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Abstract

Consider the continuous-time algebraic Riccati equation (CARE) and the discrete-time al-
gebraic Riccati equation (DARE) which arise in linear control and system theory. Appropriate
assumptions on the coefficient matrices guarantee the existence and uniqueness of symmetric
positive semidefinite stabilizing solutions. In this paper, we apply the theory of condition de-
veloped by Rice to define condition numbers of the CARE and DARE in the Frobenius norm,
and derive explicit expressions of the condition numbers in a uniform manner.

1 Introduction

Consider the continuous-time algebraic Riccati equation (CARE)

Q + AT X + XA−XBR−1BT X = 0, (1.1)

and the discrete-time algebraic Riccati equation (DARE)

X −AT XA + AT XB(R + BT XB)−1BT XA− CT C = 0. (1.2)

Appropriate assumptions on the coefficient matrices guarantee the existence and uniqueness of
symmetric positive semidefinite (p.s.d.) stabilizing solutions. The equations (1.1) and (1.2) arise
naturally in linear control and system theory, and there are many contributions in the literature
on the theory, applications, and numerical solution of the equations.

Condition numbers of the CARE and DARE, as measures of the sensitivity of the symmetric
p.s.d. stabilizing solutions to small changes in the coefficient matrices, play a key role in the per-
turbation theory for the CARE and DARE.

Condition numbers of the CARE and DARE have been studied by many authors (See, e.g., [1]-
[4], [6]). However, there was no a uniform treatment with reasonable definitions and with complete
and rigorous proofs in the literature. In this paper, we apply the theory of condition developed by
Rice [5] to define condition numbers of the CARE and DARE, and derive explicit expressions of
the condition numbers in a uniform manner.

In the following we take example by the CARE.
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The coefficient matrices of the CARE (1.1) are A ∈ Rn×n, B ∈ Rn×m, Q ∈ Sn×n (the set of
n × n real symmetric matrices), and R ∈ Sm×m, in which Q ≥ 0 and R > 0. Let G = BR−1BT .
Then the CARE (1.1) can be written in the simplified form

Q + AT X + XA−XGX = 0, (1.3)

where Q,G ≥ 0.

We assume that (A,G) is a stabilizable pair, and (A,Q) is a detectable pair. It is known that in
such a case there exists a unique symmetric p.s.d. solution X to the CARE (1.3), and the matrix
A−GX is stable.

2 Definition

Consider the CARE (1.3), where Q,G ≥ 0, (A,G) is stabilizable, and (A,Q) is detectable. Let
X be the unique symmetric p.s.d. stabilizing solution to the CARE (1.3), and let Q,A and G be
slightly perturbed to Q̃, Ã and G̃, respectively, where

Q̃ = Q + ∆Q ∈ Sn×n, Q̃ ≥ 0, Ã = A + ∆A ∈ Rn×n,

G̃ = G + ∆G ∈ Sn×n, G̃ ≥ 0.

Assume that the CARE (1.3) is perturbed to the CARE

Q̃ + ÃT X̃ + X̃Ã− X̃G̃X̃ = 0. (2.1)

It has been proved by Sun [6, Theorem 3.1] that if Q̃, G̃ ≥ 0, and if ‖(∆Q,∆A,∆G)‖F is sufficiently
small, then there is a unique symmetric p.s.d. stabilizing solution X̃ to the perturbed CARE (2.1),
and

∆X ≡ X̃ −X = L−1ω(∆Q,∆A,∆G) + O(‖(∆Q,∆A,∆G)‖2F ) (2.2)

as (∆Q,∆A,∆G) → 0, where

ω(∆Q,∆A,∆G) = ∆Q + (X∆A + ∆AT X)−X∆GX,

and the operator L is defined by

LW = (A−GX)T W + W (A−GX), W ∈ Sn×n.

Consequently, by the theory of condition developed by Rice [5] we may define the condition number
c(X) by

c(X) = lim
δ→0

sup∥∥∥(∆Q
κ , ∆A

α , ∆G
γ

)∥∥∥
F
≤ δ

∆Q,∆G ∈ Sn×n, ∆A ∈ Rn×n

Q + ∆Q ≥ 0, G + ∆G ≥ 0

‖∆X‖F

ξδ
, (2.3)

where ξ, κ, α, γ are positive parameters. Taking ξ = κ = α = γ = 1 gives the absolute condition
number cabs(X), and taking ξ = ‖X‖F , κ = ‖Q‖F , α = ‖A‖F and γ = ‖G‖F gives the relative
condition number crel(X).

The difficulty for deriving an explicit expression of c(X) lies in the fact that there are the
constraints

∆Q,∆G ∈ Sn×n and Q + ∆Q ≥ 0, G + ∆G ≥ 0.

The constraints were missing by the papers on condition numbers of the CARE and DARE in the
literature.
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3 Explicit Expression

Substituting the expansion (2.2) into the definition (2.3) gives

c(X) = max(
∆Q
κ , ∆A

α , ∆G
γ

)
6= 0

∆Q,∆G ∈ Sn×n, ∆A ∈ Rn×n

Q + ∆Q ≥ 0, G + ∆G ≥ 0

∥∥L−1ω(∆Q,∆A, ∆G)
∥∥

F

ξ
∥∥∥(∆Q

κ , ∆A
α , ∆G

γ

)∥∥∥
F

.

The key step for deriving an explicit expression of c(X) is to prove the expression

c(X) = max(
∆Q
κ , ∆A

α , ∆G
γ

)
6= 0

∆Q,∆A,∆G ∈ Rn×n

∥∥T−1ω(∆Q,∆A,∆G)
∥∥

F

ξ
∥∥∥(∆Q

κ , ∆A
α , ∆G

γ

)∥∥∥
F

,

or equivalently,

c(X) = max
(N,E, R) 6= 0

N,E, R ∈ Rn×n

∥∥∥T−1
[
κN + α(XE + ET X)− γXRX

]∥∥∥
F

ξ‖(N,E, R)‖F
, (3.1)

where the operator T is defined by

TZ = (A−GX)T Z + Z(A−GX), Z ∈ Rn×n.

From (3.1) we get an explicit expression of c(X).

Theorem 1 [7]. Let

T = In ⊗ (A−GX)T + (A−GX)T ⊗ In,

and let
Z1 = T−1, Z2 = T−1 [I ⊗X + (X ⊗ I)Π] , Z3 = T−1(X ⊗X),

where Π is the vec-permutation matrix; i.e.,

vec(NT ) = Πvec(N), N ∈ Rn×n.

Then
c(X) =

1
ξ
‖(κZ1, αZ2, γZ3)) ‖2. (3.2)

From (3.2) we get the absolute condition number

cabs(X) = ‖(Z1, Z2, Z3)‖2,

and the relative condition number

crel(X) =
1

‖X‖F
‖(‖Q‖F Z1, ‖A‖F Z2, ‖G‖F Z3)‖2 .

Byers [1] suggests an approximate condition number KB(X) which is expressed by

KB(X) =
1

‖X‖F
(‖Q‖F ‖Z1‖2 + ‖A‖F ‖Z2‖2 + ‖G‖F ‖Z3‖2) .

Comparing it with crel(X) gives

crel(X) ≤ KB(X) ≤ 3crel(X).
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4 The Complex Case

Consider the CARE
Q + AHX + XA−XGX = 0, (4.1)

where A ∈ Cn×n, Q,G ∈ Hn×n (the set of n × n Hermitian matrices), Q,G ≥ 0, (A,G) is stabiliz-
able, and (A,Q) is detectable. It is known that in such a case there is a unique Hermitian p.s.d.
stabilizing solution X to the CARE (4.1).

In the manner similar to the definition (2.3) we may define the condition number c(X) by

c(X) = lim
δ→0

sup∥∥∥(∆Q
κ , ∆A

α , ∆G
γ

)∥∥∥
F
≤ δ

∆Q,∆G ∈ Hn×n, ∆A ∈ Cn×n

Q + ∆Q ≥ 0, G + ∆G ≥ 0

‖∆X‖F

ξδ
.

The following result gives an explicit expression of c(X).

Theorem [7]. Let
T = In ⊗ (A−GX)H + (A−GX)T ⊗ In,
T−1 = S + iΣ, T−1(I ⊗X) = U1 + iΩ1,
T−1(XT ⊗ I)Π = U2 + iΩ2,
T−1(X ⊗X) = V + iΘ, i =

√
−1,

and let

Z
(c)
1 =

(
S −Σ
Σ S

)
, Z

(c)
2 =

(
U1 + U2 Ω2 − Ω1

Ω1 + Ω2 U1 − U2

)
,

Z
(c)
3 =

(
V −Θ
Θ V

)
,

where S, Σ, U1,Ω1, U2,Ω2, V, Θ ∈ Rn2×n2
. Then

c(X) =
1
ξ

∥∥∥(κZ
(c)
1 , αZ

(c)
2 , γZ

(c)
3

)∥∥∥
2
.

5 An Numerical Example

Example 1 (Byers [1]). Consider the CARE (1.3) with

Q = CT C with C = (10, 100), A =

(
−0.100 0.000

0.000 −0.020

)
,

G = BR−1BT with B =

(
0.100 0.000
0.001 0.010

)
and R =

(
1 + 10−m 1

1 1

)
.

The pair (A,G) is stabilizable, and the pair (A,Q) is detectable.
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By using the MATLAB file “are” one can compute an approximation of the unique symmetric
p.s.d. stabilizing solution X to the CARE (1.3) with a high accuracy, and then compute the con-
dition number c(X) by the formula (3.2). Some results are listed in Table 1.

Table 1 (j = 12)

m cabs(X) crel(X)
0 4.88× 107 4.98× 10
1 4.91× 107 5.03× 102

2 5.10× 107 5.27× 103

3 5.54× 107 5.85× 104

4 5.91× 107 6.34× 105

5 6.08× 107 6.57× 106

From the results listed in Table 1 we see that the CARE of this example is ill-conditioned in
the absolute sense, and it is ill-conditioned for large m in the relative sense.

6 Final Remarks

The technique we presented here has been used to study condition numbers for the DARE and the
periodic DARE. Both the real case and complex case are considered.

The problem of how to develop practical algorithms for computing condition numbers by using
the explicit expressions with large n is a research problem.
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