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Abstract

In this paper discrete time-varying systems are considered. The study of spectral
properties in a time-varying framework is performed by defining a suitable operator on
the Hilbert space of square summable sequences. This setting gives a parameterization
of square summable symmetric solutions for time-varying Riccati equations.

1 Introduction

It is well-known that finite dimensional Linear Time-Varying (LTV) state space models are

encompassed on a operator-theoretic setting. With this approach spectral tests are available

to test reachability and observability of the underlying time-varying system [4]. Spectral

theory is well-established for compact operators so we will assume that the LTV system

under study gives rise to a compact operator in `n
2 , a separable Hilbert space. To encompass

a time-varying system y(t) = A(t)x(t), x ∈ Rn on the Banach space L(X,X) of continuos

linear operators from X to X, provided the separable Banach space X := `n
p , 1 ≤ p < ∞,

define A := diagt∈Z{A(t)}, x 7→ y = Ax (see [4]). The diagonal form of A tell us that is a

memoryless system. We are interested to the time-varying system model x(t) = A(t)x(t−1)

and we will consider the corresponding operator A. We restrict ourselves to the Hilbert space

X = `n
2 . The problem of finding invariant subspaces T of an operator A (AT ⊆ T ) is strictly

related to the eigenvalues in the spectrum σ(A). The fact that A is memoryless together

with separability simplifies the problem of finding invariant subspaces, in fact, in this case

we can ensure the existence of a base in `n
2 which is composed by invariant subspaces of A.

Considering the space of continuos linear operators from `m
2 to `p

2: L(`m
2 , `p

2) the resolvent

set of A ∈ L(`m
2 , `p

2) ρ(A) is the set ρ(A) := {λ ∈ C | λI − A has bounded inverse}, the

spectrum is σ(A) := C \ ρ(A) and the point spectrum σP (A) is the subset of σ(A) for which

no inverse of λI −A exists, i.e the set of eigenvalues of A, for λ ∈ σP (A) we define Eλ(A) :=

∪k∈NKer(λI−A)k. Moreover, the continuos spectrum σc(A) and the residual spectrum σr(A)

are the set of λ such that λI−A is injective and non surjective with dense range or injective

with non dense range respectively. Finally, the set of almost eigenvalues σa(A) is the subset

of σ(A) such that there exists a sequence {xn} ∈ `n
2 (the almost eigenvectors)such that
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limn→∞ ‖Axn − λxn‖ = 0 with ‖xn‖ = 1. We have σ(A) = σp(A) ∪ σc(A) ∪ σr(A) moreover

σp(A) ∪ σc(A) ⊂ σa(A) (see [1]).

The spectral tests on the operators connected with linear discrete-time-varying state space

systems which characterize reachability and observability can be confined to the set of almost

eigenvalues [4]. Almost eigenvalues are well suited for our goal, since we want to analyze the

geometry of the time-varying Riccati difference equation(RDE), in particular, the problem of

parameterization of solutions. In this paper we will show that if we work in a `2 setting with

`2-bounded matrices it is possible to give such a parameterization in the form of theorem

3.1.

We introduce the following definitions and notations. The uniform exponential stability

(UAS) of z(t) = A(t)z(t − 1) i.e. the fact that c > 0 and 0 ≤ β < 1 exist such that ∀t ∈ Z
and h ≥ 0 ‖A(t + h)A(t + h− 1) · · ·A(t)‖ ≤ cβh−1 is equivalent to limn→∞ ‖An‖1/n < 1 (see

[3]). The adjoint of an operator F : `n
2 7→ `m

2 is the unique linear operator F ′ : `m
2 7→ `n

2 such

that 〈x, Fy〉`m
2

= 〈F ′x, y〉`n
2
. The indefinite inner product J on `2n

2 is defined, provided a

direct sum decomposition `2n
2 = `n

2 +̇`n
2 , by the formula J(

[
x1

x2

]
,

[
y1

y2

]
) = 〈x1, y2〉 − 〈x2, y1〉,

xi, yi ∈ `n
2 . A subspace is called Lagrangian if J(x, y) = 0 ∀x, y ∈ S. We will write

S =span

[
X

Y

]
if needed to denote the direct sum decomposition of S ⊆ `2n

2 .

We consider the following RDE

X(t-1) = A(t)′X(t)A(t)-A(t)′X(t)B(t)(R(t)+B′(t)X(t)B(t))−1B(t)′X(t)A(t)+Q(t). (1.1)

We assume t ∈ Z and bounded with respect to the `2-norm operators A, Q ∈ L(`n
2 , `

n
2 );

B ∈L(`m
2 , `n

2 ); R ∈ L(`m
2 , `m

2 ); moreover R′ = R; 〈Rx, x〉 > µ‖x‖2
2 ∀x, µ > 0; Q′ = Q ≥ 0,

finally we define G(t) := B(t)R(t)−1B(t)′. (it is understood that A, B, . . . denote the diag-

onal infinite dimensional operators associated to the time-varying matrices A(t), B(t), . . .).

Together with the operator A another operator is used in this paper Cσ−1 − D (σ is the

unit forward shift). As A, Cσ−1 −D has an infinite matrix block representation on `2n
2 , the

operator comes from the time-varying system equations D(t)z(t) = C(t)z(t− 1) where

C(t) :=

[
A(t) 0

−Q(t) I

]
D(t) :=

[
I G(t)

0 A(t)′

]
; (1.2)

are recognized as the matrices of the time-varying symplectic pencil associated to RDE. It

naturally arises that it is relevant for our purpose to study the spectrum of such an operator

and to find how is related with σ(A). If X = X ′ with ‖X‖`2 < ∞ solution (from −∞ to

+∞) of (1.1) then:

C(t)=

[
I+G(t)X(t) 0

A(t)′X(t) I

][
AX(t) 0

0 I

][
I 0

-X(t-1) I

]
;

D(t)=

[
I+G(t)X(t) 0

A(t)′X(t) I

][
I Ḡ(t)

0 AX(t)′

][
I 0

-X(t) I

]
.

(1.3)
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where AX(t) :=(I+G(t)X(t))-1A(t), Ḡ(t) :=B(t)Ḡ2(t)
−1B(t)′ with Ḡ2(t) = R(t)+B(t)′X(t)

B(t). Moreover the following equation holds for all t ∈ Z.

C(t)

[
I

X(t− 1)

]
= D(t)

[
I

X(t)

]
AX(t); (1.4)

As explained before C and D define an infinite dimensional systems in the following way

(D − Cσ−1)z(·) = 0. (1.5)

As in the ordinary case we define the resolvent set as ρ(Cσ−1, D) := {λ ∈ C∪{∞} | Cσ−1−
λD has inverse} and obviously the spectrum σ(Cσ−1, D) := C ∪ {∞} \ ρ(Cσ−1, D). So the

point spectrum σP (Cσ−1, D) are the λ for which C(·)σ−1 − λD(·) is non injective, we can

define Eλ(Cσ−1, D) := ∪k∈NKer(Cσ−1 − λD)k, λ ∈ σp(Cσ−1, D).

2 RDE and the eigenspaces of Cσ−1 −D.

Given a `2 solution of RDE (1.1) then we have a Lagrangian subspace of `2n
2 given by

+̇t∈Zspan

[
I

X(t)

]
From (1.3) we obtain

[
(I+G(t)X(t))−1 0

-A(t)′X(t)(I+G(t)X(t))-1 I

]
(C(t)σ-1-D(t))=

([
AX(t) 0

0 I

]
σ-1-

[
I Ḡ(t)

0 AX(t)′

])[
I 0

-X(t) I

]
.

(2.6)

If X(·) is in `2 then (I + G(t)X(t))−1, AX(t), and Ḡ(t) are in `2. From the above equation

we see that σ(Cσ−1, D) = σ

([
AX 0

0 I

]
σ−1,

[
I Ḡ

0 A′
X

])
and it can be easily seen that

σ(Cσ−1, D) = σ(AXσ−1, I)∪σ(Iσ−1, A′
X). Hence there’s a reciprocal pairing in the spectrum

σ(Cσ−1, D).

A relevant question is the connection between the spectrum of σ(Cσ−1, D) and the solutions

of (1.1). We show that to (1.4) corresponds a point in σP (Cσ−1, D). In fact from (1.4)

it follows that a sequence z ∈ (R2n)Z, z(t) 6= 0, λt ∈ C, exists such that C(t)z(t − 1) =

D(t)z(t)λt if we define λ∗ = sup{|λi|} and a sequence {un}

u1 =




...

0

0

z(t− 1)

z(t)λt−1

λ∗

z(t + 1)λt+1λt

λ∗2

0

0
...




; u2 =




...

0

z(t− 2)

z(t− 1)λt−1

λ∗

z(t)λt−1λt

λ∗2

z(t + 1)λt+1λtλt−1

λ∗3

z(t + 2)λt+2λt+1λtλt−1

λ∗4

0
...




; and so forth, there is a normali-
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zed sequence xn := un/‖un‖ such that

‖Cσ−1xn − λ∗Dxn‖= 1

‖xn‖`2

(
‖D(t-n)z(t-n)‖+ ‖C(t + n + 1)z(t + n)

λt+n · · ·λt−n+1

λ∗2n
‖
)

so that it easily follows lim
n→+∞

‖Cσ−1xn − λ∗Dxn‖ = 0. It follows that λ∗ is an almost eigen-

values associated to Cσ−1 − λD hence it belongs to σP (Cσ−1, D). From (1.4) we conclude

that +̇t∈Zspan

[
I

X(t)

]
⊆ +̇λ∈σP (Cσ−1,D)Eλ(Cσ−1, D).

Proposition 2.1 [2] Let S be a Lagrangian subspace of the form S = +̇λEλ(Cσ−1, D) with

λ ∈ σP (Cσ−1, D) where C, D are associated to the to the uniformly exponentially stable ho-

mogeneous RDE (1.1) (SHRDE) i.e. Q(t) = 0∀t consider a basis

[
X

Y

]
of S: S = span

[
X

Y

]

for which C(t)

[
X(t− 1)

Y (t− 1)

]
= D(t)

[
X(t)

Y (t)

]
S(t) holds, then X ′Y ≤ 0.

As for the ARE for time-varying RDE two solutions say X, W are connected with the

eigenspaces relative to matrices AX , AW (Lemma 3.1 of [5]).

Proposition 2.2 [2] Consider two symmetric solutions of (1.1) X, W , if |λ| 6= 1 belongs

to σP (AXσ−1, I) and λ /∈ σ(Iσ−1, A′
X) then Eλ(AW ) ⊆ Eλ(AX), AX = AW on Eλ(AW ), and

Eλ(AW ) ⊆ Ker(X −W ).

3 Parameterization of solutions of the time-varying

RDE

Observe that we have the following identity:

X(t-1)-A′
X(t)X(t)AX(t)=Q(t)+A(t)′X(t)B(t)(R(t)+B(t)′X(t)B(t))-1R(t)·

·(R(t)+B(t)′X(t)B(t))-1B(t)′X(t)A(t)
(3.7)

the following condition will be used in the sequel:

if |λ| = 1is an almost eigenvalue of A′ then the corresponding sequence of almost

eigenvectors {xn}do not satisfy ‖B′xn‖ → 0 as n →∞.
(3.8)

As explained in [4] this condition is related to uniform reachability of (A,B): a pair (A,B)

which satisfies condition (3.8) for all almost eigenvalues of A is said uniformly reachable.

Remark 3.1 One could observe that following the rationale of [5] in deriving a parameteri-

zation of solutions of RDE means that we are treating infinite-dimensional systems like finite

dimensional ones. This is sustained by the fact that from our assumptions the spectrum of A

is composed only by eigenvalues i.e. σP (A) = σ(A). In fact, since A is a compact operator,
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it is ensured that λ 6= 0, λ ∈ σ(A) implies λ ∈ σP (A) and λ = 0 is always in σ(A) [1]. Now

if 0 ∈ σr(A) then A has not dense range, this is a contradiction for A compact on a Hilbert

space, then 0 ∈ σP (A) ∪ σc(A) ⊆ σa(A). Take a sequence of almost eigenvectors {xn} for

λ = 0 then we can obtain a u 6= 0 such that Au = 0 hence 0 ∈ σP (A).

Proposition 3.1 If condition (3.8) holds then we have Eλ(AX) ⊆ Eλ(A) ∩KerQ ∩KerX

and AX = A on Eλ(AX).

Proof. In [1] it is proven that a positive integer n exists such that Eλ = Ker(Aσ-1−λI)n =

Ker(Aσ-1 − λI)n+1 and |λ| = 1 and Eλ is finite dimensional so Eλ = span{v1, . . . , vk}.
Consider the inductive hypothesis AXvs = Avs, Xvs = 0, Qvs = 0, s = 1, . . . , m, define

V = span{v1, . . . , vm+1} then AXV = V M ;

(V ∗XV )σ−1-V ∗A′
XXAXV = (V ∗XV )σ−1 −M∗V ∗XV M = 0

since ¯σ(M)σ(M) = 1. Then V ∗(righthand side of (3.7))V = 0 hence v′s+1Qvs+1 = 0 and

B′XAvs+1 = 0 then AXvs+1 = Avs+1; Qvs+1 = 0 moreover

{
B′Xvs+1 = 0

v′s+1Xσ-1-λv′s+1XA = 0
from

(3.8) follows v′s+1X = 0.

Proposition 3.2 If |λ| = 1 is an almost eigenvalue of (Cσ−1)′−D′ and as almost eigenvalue

of A satisfies (3.8), then Vλ := (the maximal A invariant subspace ⊆ Eλ(A) ∩ KerQ) ⊆
KerX, moreover Eλ(AX) = Vλ; AX = A on the set Vλ.

Proof. From the above proposition we have that Eλ(AX) is A invariant and contained in

Eλ(A) ∩ KerQ, hence Eλ(AX) ⊆ Vλ we want to show that is equal to Vλ. There exists a

base for which A =

[
A1 A12

0 A2

]
and Q =

[
0 0

0 Q2

]
, σA1 = {λ}, observe that if λ is an

almost eigenvalue of A then the corresponding sequence of eigenvectors {xn} does not verify

‖Q2xn‖ → 0. We can partition conformingly Cσ−1-D:




A1 A2 0 0

0 A2 0 0

0 Q2 I 0

0 0 0 I


 σ−1 −




I 0 ∗ ∗
0 I G̃ ∗
0 0 A′

2 A′
12

0 0 0 A′
1


 .

Condition (3.8) implies that λ it is not in the spectrum of

[
A2 0

Q2 I

]
σ−1−

[
I G̃

0 A′
2

]
. Observe

that Vλ is finite dimensional as {|λ| = 1} ∩ σP (A) is a finite set [1]. So to Vλ corresponds

an eigenspace of Cσ−1-D formed by the same eigenvalue λ of dimension 2dimVλ, Cσ−1-D

can be partitioned in the form (2.6) hence dim Eλ(AX) = dim Vλ then Eλ(AX) = Vλ since

Eλ(AX) ⊆ Eλ(A) ∩KerQ ∩KerX then Vλ ⊆ KerX.

Given X,W symmetric solutions of (1.1) we have the following identity (∆ := X −W ):

A′
W (t)∆(t)AW (t)−∆(t− 1) = A′

W (t)∆(t)B(t)(I + B′(t)X(t)B(t))−1B′(t)∆(t)AW (t) (3.9)
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Proposition 3.3 Assume that condition (3.8) holds for an indefinite λ and 〈(I+G′XG)x, x〉>
µ‖x‖2 ∀x (µ > 0) . If Eλ(AW ) is an AX invariant subspace of Eλ(AX) then Eλ(AW ) ⊆
Ker(X −W ).

Proof. There is a one to one operator T such that

ÃW (t)=T (t)−1AW (t)T (t-1)=diag(B1(t), B2(t)) (3.10)

ÃX(t)=T (t)−1AX(t)T (t-1)=

[
A1 A12

0 A2

]
(3.11)

with σ(B1) = σ(A1) = {λ}. If |λ| = 1 from proposition 3.2 Eλ(AX) = Vλ ⊆ KerX, this

also holds for W Eλ(AW ) = Vλ ⊆ KerW so that Eλ(AW ) ⊆ Ker(X − W ). If |λ| 6= 1

partition ∆ conformingly to diag(B1(t), B2(t)): ∆ =

[
∆1 ∆12

∆′
12 ∆2

]
, from ∆σ−1 = A′

X∆AW

follows ∆1σ
−1 = A′

1∆1B1 since 1 /∈ σ(A1) ¯σ(B1) this Lyapunov equation has a unique solu-

tion ∆1 = 0 (see [3]). If y is an eigenvector relative to σ(B1) then y′∆y = 0. Consider the

eigenspace relative to λ: AW yi = λyi + yi−1 i = 1, . . . , s, using an inductive reasoning sup-

pose that ∆yk−1 = 0, the left hand side of (3.9) gives y′k(righthand side of (3.9)yk = 0 since

(righthand side of (3.9) ≥ 0 imply y∗kA
′
W ∆G = λ∗(∆yk)

′G = 0, (∆yk)
′(lefthand side of (3.9))

= (∆yk)
′(λ∗AW − I) = 0 the hypothesis on the eigenspace of λ implies ∆yk = 0.

Proposition 3.4 Given X,W symmetric solutions of (1.1) then:

1. Ker(X −W ) is invariant for AX , AW .

2. AX = AW on Ker(X −W ).

3. If Λin is the set of eigenvalues of AW relative to Ker(X −W ), Λout the remaining ones,

then the eigenvalues of AX are Λin, Λ−1
out respectively.

Proof. Since ∆ = X − W is symmetric from chapter 4 of [1] we obtain that there’s a

one to one orthogonal operator S such that S ′∆S = ∆̃ = diag{0, ∆̃2}, ∆̃2 corresponds to

eigenvectors of ∆ relative to eigenvalues 6= 0. From ∆σ−1-A′
X∆AW = 0 and ÃX := S−1AXS;

ÃW := S−1AW S follows ∆̃σ−1-Ã′
X∆̃ÃW = 0; Ã′

X =

[ ∗ C12

∗ C2

]
; ÃW =

[ ∗ ∗
B21 B2

]
, then

∆̃2σ
−1-C2∆̃2B2 = 0; C12∆̃2B2 = 0; C2∆̃2B21 = 0. ∆̃2 has no eigenvalues= 0 then C2, B2 are

non singular, hence C12 = 0, B21 = 0, we obtain ÃX =

[
A1 A12

0 A2

]
and ÃW =

[
B1 B12

0 B2

]
,

hence Ker∆̃ invariant for ÃX , ÃW then Ker(X−W ) invariant under AX , AW , this concludes

point 1. Point 2 follows from the identity AW (t)-AX(t) = (I + Ḡ(t)X(t))−1Ḡ(t)∆(t)AW (t)

and point 1. Finally point 3 follows from 2 and B2 = ∆̃−1
2 A−1

2 ∆̃2σ
−1.

Remark 3.2 With reference to notations of the proof of proposition 3.4 observe that assum-

ing 〈(I + B′XB)x, x〉 > µ‖x‖2 ∀x (µ > 0) and condition (3.8) implies as explained in the

proof of proposition 3.3 that λ /∈ σ(B2), in fact E|λ|=1(AW ) ⊆ Ker(X −W ) and this implies

that λ could belong only to σ(B1).
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Proposition 3.5 Assume condition (3.8) and 〈(I + B′XB)x, x〉 > µ‖x‖2 > 0 ∀x (µ > 0).

Let X,W two symmetric solutions of (1.1), define E≤(AX) := +̇|λ|≤1Eλ(AX); E>(AW ) :=

+̇|λ|>1Eλ(AW ). The following conditions are equivalent:

i. X ≤ W

ii. E≤(AX) ⊆ Ker(X −W )

iii. E>(AW ) ⊆ Ker(X −W )

iv. Ker(X −W ) = E≤(AX)+̇E>(AW ).

Proof. We make reference to notations of the proof of proposition 3.4. From the previous

remark λ /∈ σ(B2) if |λ| = 1, moreover B2 = ∆̃−1
2 A−1

2 ∆̃2σ
−1 implies λ /∈ σ(A2). Assume

(ii), from point 3 of proposition 3.4 we have |σ(A2)| > 1, conversely, if |σ(A2)| > 1 then

(ii) holds. Now assume (iii), from point 3 of proposition 3.4 we have |σ(B2)| ≤ 1 but

remark 3.2 gives |σ(B2)| < 1, also the viceversa holds. Since |σ(B2)| < 1 ⇔ |σ(A2)| > 1

because of B2 = ∆̃−1
2 A−1

2 ∆̃2σ
−1 then (ii) ⇔ (iii). The following identity is similar to (3.9):

B′
2∆̃2B2-∆̃2σ

−1 = B′
2∆̃2G̃2(I + B′XB)−1G̃′

2∆̃2B2 = P ≥ 0 where

[
G̃1

G̃2

]
:= S−1B. Assume

(i) then ∆ ≤ 0 iff ∆̃2 < 0, if x ∈ Eλ(B2) then (|λ|2 − 1)〈∆̃2x, x〉 = 〈Px, x〉 if 〈Px, x〉 > 0

then |λ| < 1, if 〈Px, x〉 = 0 remember that 1 = |λ| /∈ σ(B2), then 〈∆̃2x, x〉 = 0 hence

x = 0, so |σ(B2)| < 1. Conversely if |σ(B2)| < 1 then (remember σa(B2) = σP (B2) = σ(B2))

proposition 5 of [3] implies P ≥ 0 so that ∆̃2 ≤ 0 then ∆ = X −W ≤ 0. We have obtained

(i) ⇔ |σ(B2)| < 1 ⇔ (ii) ⇔ (iii). If we assume (i) and we want to obtain (iv) the reasoning

is the same given in [5] while (iv) ⇒ (ii) ⇒ (iii) ⇒ (i) is obvious.

Since AX is a compact operator of L(`n
2 , `

n
2 ) there are only eigenvalues in the spectrum of

AX ([1]) hence we can decompose `n
2 = E≤(AX)+̇E>(AX). We can define the projections

P≤(AX) : `n
2 → E≤(AX) and P>(AX) : `n

2 → E>(AX). Now we can give a decomposition for

`2 symmetric solutions of RDE.

Theorem 3.1 Assume X, Y, Z symmetric solutions of RDE (1.1), condition (3.8), and 〈(I+

B′XB)x, x〉 > µ‖x‖2 ∀x (µ > 0). If Y ≤ X ≤ Z then X = ZP≤ + Y P>.

Proof. From X ≤ Z we obtain E≤(AX) ⊆ Ker(X −Z), from Y ≤ X we obtain E>(AX) ⊆
Ker(Y − X) then XP≤ = ZP≤ and XP> = Y P> since `n

2 = E≤(AX)+̇E>(AX) we have

X = XP≤ + XP> = ZP≤ + Y P>.
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