton
and has trace α. ♦

Proof of Lemma 3.2: Let’s assume ∀xf ∈ G1
0 , xf is reachable from x0 with trace α,

then x0 ∈ ΓN by the definition, contradiction. So there exists at least one tf in G1
0 that is

not reachable from x0 under a trajectory q with trace α. ♦
Proof of lemma 3.3: Assume that Γ2N is nonempty, then clearly by the inner recursion we

can conclude that ΓN is non-empty also. So assume that x ∈ ΓN . Since ΓN = G1
0∩Pre(ΓN−1),

we can conclude x ∈ G1
0 and so ΓN ⊂ G1

0. By similar reasoning we can conclude that
Γ2N ⊂ G1

0.
Assume that x(0) /∈ Γ2N . This means by lemma 3.2 that there exists at least a point in

G1
0 that is not reachable from x(0) under α. But if we also assume that x(0) ∈ ΓN , lemma

3.1 also lets us infer that any point in G1
0 is reachable from x(0). This contradicts our earlier

assumption that x(0) /∈ Γ2N . So we must conclude that x(0) must also be in Γ2N or rather
that ΓN ⊆ Γ2N .

Note that

Γj =

j⋂

k=0

PreN−k(Gmod(N−k+1)
mod(N−k) )
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where Prek is the kth recursion of the Pre operator where Pre0(K) = K. Note that this
means that Γ2N ⊆ ΓN . Combining this fact with the previous result, we can conclude that
ΓN = Γ2N . ♦

Proof of Proposition 3.1: From lemma 3.3 we know that Γ∗ = ΓN . Any q0 = (x0, i0) ∈
Q0 and x0 ∈ Γ∗ can reach any point xf in G1

0 by lemma 3.1. Therefore, any point in Γ∗ can
be reached along the trajectory q. So there exists a sequence of switching instants {τj}∞j=0

such that x(τj) ∈ Γ∗. The trajectory q solves the hybrid automaton H with trace α. ♦
Proof of Proposition 4.1: First, we show V (α, β) ⊇ V (α) ∩ V (β). By the definition

of the inner-recursion by the equations 3.2, we define the inner-recursion for trace α as
follows,where Gk

i denotes the guard set with event (i, k),(i, k) ∈ α.

Γα0 = G1
0

Γαn+1 = G
mod(N−n)
mod(N−n−1) ∩ Pre(Γαn)

for n = 0, . . . , N − 1. By the lemma 3.3, we know ΓαN = V (α), which is the inner viability
kernel with trace α. We define the inner-recursion for trace β, where F k

j denotes the guard
set with event (j, k),(j, k) ∈ β.

Γβ0 = ΓαN ∩ F 1
0

Γβm+1 = F
mod(M−m)
mod(M−m−1) ∩ Pre(Γβm)

for m = 0, . . . ,M − 1. After the inner-recursion computation, we know ΓαN ∩ ΓβM = V (α, β),
since ΓβM = Preβ(ΓαN ∩F 1

0 ) with trace β and V (β) = Preβ(F 1
0 ) with trace β, Pre(ΓαN ∩F 1

0 ) ⊇
Pre(F 1

0 ),because of ΓαN ∩ F 1
0 ⊆ F 1

0 , so ΓβM ⊇ V (β), so ΓαN ∩ ΓβM = V (α, β) ⊇ ΓαN ∩ V (β) =
V (α) ∩ V (β).

Or we can use an alternative proof, consider ∀x0 ∈ V (α) ∩ V (β), any xf ∈ V (α) ∩ V (β)
are reachable from x0 with trace α and for any xf , any x∗f ∈ V (α)∩V (β) are reachable from
xf with trace β, so x0 ∈ V (α, β).

Then we show the other direction V (α, β) ⊆ V (α) ∩ V (β). This holds directly from the
definition of inner viability kernel. For all x0 ∈ V (αβ), any xf ∈ V (αβ) is reachable from x0

under trace (α, β), obviously x0 ∈ V (β) and x0 ∈ V (α). so V (αβ) ⊆ V (α)∩V (β). Therefore
V (αβ) = V (α) ∩ V (β). ♦

Proof of Corollary 4.1: if V (α)∩V (β) 6= ∅, by proposition 4.1, we know V (αβ) 6= ∅, then
there exists a non-terminating solution for hybrid automata H with trace αβ by Proposition
3.1. ♦

Proof of Proposition 4.2 : First of all let’s prove V (α, β) ⊆ V (α). if x ∈ V (α, β) but
x /∈ V (α), using lemma 2 [13], we know there exists no point xf ∈ G1

0 that is reachable from x
with trace α, so x /∈ V (α, β), contradiction with our assumption. Therefore, V (α, β) ⊆ V (α).

Secondly, we show V (α, β) ⊆ V (β). Similarly,if x ∈ V (α, β), but x /∈ V (β), using lemma
2 [13], we know there exists no point xf ∈ G1

0 that is reachable from x with trace β, so
x /∈ V (α, β), contradiction with our assumption. Therefore, V (α, β) ⊆ V (β).

So in brief, V (αβ) ⊆ V (α) ∩ V (β). ♦
Proof of Lemma 5.1:
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1. Let’s first consider the standard controllable form of subsystems

Āik = T−1AikT =

[
A1
ik

A12
ik

0 A2
ik

]
,

B̄ik = T−1Bik =

[
B1
ik

0

]

and initial condition is

x̂(0) = T−1x(0) = T−1

[
x1(0)
x2(0)

]
=

[
x̂1(0)
x̂2(0)

]
.

So

x̂1(t) = eA
1
ik
tx̂1(0) +

∫ t

0

eA
1
ik

(t−τ)B1
ik
u(τ)dτ

x̂(t) = e
A2
ik
t
x̂2(0)

Because the original subsystems are stabilizable, then A2
ik
≤ 0, |x̂2(t)| ≤ |x̂2(0)|. Any

x̂1(t) can be reached from x̂1(0) under a control u, we know ∀x̂(t) ∈ Rn can be reached
from x̂(0) in time T if 0 ≤ x̂n(t) ≤ x̂n(0) or x̂n(0) ≤ x̂n(t) ≤ 0. The new controllable
matrix is Ĉik = T−1Cik , and êikj for j = 1, · · · , n − 1 be a standard basis vector for
the subspace R(Ĉik). Let Ĥp and Ĥn denote the positive and negative halfspaces
associated with the hyperplane R(Ĉik), where Ĥp = {x|ĉTx ≥ 0, ĉ · êikl = 0} and
Ĥn = {x|ĉTx ≤ 0, ĉ · êikl = 0}. If the new guard set Γ̂k ⊆ Ĥp, then Pre(Γ̂k) =
{y|ĉT y ≥ D̂ = max(d(v̂l,R(Ĉik))) where v̂l are vertices of Γ̂k}; If Γ̂k ⊆ Ĥn, then
Pre(Γ̂k) = {y|ĉTy ≤ D̂ = max(d(v̂l,R(Ĉik))) where v̂l are vertices of Γ̂k};
We can extend this special case to a general result, because coordinate transformation
only changed the coordinate positions. So we know that if Γk ⊆ Hp, then Pre(Γk) =
{y|cT y ≥ D = max(d(vl,R(Cik))) where vl are vertices of Γk}; if Γk ⊆ Hn, then
Pre(Γk) = {y|cTy ≤ D = max(d(vl,R(Cik))) where vl are vertices of Γk}.

2. if Γk ∩ Hp 6= ∅ and Γk ∩ Hn 6= ∅, then Γk = Γpk ∪ Γnk , which are two parts di-
vided by R(Cik) and Γpk ⊆ Hp and Γnk ⊆ Hn. Pre(Γk) = Pre(Γpk) ∩ Pre(Γnk) = ∅,
where Pre(Γpk) = {y|cT y ≥ Dp = max(d(vl,R(Cik))) where vl are vertices of Γpk}; and
Pre(Γnk) = {y|cTy ≤ Dn = max(d(vl,R(Cik))) where vl are vertices of Γnk}; ♦

15


