A Generalization of the Widrow’s Quantization
Theorem

Dorina Isar, Alexandru Isar
Electronics and Telecommunications Faculty, ”Politehnica” University
2 Bd. V. Parvan, 1900 Timisoara, Romania
Abstract

The Widrow’s quantization theorem is analyzed. This theorem gives the
conditions to be satisfied by the probability density function of a random signal
for its perfect reconstruction after the quantization process. The disadvantages
of this theorem (it’s hypotheses are very restrictive) are envisaged and some
solutions to decrease the effects of these disadvantages, in the case of different
classes of input signals, used in practice, are presented.

1. INTRODUCTION
The expression of the probability density function of the random variable O, at the output
of a uniform analog to digital converter, ADC, with the quantization step ¢, excited with
the input random variable I is:

po (x) = k;KP (O =o0g)-6(x—o) (1.1)

[1].The condition: P (O = o,) = 0, for |k| > K, is natural because at the input of any ADC
there are amplitude limiting devices, (the ADC has two saturation zones). Hence, the first
order probability density function of the input random signal, I, has compact support. This
is the reason why it can be written:

po (x) = i P(O=o)-6(x— o) (1.2)

k=—o00

The quantity P (O = o) is a function of the variable x, because the output random vari-
able, O, can take the value oy if and only if the variable x belongs to a certain interval. The
quantity P (O = o) can be expressed like a convolution between the probability density
function of the input random variable, I, p; (z) and a rectangular pulse, centered in origin,
with unitary amplitude and a duration of ¢q. So this probability can be seen like the response
of the linear time invariant system with the impulse response:

h(x):{ 1 for |z| <

0 for |z|>

N ke

to the signal p; (x). By uniformly sampling of the signal at the output of this system (let
the name of this signal be A (z)) with the step ¢, in conformity with the relation (1.2), the
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signal po (x) is obtained. This is the reason why the characteristic function of this signal
can be expressed using the relation:

®p(u) = > sinc lg <u — kz—ﬁﬂ o <u — k2—7r> (1.3)
2 q q
where ®; (u) represents the characteristic function of the random variable at the input of
the quantization system. Because an ideal sampling is used, if the hypotheses of the WKS
sampling theorem are respected, (the functions ®y (u) and ®; (u) have compact support),[2],
then the signal A (x) can be reconstructed from the signal po (z). The characteristic function
of the random variable V', with the probability density function, A (x), has the expression:

Oy (u) = $r (u) - sinc (gu>

Using the notation:

Oy (u) = sinc <gu>

it can be written:
Py (u) = @1 (u) - Pu (u)

Because the characteristic function of the random variable V' is the product of the char-
acteristic functions of the random variables U and I, the random variable V' represents the
sum of the random variables U and I and these random variables are independent, [3]:

V=U+I (1.4)

If &y (u) has compact support and if a small enough value for the quantization step g
is selected, then using ®¢ (u) the function @y (u) can be reconstructed with the aid of an
ideal low-pass filter. Using ®y (u), the characteristic function ®; (u) can be computed and
the probability density function pr (z) can be perfectly reconstructed. So, if ®;(u) has a
compact support and if ¢ is well selected, then from the probability density function of the
output random variable can be perfectly reconstructed the probability density function of
the input random variable. Hence the quantization process can be inverted. This is the aim
of the one dimensional Widrow’s quantization theorem, proposed in 1956, [4].

2.  THE QUANTIZATION THEOREM

The enunciation of the quantization theorem, already proved (in the previous paragraph), is
the following;:

The necessary and sufficient condition that p; () be perfectly reconstructed
from po (z) is that supp{®;(u)} have a length of 2u,, and to work with a quanti-
zation step ¢ such that:



2
S ou, (2.5)

q
If the hypotheses of this theorem are satisfied then filtering with an ideal low-pass filter
the probability density function po (x) we can obtain the characteristic function of the

reconstructed random variable R:
Pr (u) = Py (u) = P71 (u) - Pu (u)

from where we can obtain the probability density function of the input random variable.
The moments of the input random variable, I, can be computed using the values of the
moments of the reconstructed random variables, R.

3. THE COMPUTATION OF THE MOMENTS OF THE RANDOM VARIABLE R

For the beginning it must be observed (on the base of its characteristic function) that the
random variable U is uniformly distributed in the interval [—%, %} . In the following the k-th
order moment of the random variable R is computed:

1 dF
F% R(U) |u:0 =

= Ek:Ci? FW) (0)] [chg“”) (0)] -

MR =

= JP jk—p
k
= Y CEM (1| M (U] (3.6)
p=0

For k=1, the last relation becomes:

MIR] = M[I] (3.7)

So the random variable R has the same average like the input random variable. For k=2,
it can be written:

2 2 q
M[R}_M[S}Jrﬁ (3.8)
Hence the power of the random variable R can be computed summing the powers of the
random variables I and U. The random variable U can be regarded like a noise, characteristic
for the quantization system. This is the reason why using the last relation we can compute
the signal to noise ratio at the output of the quantization system:
o2 12 o

SNR = —
q

2
= q

(3.9)



4. THE GENERAL CASE
In the following, the hypothesis of compact support for the characteristic function is rejected.
In this case the use of the reconstruction low-pass filter is not very useful, because the
hypotheses of the sampling theorem are no longer satisfied. This is the reason why we tray
to use the output random variable, O, to reconstruct the moments of the input random
variable, I. In the following, first, the moments of the random variable O are computed.
Using the relation (1.3) it can be written:

k k 1 &8 pa® (127 g k—p) 727
MO =M R+ — > S cray (i—| oy (1= (4.10)
J" =25, p=0 q q
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The error due to the rejection of the compact support hypothesis can be appreciated with
the aid of the approximation error of the moments M [R’“} with the moments M [Ok] . This
error is presented in the following relation:

ok
er = ik S S cre <12—7T> p{F7) <12—7T>
[l i q q
1£0

If the characteristic function of the input random variable satisfies the hypotheses of the
Widrow’s quantization theorem then for every k, e, = 0. The compact support hypotheses
for the functions py (z) and ®; (u) are in contradiction because the second function represents
the Fourier transform of the first one. The support of p;(x) is compact because in the
signal processing chain there are other operations, before the quantization, implemented
with systems with saturated input-output characteristics. So, the support of ®;(u) can
not be compact. Hence in practice the quantization system can not be perfectly inverted,
according to the Widrow’s quantization theorem. In the following are presented other
hypotheses, sufficient for the perfect reconstruction of the moments of the input
random variable starting from the moments of the output random variable.

Tacking into account the expressions of the derivatives of the characteristic function of the
random variable U we can write:

¢ & (-1 27
o552 T ()
1£0

So, the relation between the averages of the random variables I and O is:

M[O] = M 1] + erj z_i, (—11) o, <z%ﬂ> (4.11)
140

For k = 2 we obtain the following expression of the error:

- or\ (=)™ (27 (1)
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So, the second order moment of the output random variable is:

AﬂOﬂ:A4pﬂ+%;+@ (4.12)

In the following is studied the class of input random variables I, without characteristic
function with compact support, satisfying the condition , ¢, = 0, p = 0 or more generally
E1 = &9 = 0. If:

g1=ey=..=¢,=0

then:

2
@@Q§>:Q 140, p=0,. k-1 (4.13)

and the first & order moments of the random variables R and I are the same. So the re-
constructed random variable R, obtained when the hypotheses of the Widrow’s quantization
theorem are satisfied is practically the same with the random variable at the output of the
ADC, obtained without satisfying the hypotheses of the Widrow’s quantization theorem. So
the compact support condition for the characteristic function of the input random variable,
requested by the Widrow’s quantization theorem, can be rejected without affecting the pre-
cision of the reconstruction of the moments of the input random variable. To satisfy the
condition €; = €5 = 0 is sufficient to select the input random variable I such that:

2m (2T _
®I<17>—®1<lq> 0, [#0 (4.14)

In this case the random variables R and [ have the same average and the same variance.
These are the moments most frequently used. So, in this case we can reject the compact sup-
port condition for the characteristic function of the input random variable without affecting
the precision of reconstruction for the moments of the input random variable.

5. REMARKABLE CLASSES OF INPUT SIGNALS

In the following table, some examples of input random variables, satisfying the condition
(4.14), are presented.

Characteristic function
El: sinc*%
E2: sinci: - sinc
E3: sinc2&E=bau
: 2
M

: Anu
[] sincfz=

where A,, is a multiple of ¢

(2K—1)qu
2

Table 1. Some useful classes of input random signals.



For the last example the input random variable is a linear combination of uniform distrib-
uted random variables. Their supports must be a multiple of the quantization step. This
example includes a lot of random variables. In conformity with the central limit theorem,
when M — oo the random variable I becomes a normal distributed (gaussian) random vari-
able. This is the reason why we can affirm that in the case of a gaussian random variable
the following relations are satisfied in an asymptotic manner:

MI[O] = M[I] (5.15)

2 2 ¢
M[O}_M[Ihﬁ (5.16)

All the elements of the input classes presented in this paragraph generate output random
variables for the ADC satisfying the relation (5.15) and (5.16), specific for the Widrow’s
quantization theorem, without satisfying the hypotheses of this theorem. So the relations
(5.15) and (5.16) are satisfied for a large class of input signals. This is the reason why the

expression of the output signal to noise ratio in (3.9) is a good estimation of this parameter.

6. THE MAIN RESULT
We have already proved a new quantization theorem with the following enunciation:
The necessary and sufficient condition for the perfect reconstruction of the
moments of the input random variable, M [I ’1 , starting from the moments of

the output random variable, M [O’“] , is described in the relation (4.13).

7. CONCLUSION
The hypotheses of the Widrow’s quantization theorem are too restrictive. This is the reason
why in this paper are presented, in the paragraph 5, some new results concerning the quan-
tization of the signals members of different classes without satisfying the hypotesis of the
Widrow’s quantization theorem. To obtain such classes is sufficient to satisfy the conditions
presented in the relation (4.13).
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