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Abstract

A state feedback with finitely many quantization levels yields only the so called practical
stabilization, namely the convergence of any initial state belonging to a bigger bounded region
into another smaller target region of the state space. The ratio between the measure of the
starting region and the target region is called contraction of the closed loop system. In the
analysis of the performance of a stabilization strategy based on a quantized state feedback two
parameters play a central role: the number of quantization levels used by the feedback and the
convergence time of the closed loop system.

In this paper we propose a definition of optimality for a quantized stabilization strategy.
This definition is based on how the number of quantization levels and the convergence time
grow with the contraction. Then, we analyze the performance and prove the optimality of three
different stabilizing quantized feedbacks strategy for scalar linear systems.

Keywords: Stability, stabilization, communication constraints, quantized feedback, chaotic con-
trol.

1 Introduction

In recent years a certain interest has been developed on the control problems in which communica-
tion constraints have to be considered. Systems with communication constraints can be considered
as instances of of hybrid systems in which particular attention is devoted to the data flow. Control
problems for these systems are very difficult to solve and a general theory seems still far to be
developed. Some contributions have been given in [1, 3, 4, 5, 7, 8, 9, 10, 11, 12].

Discrete time systems with quantized feedback can be seen as particularly simple cases of dy-
namical systems in which the control requires a finite information flow. This class of systems can
be analyzed in more detail even though they are nonlinear systems with wild behavior. In this set
up the information flow has to be quantified in terms of the number of quantization levels of the
feedback function. The problem in this context can be formulated as follows: What is the minimal
information flow required for fulfilling a certain control objective? In control theory stabilization
is considered the simplest control objective for which the previous question becomes the following:
What is the minimal information flow required for stabilizing a discrete time unstable systems?
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In this paper we will show that this question does not makes sense if we do not evaluate also the
performance of the closed loop system. We will show that there are different stabilizing quantized
feedback strategies requiring different information flows but providing closed loop systems with
different stability performances. Stability performance can be measured in different ways. In this
contribution we choose to evaluate stability performance in terms of the convergence time. Other
choices are possible but they are not explored here. The main contribution of this paper is to
propose a methodologic framework in which a quantized stabilization feedback strategy and its op-
timality can be defined and to prove the optimality of three different strategies. The first is based
on the approximation of a deadbeat controller by a uniform quantizer [3]. The second strategy is
a Lyapunov based quantized stabilization method [4]. The third one exploits the chaotic behavior
of closed loop systems with a quantized feedback [5]. In this paper our investigations are limited
to linear scalar systems.

2 Scalar linear systems with quantized feedback and quantized

feedback strategies

Consider the following discrete-time, one-dimensional linear model

xt+1 = axt + ut (2.1)

where a ∈ R. Let k : R→ R be a piecewise constant function with only finitely many discontinuities.
If we use k as a static feedback in (2.1), we obtain the closed loop system

xt+1 = Γ(xt), (2.2)

where Γ(x) := ax + k(x) is a piecewise affine map. Autonomous systems like (2.2) in which Γ is
piecewise affine can exhibit a very wild behavior. Their dynamical properties have been extensively
studied in the past [6, 2]. It is obvious that in this case only a “practical stability” can be obtained
as detailed in the following definitions.

Definition: Stability and almost stability. Given two intervals J ⊆ I, we say that Γ : R→ R

is (I, J)-stable if for every x0 ∈ I, there exists an integer T ≥ 0 such that xt ∈ J for every t ≥ T . We
say that Γ is almost (I, J)-stable if the convergence to J as defined above occur for almost all x0 ∈ I,
with respect to the normalized Lebesgue measure λI . A quantized feedback map k : R→ R is said
to be (almost) (I, J)-stabilizing if the corresponding closed loop map Γ is (almost) (I, J)-stable.

It is clear that the above definitions of stability and almost stability only depend on the restriction
of Γ to I and so we can assume that Γ is defined only on I. The first entrance time function

TJ : I → N ∪ {+∞}

is defined by

TJ(x) = inf{t ∈ N | Γtx ∈ J}, (2.3)

and by TJ(x) = +∞ if Γtx �∈ J for all t. The map TJ is always finite exactly when we have stability,
while it is almost surely finite when we have almost stability. The performance of a stabilizing
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quantized feedback will be evaluated through the expected value E(TJ) of TJ with respect to the
normalized Lebesgue measure E(TJ) which coincides with

E(TJ) =
∞∑
n=1

nλI [TJ = n] =
∞∑
n=1

λI [TJ ≥ n],

where λI [TJ = n] and λI [TJ ≥ n] are shorthand notations for λI [{x ∈ I|TJ(x) = n}] and
λI [{x ∈ I|TJ(x) ≥ n}], respectively. Optimality of a feedback strategy will be evaluated in terms
of the expected convergence time of the closed loop system with a given number N of quantization
intervals. This optimality will be defined with respect to the asymptotic dependence of the param-
eters E(TJ) and N on the contraction rate C := λI(J)−1. For this reason we define a quantized
feedback strategy as a sequence of controllers instead of a single control.

Definition: Stabilizing quantized feedback strategy. Given an interval I and a family of
intervals {JC |C ∈ R+}, such that JC ⊆ I for all C ≥ 1 and such that C = λI(JC)−1, a family of
quantized feedback maps

K := {kC : I → I | C ≥ 1}

is said to be a (almost) stabilizing quantized feedback strategy if kC is (almost) (I, JC)-stabilizing
for every C ∈ R+. The number of quantization intervals and the expected convergence time of the
quantized feedback kC will be denoted by the symbols N(C) and Tm(C) respectively.

Definition: Optimality of a stabilizing quantized feedback strategy. We say that a sta-
bilizing quantized feedback strategy K := {kC : I → I | C ≥ 1} is optimal if for any stabilizing
quantized feedback strategy K′ := {k′C : I → I | C ≥ 1} the following two conditions hold true:

(i) There exists a positive constant K such that

lim sup
C→∞

N ′(C)
N(C)

≤ 1 =⇒ lim inf
C→∞

T ′m(C)
Tm(C)

≥ K.

(ii) There exists a positive constant K such that

lim sup
C→∞

T ′m(C)
Tm(C)

≤ 1 =⇒ lim inf
C→∞

N ′(C)
N(C)

≥ K.

3 Three stabilizing quantized feedback strategies

We will present now three different stabilizing quantized feedback strategies whose performance
will be analyzed in the sequel.

Consider the linear discrete time system (2.1) where |a| > 1. Let I = [−1, 1] and J = [−1/C, 1/C],
with C ≥ 1. We want to stabilize it through a quantized state feedback, i.e. we want to find a
quantized feedback map k such that the closed loop system (2.2) drives (almost) any initial state
x0 ∈ I into a state evolution which, after a transient, enters the interval J . There exists several
solutions to this problem.
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3.1 Deadbeat quantized feedback strategy

The first solution is simply to approximate the 1-step deadbeat controller k(x) := −ax with its
quantized version, i.e., by a uniform quantized function k(x) such k(x) such −ax− 1/C ≤ k(x) ≤
−ax+ 1/C. We can take (see Figure 2)

k(x) := −(2h+ 1)
1
C

for
2
aC
h < x ≤ (h+ 1)

2
aC
. (3.4)

This controller drives any state belonging to I into J in one step. In this case

N(C) = 2
⌈ |a|

2
C

⌉
.

Notice that

Tm(C) =
∞∑
n=1

λI [TJ ≥ n] = λI [TJ ≥ 1] = 1− λI [J ] = 1− 1/C

which converges to 1.
The previous strategy can be extended to a more general class of stabilizing quantized feedback

strategies. Fix τ ∈ N and consider the intervals

Ik := [−C k−τ
τ , C

k−τ
τ ], k = 0, 1, . . . , τ.

Notice that I0 = J and Iτ = I. Consider any quantized feedback map k such that the closed loop
map Γ is such that Γ(Ik+1) ⊆ Ik. This happens if and only if

|Γ(x)| ≤ C k−τ
τ ∀x ∈ Ik+1 \ Ik.

This can be satisfied using a quantized feedback map k with

N(C) = 2
τ∑
k=2

�|a|(C 1
τ − 1)�+ �|a|C 1

τ � = 2(τ − 1)�|a|(C 1
τ − 1)�+ �|a|C 1

τ � � (2τ − 1)�|a|C 1
τ �.

In this way we have constructed an τ -steps deadbeat quantized feedback. In order to compute the
expected convergence time we need the following lemma which can be easile proved.

Lemma 3.1. Let I be an interval and Γ : I → I a piecewise affine map with slope a and N
continuity intervals. Then for any subinterval J of I and for all k ∈ N we have that

λI [Γ−k(J)] ≤
(
N

|a|

)k

λI [J ]

Notice that, using Lemma 3.1, we can argue that

λI [TJ ≤ τ − 1] = λI [Γ−τ+1(J)] ≤
(
N(C)
|a|

)τ−1

C−1 −→ 0

as C →∞, since N(C)τ−1C−1 converges to zero as C →∞. This implies that λI [TJ ≥ τ ] −→ 1 as
C →∞ and so

τ ≥ Tm(C) =
∞∑
n=1

λI [TJ ≥ n] ≥ τλI [TJ ≥ τ ] −→ τ

as C →∞. This shows that
lim
C→∞

Tm(C) = τ.

In figure 1 the graph of closed loop map of a 2-steps deadbeat quantized feedback is presented.
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Figure 1: Graphs of the closed loop map corresponding to a 2-steps deadbeat quantized feedback.

3.2 Logarithmic quantized feedback strategy

Let δ ∈ R such that 0 < δ < 1. If we impose that

|xt+1| ≤ δ|xt|

when xt ∈ I \ J , then we get
|xt| ≤ δt|x0| ≤ δt

which implies that the state sequence converges to the interval [−1/C, 1/C]. Therefore a solution
to the problem can be obtained by finding a feedback map k(x) such that the closed loop map
satisfies

|Γ(x)| ≤ δ|x| if 1/C ≤ |x| ≤ 1,
|Γ(x)| ≤ 1/C if |x| ≤ 1/C,

and so such that
(−a− δ)x ≤ k(x) ≤ (−a+ δ)x if 1/C ≤ |x| ≤ 1,
−ax− 1/C ≤ k(x) ≤ −ax+ 1/C if |x| ≤ 1/C.

This means that the graph of k(x) must be included in the shaded region shown in figure 2. As
shown in [5] in this case the number of quantization intervals is

N(C) = 2
⌈

logC
log(a− δ)− log(a+ δ)

⌉
+ �|a|�, (3.5)

which grows logarithmically in C. For this reason this feedback map is called logarithmic quantized.
Since |xt−1| > 1/C implies |xt| ≤ δt, we can argue that

E(TJ) ≤ logC
log(δ−1)

.

As shown in [5], the case δ = 1 yields almost stability.
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3.3 Chaotic quantized feedback strategy

In [5] another possible quantized state feedback yielding convergence for almost all initial conditions
has been proposed. This control strategy exploits the chaotic behavior of the state evolution inside
I produced by the feedback map

k̃(x) := −(2h+ 1) for
2
a
h < x ≤ (h+ 1)

2
a
, (3.6)

assuming that |a| > 2. In this way we have that for almost every initial condition the state
trajectory xt is mantained inside the interval I and is dense in this interval. For this reason xt will
visit the interval J . Therefore, if we modify this feedback map in J as follows

k(x) =



k̃(x) if x �∈ J
−1/C if 0 ≤ x ≤ 1/C
1/C if −1/C ≤ x < 0.

(3.7)

we obtain that the state will move chaotically inside I till it will enter the interval J and there it
will be entrapped. In this way we obtain a feedback map requiring

N(C) = 2�a�

quantization intervals and yielding this weak version of practical stability. The closed loop map
Γ(x) is shown in figure 2. In this case the evaluation of the expected convergence time will given
in the sequel.

These three stabilization methods suggest that looking for a stabilizing quantized feedback with
minimal quantization intervals is rather naive. In fact the last strategy would be clearly the
optimal one. This is not true since the different strategies requires different information flow, but
they provides closed loop systems with different stability performances.

4 Optimality of the deadbeat quantized feedback

As a first application of the previous definitions we will show now that the τ -step deadbeat quantized
feedback strategy K presented above is optimal. Let K′ be a stabilizing quantized feedback strategy
such that

lim sup
C→∞

N ′(C)
N(C)

≤ 1.

Notice that by Lemma 3.1

λI [T ′J ≤ τ − 1] ≤
(
N ′(C)
|a|

)τ−1

C−1

and so

lim sup
C→∞

λI [T ′J ≤ τ − 1] ≤ lim sup
C→∞

N ′(C)τ−1

N(C)τ−1
lim sup
C→ infty

N(C)τ−1

|a|τ−1C
= 0

since N(C)τ−1/C converges to zero. This implies that

lim inf
C→∞

λI [T ′J ≥ τ ] = 1.
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Figure 2: Graphs of the closed loop maps of the three different quantized feedback strategies
(a = 2).
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Notice moreover that
lim inf
C→∞

T ′m(C) ≥ lim inf
C→∞

τλI [T ′J ≥ τ ] = τ

which implies that

lim inf
C→∞

T ′m(C)
Tm(C)

= 1

and so one of the two optimality conditions are proved. Assume conversely that

lim sup
C→∞

T ′m(C)
Tm(C)

≤ 1.

Notice that T ′m(C) ≥ (τ + 1)λI [T ′J ≥ τ + 1] and so, using Lemma 3.1, we can argue that

1− T
′
m(C)
τ + 1

≤ λI [T ′J ≤ τ ] ≤
N ′(C)τ

|a|τC .

This implies that

lim sup
C→∞

N ′(C)
N(C)

= lim sup
C→∞

N ′(C)
|a|C1/τ

lim sup
C→∞

|a|C1/τ

N(C)
≥

≥ 1
2τ − 1

lim sup
C→∞

(
1− T

′
m(C)
τ + 1

)1/τ

≥ 1
(2τ − 1)(τ + 1)1/τ

which proves the other of the two optimality conditions.

5 Symbolic dynamics for expanding piecewise affine maps

In order to analyze the chaotic and logarithmic schemes, we now introduce the symbolic dynamics
formalism (see [2] for more details), a very powerful technique to study dynamical systems as
piecewise affine maps. In this chapter we explicitely assume that a is such that |a| > 2. Most of the
result we present can actually be extended to the more general situation |a| > 1 but the technical
complication is quite heavy.

Let Γ : I → I be a piecewise affine map of the type introduced above. We can write

I = I1 ∪ I2 ∪ · · · ∪ IN ,

where the Ih’s are disjoint intervals on which Γ is affine with fixed slope a (with |a| > 2). Define
the finite set

I = {I1, I2, . . . , IN} .

With the map Γ we can now associate a shift over the finite alphabet I in the following way.
Define a map ψ : I → IN by

ψ(x)n = ωn if Γn(x) ∈ ωn

ψ(x) is said to be the code sequence of x. If we denote by σ the left shift on IN we have that
ψ ◦ Γ = σ ◦ ψ on I. Moreover, since Γ is locally expanding, it can be shown that ψ is injective.
Hence, in this case, ψ conjugates the action of Γ on I to the action of σ on the set of code sequences
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ψ(I). This set is in general not closed in IN for the usual direct product topology and it is useful
to consider its closure

Σ+(Γ) = ψ(I)

which is called the subshift associated with the pair (Γ, I). All the dynamical and statistical prop-
erties of the map Γ can in principle be read out of the subshift Σ+(Γ); in particular this is true
for the calculation of the mean entrance time for the chaotic quantized feedback. To see this we
need to better exploit the symbolic structure we have introduced. Consider the language Σ∗(Γ)
associated with Σ+(Γ), namely, the set of finite words appearing in the infinite sequences in Σ+(Γ).
This implies that

ω0ω1 · · ·ωn ∈ Σ∗(Γ) if and only if ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn �= ∅.

Consider now the directed graph with set of vertices V = Σ∗(Γ) and set of edges E given by

(ω0ω1 · · ·ωn → ω0ω1 · · ·ωnωn+1) ∈ E if and only if ω0ω1 · · ·ωnωn+1 ∈ Σ∗(Γ). (5.8)

Consider now the following labelling ξ on the edges E :

ξ(ω0ω1 · · ·ωn → ω0ω1 · · ·ωnωn+1) = ωn+1.

If now we consider the labelled sequences associated to the infinite paths on the graph starting
from the empty word ε, we exactly obtain all the sequences in Σ+(Γ). We have thus obtained a
Markov representation of our subshift. This is not a very good representation since the underlying
graph will not have any type of recursive structure, independently of the eventual mixing properties
of Σ+(Γ). To obtain a more significant and useful representation it is sufficient to introduce an
equivalence relation on vertices. To each finite word ω0ω1 · · ·ωn ∈ Σ∗(Γ), we associate its symbolic
future:

futΣ(ω0ω1 · · ·ωn) = {ω ∈ Σ+(Γ) | ω0 = ωn, ω0ω1 · · ·ωnω1ω2 · · · ∈ Σ+(Γ)} .

Consider also the geometric future:

fut(ω0ω1 · · ·ωn) = Γn(ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn) .

It is easy to see that two words have the same symbolic future if and only if they have the same
geometric future. Now define VΓ to be the quotient of the set V = Σ∗(Γ) by the equivalence
relation:

ω′0 · · ·ω′n ≡ ω′′0 · · ·ω′′m ⇔ futΣ(ω′0 · · ·ω′n) = futΣ(ω′0 · · ·ω′m). (5.9)

Vertices representable by words of length 1 will be called principal vertices. Edges and labels can
be naturally redefined on V = Σ∗(Γ) to obtain a new labeled graph XΓ with still the property that
the labeled sequences associated to the infinite paths on the graph XΓ starting from empty word,
correspond to all the possible sequences in Σ+(Γ).
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6 Calculation of expected times

It can be shown that the the stochastic process on I given by {ΓnλI |n ∈ N} induces a natural
Markov chain structure on the above graph XΓ. Using typical techniques for the calculations of first
entrance time of a Markov chain process into a particular target state we can prove the following
result.

Theorem 6.1. Assume that the piecewise affine map Γ is such that the associated graph XΓ is
covering (for any vertex x0 ∈ VΓ there exists n ∈ N such that there are paths of length n in the
graph connecting x0 to any principal vertex), then there exist positive constants r and s such that
for any subinterval J ⊆ I of the type

J = ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn,

where ω0, . . . , ωn ∈ I, we have that
E(T̃J) ≤ rC + s,

where T̃J denotes the first entrance time into J .

It turns out that the the piecewise affine map Γ̃ associated with the quantized feedback k̃ defined
in (3.6) satisfies the properties of the above theorem. We are now ready to give an estimation of
the mean entrance time of the quantized chaotic scheme. We have the following

Corollary 6.1. Let Γ be the piecewise affine maps introduced in (3.7) where J ⊆ I is of the type

J = ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn.

Then,
E(TJ) ≤ rC + s

Proof If we denote, as in the previous theorem, by T̃J the first entrance time into J of the map
Γ̃, we clearly have, by the way Γ is defined, that

E(TJ) = E(T̃J) ≤ rC + s .

Remark We believe that the applications of the Markov chain structure goes much beyond the
results we just presented. Indeed we believe that this formalism should allow to obtain sharper
mean time estimations in particular cases and also to analyze questions of approximation of the
closed loop behavior with finite state Markov chain.

7 Estimation and optimality results

We now want to obtain lower bounds on the mean entrance time for general almost-stable piecewise
affine maps. To do this we need a slight modification of the symbolic formalism.

Let Γ : I → I be a piecewise affine map of the type introduced above and let J ⊆ I be another
invariant interval. We can write

J = J1 ∪ J2 ∪ · · · ∪ JM , I = I1 ∪ I2 ∪ · · · ∪ IN ∪ J,
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where the Ih’s and the Jl’s are intervals on which Γ is affine with fixed slope a (such that |a| > 2).
Define the finite sets

I = {I1, I2, . . . IN}, J = {J1, J2, . . . JM}.
With the map Γ we can now associate the shift Σ+(Γ) over the finite alphabet I ∪ J as done

above. We will be particularly interested in the language Σ∗(Γ) and in the sublanguage Σ∗(Γ, I) =
Σ∗(Γ) ∩ I∗. We denote by ηk,h the number of distinct words in Σ∗(Γ, I), of length equal to k, and
starting with the symbol ω0 = Ih. The following result shows another application of the symbolic
formalism to the problem of the computation of the expected convergence time.

Lemma 7.1. Given any n ∈ N we have that:

λI(TJ ≥ n) ≥
N∑
h=1

[
λI(Ih)−

n−1∑
k=1

λI(J)
|a|k ηk,h

]
(7.10)

Proof Trivial for n = 1. Assume it to hold for n and let us prove it for n+ 1.
Notice first of all that the subintervals

ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−nJl

as ω0, . . . , ωn−1 vary in I and Jl varies in J , form a disjoint family of intervals whose union coincide
with the points of I which end inside J in exactly n steps. Moreover, since Γn is affine on each of
these intervals it follows that

λI(ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−nJl) ≤
λI(J)
|a|n .

Denote now by η̃n+1,h the number of distinct words on Σ∗(Γ), of length equal to n+ 1, of the type

Ihω1 · · ·ωn−1Jl,

where ω1, . . . , ωn−1 ∈ I and Jl ∈ J . We clearly have that

η̃n+1,h ≤ ηn,h ∀n ≥ 0 ∀h = 1, . . . , N .

From all previous considerations it now follows that

λI(TJ = n) ≤
N∑
h=1

λI(J)
|a|n ηn,h.

We can now write

λI(TJ ≥ n+ 1) = λI(TJ ≥ n)− λI(TJ = n)

≥ λI(TJ ≥ n)−
N∑
h=1

λI(J)
|a|n ηn,h

≥
N∑
h=1

[
λI(Ih)−

n−1∑
k=1

λI(J)
|a|k ηk,h −

N∑
h=1

λI(J)
|a|n ηn,h

]

=
N∑
h=1

[
λI(Ih)−

n∑
k=1

λI(J)
|a|k ηk,h

]
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Remark Formula (7.10) established in the previous lemma can lead to lower bounds on the
mean entrance time, once we have upper bounds on the numbers ηk,h. Standard considerations on
piecewise affine maps show that the entropy of the dynamical system Γ is log |a|; for the conjugacy
this must also be the entropy of the subshift Σ+(Γ). For the way entropy is defined for subshifts it
follows that, we must have an inequality of the type

ηk,h ≤ r(|a|+ ε)k

where ε > 0 can be chosen arbitrarily, while r > 0 depends on the particular shift Σ+(Γ) and
also on ε. This estimation turns out to be of very little use in our investigations, since their
exponential growth easily implies, if used in (7.10), that the right hand term becomes too soon
negative. Moreover, the fact that the constant r not only depend on a but, in principle, on the
whole structure of Γ make things unuseful for the type of general bounds we are looking for. The
particular structure of the subshift we have in our case allows however a more refined analysis. A
lengthy and involved computation shows the following lemma.

Lemma 7.2. There exist constants M1 and M2 (only depending on the slope a) such that, for any
h = 1, . . . , N we have

ηk,h ≤M1|a|k
min{k,N}∑

t=1

(
N

t

) (
k − 1
t− 1

) (
N2M2

t2

)t

The two previous lemmas easily lead to the following

Proposition 7.1. For every n ∈ N the following estimation holds

E(TJ) ≥ n(1− C−1)−M1C
−1 (n+ 1)

(
N + n− 1
n− 1

)
max

{[
N2M2

t2

]t
| 1 ≤ t ≤ min{n,N}

}

(7.11)

Dependently on the growth assumed on N as a function of C, we can choose n appropriately
and thus obtain upper bound estimations. Instances of the type of results we can obtain are the
following two corollaries.

Corollary 7.1. There exists positive constants r, s such that

N ≤ r lnC ⇒ E(TJ) ≥ sNC1/N

Proof Direct computations show that

[
N2M2

t2

]t
≤ e

N
√
M2
e ,

(
N + n− 1
n− 1

)
≤M3e

N

(
1 +

n

N

)N

.

12



Using this estimations inside (7.11) we obtain

E(TJ) ≥ n
[

1− C−1 − M1M3

N
C−1e

(
1+

√
M2
e

)
N

(
1 +

n

N

)N
]
−M1M3C

−1e

(
1+

√
M2
e

)
N

(
1 +

n

N

)N

.

It can now easily be shown that, if N/ lnC is sufficiently small, there exists a constant b only
depending on M1, M2 and M3, such that, if we choose

n =
⌊
bNC1/N

⌋
,

then

M1M3C
−1e

(
1+

√
M2
e

)
N

(
1 +

n

N

)N

<
1
2
.

A simple computation then shows the thesis.

Through the same kind of arguments contained in the previous proof it is possible to show the
following result.

Corollary 7.2. For any r > 0, there exists s > 0 such that,

N ≤ r lnC ⇒ E(TJ) ≥ s lnC

7.1 Optimality of the logarithmic quantized feedback

Let K be the logarithmic quantized feedback strategy. Notice first of all that, because of Corollary
7.2 we have that there exist positive constants r1 and r2 such that

r1 lnC ≤ Tm(C) ≤ r2 lnC.

Consider now another stabilizing quantized feedback strategy K′ such that

lim sup
C→∞

N ′(C)
N(C)

≤ 1.

It then follows that N ′(C) ≤ r lnC for a suitable positive constant r and for C sufficiently large. It
then follows from Corollary 7.2 that there exists s > 0 such that T ′m(C) ≥ s lnC and hence we also
have T ′m(C) ≥ s̃Tm(C) for some positive constant s̃ and C sufficiently large. On the other hand,
assume that

lim sup
C→∞

T ′m(C)
Tm(C)

≤ 1.

and, by contradiction, assume that there exists a sequence Cn → +∞ such that

lim
n→+∞

N ′(Cn)
N(Cn)

= 0

which yields

lim
n→+∞

N ′(Cn)
lnCn

= 0.

Using now Corollary 7.1, if n is sufficiently large, we obtain that

T ′(Cn) ≥ sN ′(Cn)C1/N ′(Cn)
n .
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Write
N ′(Cn) = αn lnCn

where αn is infinitesimal. Then, substituting above, we obtain

T ′m(Cn) ≥ s lnCnαne1/αn

and hence
T ′m(Cn)
Tm(Cn)

≥ sαne1/αn

which is absurd.

7.2 Optimality of the chaotic scheme

We end with some considerations on the chaotic case. Corollary 7.1 implies that for any strategy
K′ with a fixed finite number of levels N ′, expected times are bounded by below by

T ′m(C) ≥ sN ′C1/N ′

This is clearly not sufficient to prove the optimality of the chaotic scheme. A more refined analysis
actually allows, in this case, to strengthen the above estimation as

T ′m(C) ≥ sN ′C

This would still not allow to conclude the optimality of the chaotic scheme because the estimation
result in Corollary 6.1 is only for a particular class of target intervals J ’s, but it certainly says that
we can not hope to find a ‘better’ strategy with the same number of quantization levels. These
questions will be discussed elsewhere.
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