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Abstract

The subject of this paper is a general theory for a switched power converter, where the switch is
controlled according to a pulse-width-modulation strategy. The pulse-width-modulated switched
power converter is transformed into an equivalent discrete-time system. With this system the
existence, uniqueness and stability of stationary solutions is investigated. Also stability of devi-
ations from a stationary solution is investigated. Furthermore, feedback control situations are
considered. It is shown that two kinds of modulators, namely the running and fixed modula-
tor, may invoke a very different behaviour of the feedback control system. The phenomenon of
subharmonic oscillations is shown to be a special case of the normal unstable behaviour.

1 Introduction

In this paper a switched power converter (SPC) with one switch is considered. The switch is
controlled with a pulse-width modulator (PWM). The state of the switch is completely determined
by an input s(t). In fact, we have the situation as depicted in Figure 1. The output of the SPC is

SPC
y(t)s(t)u(t)

PWM

Figure 1: Pulse-width-modulated switched power converter.

y(t) and the input of the modulator is u(t).
In this paper we consider, as example, the Buck power converter. Much has been done already

in this field. General theory can be found in [1-2]. Early contributions are [3-4], an elementary
contribution is [5] and recent contributions involving chaos are [6-7]. In this paper we will generalize
all these references.

The organization of the paper is as follows. In section 2 we consider the modeling of a pulse-
width-modulated switched power converter. In section 3 we transform the pulse-width-modulated
power converter to an equivalent discrete-time system and investigate existence, uniqueness and
stability of stationary solutions. In section 4 the equivalent discrete-time system is linearized. Here
stability of deviations from a stationary solution is investigated. In section 5 feedback control
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situations are considered. We will show that the phenomenon of subharmonic oscillations is just a
special case of a normal unstable behaviour. In this section we will also give examples to illustrate
the theory. The paper concludes with the conclusions in section 6 and the references.

2 Switched power converters and pulse-width modulators

We consider the Buck converter which is represented in Figure 2. With this converter it is possible
to transform losslessly the source DC voltage es(t) into another DC voltage eC(t) over the load R.
Define the pulse period T . Introduce L′ = L/T, C ′ = C/T , and for some variable v(t), v̊(τ) = T v̇(t)

0
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−

L

(t)
+

1

(t)se
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Li (t)

Ce

s(t)

Figure 2: Buck converter.

where v̇(t) denotes the usual derivative of v(t) with respect to t and where τ = t/T is the normalized
time with respect to T . Assume in the Buck converter that the coil current is always positive and
that es is constant.

It will appear that power converters with one switch and one output can be described by

x̊(τ) = (A0 + A1s(τ))x(τ) + b0 + b1s(τ),

y(τ) = cx(τ),
(1)

where s(τ) is a switch function which values 0 or 1. The matrices A0, A1 ∈ R
n×n, the vectors

b0, b1 ∈ R
n, and the vector c ∈ R

1×n are constant. Furthermore, we have the state x(τ) ∈ R
n, the

input s(τ) ∈ R and the output y(τ) ∈ R. System (1) is also called a switched linear system (SLS).
The parameters for the Buck converter are as follows.

A0 =




− 1
RC′

1
C′

− 1
L′ 0


 , b0 =




0

0


 ,

A1 =




0 0

0 0


 , b1 =




0

es
L′


 ,

(2)

with x(τ) = (eC(τ) iL(τ))T .
The switch is controlled with a PWM with input u(τ) ∈ R and output s(τ) ∈ R. Essentially

there are two kinds of pulse-width modulators, namely
-Running Modulator. Here u(τ) is compared with the sawtooth

z(τ) = zm · (τ − k), k ≤ τ < k + 1, k = 0, 1, · · · , (3)
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where zm is the maximum value of the sawtooth. The pulse duration dk is determined implicitly
while running through the period by

zm · dk = u(k + dk). (4)

-Fixed Modulator. Here the pulse duration dk is determined explicitly at the fixed normalized
time points k, k = 0, 1, · · ·, by scaling u(k) with a scaling factor fs, so

dk = 1
fs

u(k). (5)

3 Equivalent discrete-time system

Define
xδ

k = x(k + δ), xk = x0
k,

yδ
k = y(k + δ), yk = y0

k,

uδ
k = u(k + δ), uk = u0

k,

Φδ
s = e(A0+A1s)δ,

γδ
s =

∫ δ
0 e(A0+A1s)µ(b0 + b1s)dµ,

(6)

where 0 ≤ δ ≤ 1 and s = 0, 1. Remark that Φ0
s = I and γ0

s = 0. The input s(τ) is pulse-width
modulated, namely

s(τ) =




1, k ≤ τ < k + dk,

0, k + dk ≤ τ < (k + 1).
(7)

The equivalent discrete-time description is based on the transition from xk to xk+1. Added
to this is the determination of xα

k , 0 ≤ α ≤ 1, given a certain xk. Together we have a complete
discrete-time description of the original continuous-time system.

The state xk is transformed in two transitions to xk+1, namely xk
1−→ xdk

k
2−→ xk+1:

xdk
k = Φdk

1 xk + γdk
1 ,

xk+1 = Φ1−dk
0 xdk

k + γ1−dk
0 .

(8)

These expressions are just the solutions of system (1) with the appropiate initial conditions and
value of s(t) using (7). Taking transitions (8) together, we have

xk+1 = Φ1−dk
0 Φdk

1 xk + Φ1−dk
0 γdk

1 + γ1−dk
0 . (9)

Now we have a dynamical description of xk. Suppose we want to know the value xα
k , 0 ≤ α ≤ 1,

then we may distinguish two cases, namely 0 ≤ α ≤ dk and dk ≤ α ≤ 1. Firstly we assume xk

given and 0 ≤ α ≤ dk. The state xk is transferred in one transition to xα
k , namely xk

1−→ xα
k :

xα
k = Φα

1 xk + γα
1 . (10)
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Secondly we assume xk is given and dk ≤ α ≤ 1. The state xk is transferred in two transitions to
xα

k , namely xk
1−→ xdk

k
2−→ xα

k :
xdk

k = Φdk
1 xk + γdk

1 ,

xα
k = Φα−dk

0 xdk
k + γα−dk

0 .

(11)

Taking the transitions (11) together we have

xα
k = Φα−dk

0 Φdk
1 xk + Φα−dk

0 γdk
1 + γα−dk

0 . (12)

Summarizing (9), (10) and (12) we have

xk+1 = F (dk)xk + g(dk),

xα
k = Pα(dk)xk + qα(dk),

yα
k = cxα

k ,

(13)

where k = 0, 1, · · ·, and
F (dk) = Φ1−dk

0 Φdk
1 ,

g(dk) = Φ1−dk
0 γdk

1 + γ1−dk
0 ,

(14)

and for 0 ≤ α ≤ dk

Pα(dk) = Φα
1 ,

qα(dk) = γα
1 ,

(15)

and for dk ≤ α ≤ 1
Pα(dk) = Φα−dk

0 Φdk
1 ,

qα(dk) = Φα−dk
0 γdk

1 + γα−dk
0 .

(16)

Now the original pulse-width-modulated SPC (1) has been transformed into an equivalent
discrete-time SPC (EDSPC) given by (13). In fact, we have the situation as depicted in Fig-
ure 3. Compare Figure 3 with Figure 1. Note that s(t) is replaced by dk. Indeed, we may identify

SPC
yk

a
kduk

a

EDPWM

Figure 3: Equivalent discrete-time system.

the functional {s(t), 0 ≤ t ≤ (k + 1)T} with the sequence {d0, · · · , dk} in the sense that they
contain the same information. Remark that the deduction of the EDSPC holds for any SLS, not
only power converters.

With the EDSPC (13) we have an equivalent discrete-time description of the SPC (1), in the
sense that for a certain k and α, x(t) = xα

k = x(kT + αT ). Choosing k = 0, 1, · · ·, and 0 ≤ α ≤ 1,
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we are able to calculate x(t) for any t ≥ 0, using the EDSPC (13) and the sequence d0, d1, · · · , dk.
That also means that any property related to input/state/output of the continuous-time SPC (1)
is equivalent to the corresponding property of the EDSPC (13). The SPC (1) is a continuous-time
system with a discontinuous input, so difficult to handle. The EDSPC (13) is a completely discrete-
time system, hence much easier to handle. Summarizing we may investigate global properties of
(1) via (13).

We introduce the following definition.

Definition 1 For dk = d, a solution of the EDSPC (13) is called stationary if xα
k is constant for

each α, i.e. x(t) is periodic with period T. This solution is denoted by (d, xα).

Assume a stationary solution (d, xα), then from (13) we have

x = F (d)x + g(d),

xα = Pα(d)x + qα(d),

yα = cxα,

(17)

which yields the stationary solution xα given d, i.e.

x = (I − F (d))−1g(d),

xα = Pα(d)x + qα(d),

yα = cxα.

(18)

It is convenient to introduce the following definition.

Definition 2 A real square matrix X is called continuous-time stable (CT-stable) if the eigenvalues
of X are in the complex open left half plane, and discrete-time stable (DT-stable) if the eigenvalues
of X are in the complex open unit disc.

Then we have the following theorem.

Theorem 1 Assume that d is given, 0 ≤ d ≤ 1, and F (d) is DT-stable. Then there exists a unique
stationary solution (d, xα) of the EDSPC (13), given by (18) for each α ∈ [0, 1], and this stationary
solution is asymptotically stable.

Proof If F (d) is DT-stable then the inverse in (18) exists and is unique. So there exists a unique
stationary solution (d, xα). Furthermore, the EDSPC (13) is affine in xk. Hence, if dk = d and
F (d) is DT-stable, then the stationary solution (d, xα) of the EDSPC (13) is asymptotically stable.

For the Buck converter theorem 1 holds.

4 Linearized system

Consider the EDSPC given by (13), where F (dk), g(dk), Pα(dk) and qα(dk) are given by (14-16).
Also we will need the formula

(A0 + sA1)γδ
s = (Φδ

s − I)(b0 + sb1), s = 0, 1, (19)
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which is well known from system theory.
Now assume the stationary solution (d, xα), 0 ≤ α ≤ 1. As we will see, as far as linearization

is concerned, we need only xα
k or xα for 0 ≤ α ≤ d. Define the deviations

∆xα
k = xα

k − xα,

∆dk = dk − d,

∆yα
k = yα

k − yα.

(20)

Linearizing (13) around (d, xα) yields

∆xk+1 = F (d)∆xk +
(

∂F (dk)
∂dk

∣∣∣
d
x + ∂g(dk)

∂dk

∣∣∣
d

)
∆dk,

∆xα
k = Pα(d)∆xk +

(
∂P α(dk)

∂dk

∣∣∣
d
x + ∂qα(dk)

∂dk

∣∣∣
d

)
∆dk,

∆yα
k = c∆xα

k .

(21)

From (14), and using (6), we may calculate

∂F (dk)
∂dk

∣∣∣
d

= Φ1−d
0 A1Φd

1,

∂g(dk)
∂dk

∣∣∣
d

= Φ1−d
0 (A1γ

d
1 + b1).

(22)

Furthermore Pα(dk) and qα(dk), 0 ≤ α ≤ d, are independent of dk, thus the partial derivatives
with respect to dk are zero.

Summarizing we have for 0 ≤ α ≤ d,

∆xk+1 = F (d)∆xk + h(d)∆dk,

∆xα
k = Pα(d)∆xk,

∆yα
k = c∆xα

k ,

(23)

where, using (19),
F (d) = Φ1−d

0 Φd
1,

h(d) = Φ1−d
0 (A1x

d + b1),

Pα(d) = Φα
1 .

(24)

System (23) is linear, time-independent and discrete-time, and constitutes the linearized EDSPC
(LEDSPC).

The stationary solution (d, xα), 0 ≤ α ≤ 1, of the EDSPC corresponds to a constant realitive
pulse width d and a periodic x(τ), 0 ≤ τ ≤ 1, of the time-normalized SPC as in (1). Assume that
the relative pulse width results from a periodic u(τ), corresponding to a constant uα in the EDSPC.
Define the deviation

∆uα
k = uα

k − uα. (25)
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Again we consider separately the running and the fixed modulator.
-Running Modulator. Repeating (4) we have zmdk = udk

k . Now observe that

zm∆dk = zm(dk − d) = udk
k − ud. (26)

The latter can be written as udk
k − udk + udk − ud. The terms udk

k − udk and udk − ud can be
approximated linearly by ud

k − ud and ůd(dk − d), respectively. See also Figure 4. This yields

k k+d k+d

u

z(t)

k
a

ua

Duk
d ud

k

Ddk

Duk
dk

0

du

kd
ku

d
ku

Ddk

<0

t

Figure 4: Linearization of the running modulator

approximately
zm∆dk = ud

k − ůd∆dk. (27)

Hence linearizing around (ud, d) gives

∆dk = 1
zm−ůd ∆ud

k = Gm∆ud
k. (28)

-Fixed Modulator. Repeating (5) we have fsdk = u0
k or dk = u0

k/fs. Hence linearizing around
(u0, d) gives

dk = 1
fs

∆uk = Gm∆uk. (29)

Assume that Gm ≥ 0. Equations (28) and(29) give the linearized PWM (LPWM). The LEDSPC
(23) represents the dynamic behaviour for small deviations with respect to the stationary solution
(d, xα), α ∈ [0, 1], of the EDSPC (13), and equivalently the SPC (1). Summarizing, we may
investigate local properties of (1) via (23). We may state the following theorem.

Theorem 2 The stationary solution (d, xα) of the EDSPC (13), and equivalently the SPC (1), is
asymptotically stable if and only if the LEDSPC (23) around (d, xα) is asymptotically stable.

Proof The system matrices of the EDSPC (13) and the LEDSPC (23) are both F (d). Then with
theorem 1 the result follows.

5 Feedback control

Our starting point is the LEDSPC (23). In Figure 5 the feedback control scheme is represented.
The controller should be such that the deviations are as small as possible. The controller may be
static or dynamic, and can be chosen by the designer. The pulse-width modulator is, for deviations,
static with gain Gm, which value depends on the modulation method (28,29). Much can be said
about the controller, however in this paper we are only interested in intrinsic properties of the
pulse-width-modulated SPC’s, without or with feedback. Those properties can be studied properly
by taken the controller to be static with gain −Gc, Gc ≥ 0. Define the gain G by

G = GmGc. (30)
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Figure 5: Feedback control scheme.

From (23) we have
∆xk+1 = F (d)∆xk + h(d)∆dk,

∆yα
k = c∆xα

k = cΦα
1 ∆xk = cα∆xk, cα = cΦα

1 ,
(31)

which is denoted by the triple (F (d), h(d), cα). From Figure 5 we see

∆dk = −GmGc∆yα
k = −Gcα∆xk. (32)

Inserting ∆dk in (31) gives
∆xk+1 = (F (d) − h(d)Gcα)∆xk. (33)

Here we may distinguish two cases with respect to the modulator, namely
-Running Modulator. The controller information is ∆yd

k, so α = d, and cα = cd = cΦd
1.

-Fixed Modulator. The controller information is ∆yk, so α = 0, and cα = c0 = cΦ0
1 = c.

Now we may draw the root locus of (33), i.e. the eigenvalues of the system matrix in the
complex plane, for G : 0 −→ ∞. Assume that F (d) is DT-stable, thus the root locus starts within
the unit circle. Suppose that the ×’s in Figure 6 indicate the place where the root locus leaves
the unit circle for the associated G∗. For G = G∗(1 + ε), where 0 < ε << 1, the linearized system

x

Im

Re
0 1

fx

Figure 6: Crossing root locus with unit circle.

will become unstable and, according to theorem 2, also the stationary solution (d, xα) of the real
converter. The instability of the linearized system is unbounded, whereas the instability within
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the real converter remains bounded. This phenomenon occurs more often in practice and is then
due to the nonlinearities present in the system. Here it turns out that the instability contains an
extra oscillation and that the boundedness of the instability is such that the dk remains in the
interval (0, 1), i.e. does not become saturated. The period Ti of the additional oscillation can be
determined from the angle φ at which the root locus crosses the unit circle using

e
j2π T

Ti = ejφ. (34)

Hence
η = T

Ti
= φ

2π . (35)

Thus the continuous-time periodic behaviour is the superposition of two periodic signals with
respectively the periods T and Ti. From (34) we have

φ : 0 −→ π ⇒ η : 0 −→ 1
2 . (36)

For φ = π we have exactly the first subharmonic oscillation with period 2T . This shows that,
in spite of the literature in the past [3-4] and recently [6-7], the phenomenon of subharmonic
oscillations is just a special case of a normal unstable behaviour.

Now we assume zm = 1, fs = 1, es = 1, d = 0.5, R = 2, and y = eC . In a stationary situation
the variables eC and iL have so-called relative ripples

ρeC
= êC−ěC

ēC
,

ρiL = îL−ǐL
īL

,

(37)

where x̂, x̌ and x̄ denotes respectively the maximum, minimum and average of x. From these
relative ripples, and R, the components L′ and C ′ may be determined, approximately, with

L′ = (1−d)R
ρiL

,

C ′ = 1−d
8L′ρeC

.

(38)

which can easily be derived from [5]. Assume the relative ripples ρeC
= 0.01 and ρiL = 0.1. That

leads to the L′ and C ′ given in Table 1.

Table 1: L′ and C ′ for the Buck converter.

Converter L′ C ′

Buck 10 0.625

Now we may determine for the Buck converter the root locus as function of G. For example
the root loci for the Buck converter with running and fixed modulation are depicted in Figure 7-8.
The G∗ where the root locus leaves the unit circle can be determined computationally, also Gm

from (28) or (29), and finally the associated G∗
c from (30). In Table 2 these values are given. Here

RM denotes running modulator and FM fixed modulator. The following remarks can be made:
1. For the running modulator G∗ �= G∗

c which is immediate from (28), since Gm �= 1.
2. For the fixed modulator G∗ = G∗

c which is immediate from (29), since fs = 1.
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Figure 7: Root locus for the Buck converter and running modulator
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Figure 8: Root locus for the Buck converter and fixed modulator

Table 2: G∗ and G∗
c for the Buck converter.

RM RM FM
Converter G∗ G∗

c G∗ = G∗
c

Buck 26 53.6 12.6

Table 3: η for the Buck converter.

Converter RM FM
Buck 0.5 0.2

From the root loci of the Buck converter we may also determine, via (35), the value η. The values
are given in Table 3 for running and fixed modulation.

Now we may simulate the real Buck converter using the equation

u(τ) = uα − Gc(y(τ) − yα), (39)

where α = 0 for fixed modulation and α = d for running modulation. The stationary solution
of eC of the simulated real Buck converter is depicted in Figure 9, where Gc is choosen to be
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G∗
c(1−ε), 0 < ε << 1. The relative ripple is 0.01 as assumed. Choosing Gc = G∗

c(1+ε), 0 < ε << 1,

0 2 4 6 8 10
0.497

0.498

0.499

0.5

0.501

0.502

0.503

0.504

e C

t

Figure 9: Stationary solution of the real Buck converter with running or fixed modulation.

we get unstable periodic solutions which are depicted in Figure 10-11. The effects predicted by

0 2 4 6 8 10
0.496

0.498

0.5

0.502

0.504

0.506

e C

t

Figure 10: Unstable periodic solution of the real Buck converter with running modulation.

0 2 4 6 8 10
0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

e C

t

Figure 11: Unstable periodic solution of the real Buck converter with fixed modulation.

the theory can be observed clearly. Especially, note the superposition of two periodic signals with
respectively the periods T, 2T, and T, 5T, which is in agreement with Table 3.
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6 Conclusions

In this paper we have developed a general discrete-time theory of pulse-width-modulated switched
power converters. We have investigated the existence, uniqueness and stability of stationary solu-
tions. Also deviations from a stationary solution have been investigated. It has been shown that
the so-called running and fixed PWM may introduce a very different behaviour of the feedback
control system. Subharmonic oscillations are shown to be a special case of the normal unstable
behaviour. The theory has been illustrated with the Buck converter.
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