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Abstract

In this paper we present numerical methods for the analysis of nonlinear au-

tonomous control systems and two conditions, local accessibility and an inner-pair

condition, under which they can be applied. These methods can be extended to work

also for systems with time-periodic right hand side. In particular, the escape equation

with sinusoidal driving term and additional control is analyzed. We will show that

its stability behavior undergoes interesting bifurcations when the range of the control

influence is varied.

1 Introduction

In this paper we consider a family of nonlinear control systems

ẋ(t) = f(x(t), u(t)) (1.1)

on a connected smooth manifold M with dimension d where f : M×R
m → TM is smooth and

the controls u are taken from the set U ρ := {u ∈ L∞(R, Rm), u(t) ∈ ρ·U for almost all t ∈ R}

for a non-void, convex, and compact subset U of R
m with 0 ∈ intU and a parameter

ρ ∈ [0, ρ∗]. Relevance of the parameter dependence will be indicated by a superfix ρ. We

assume for every initial value x ∈ M and every u ∈ U ρ∗ that there exists a unique solution

φ(t; x, u), t ∈ R, with φ(0; x, u) = x. Furthermore, by restricting ourselves to a compact

invariant subset of the state space we can focus on compact M only. Throughout we assume

the system to be locally accessible for all ρ > 0, i.e. for all x ∈ M and all T > 0 one has

intOρ,+
≤T (x) 6= ∅, and intOρ,−

≤T (x) 6= ∅, where Oρ,+
≤T (x) = {y ∈ M, y = φ(t; x, u) with 0 ≤ t ≤

T and u ∈ Uρ} and Oρ,−

≤T (x) = {y ∈ M, x = φ(t; y, u) with 0 ≤ t ≤ T and u ∈ U ρ} are the

positive and negative reachable sets from x.

The limit behavior of this system is determined by its control sets, i.e. maximal subsets

of M where complete approximate controllability holds, and its chain control sets (see [1]).

Under an inner-pair condition the chain control sets and the control sets generically coincide.

We will see in section 2 that this inner-pair condition holds for n-th order equations with

additive control and therefore under change of the parameter ρ the control sets will change

continuously for all but countably many ρ ∈ [0, ρ∗]. If the right hand side of the control system

has a t-periodic driving term as only explicit time dependence, the time can be interpreted

as a further space dimension and control sets and chain control sets can be studied for the

corresponding system without direct time dependence. We show that if in this case control
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sets merge under variation of the parameter ρ, then they merge over the whole time-period

at once.

Only in very simple cases can control sets be found analytically. Thus numerical methods

are an important tool for the analysis of control systems. In section 3 we briefly present

a method for the computation of control sets that was developed by Szolnoki (see [7]) and

is based on an algorithm for the computation of relative global attractors and unstable

manifolds of dynamical systems by Dellnitz, Hohmann and Junge (see [3] and [4]).

In section 4 finally we will clarify our findings by numerical results for the controlled escape

equation.

2 Control sets and chain control sets

Control sets are maximal subsets of the state space where complete approximate controlla-

bility holds. A control set C is called invariant if clC = cl{φ(t; x, u), u ∈ U , t ≥ 0}. If we

allow the solutions to make small jumps, we are led to the notion of chain-controllability:

For ε, T > 0, and x, y ∈ M a controlled (ε, T )-chain from x to y is given by n ∈ N,

x0, x1, . . . , xn ∈ M, u0, . . . , un−1 ∈ U , t0, . . . tn−1 ≥ T with x0 = x, xn = y, and

d(φ(tj; xj, uj), xj+1) ≤ ε for all j = 0, . . . , n − 1.

A chain control set E ⊂ M is a maximal subset such that (i) for all x, y ∈ E and all ε, T > 0

there is a controlled (ε, T )-chain from x to y, and (ii) for all x ∈ E there is u ∈ U such that

φ(t; x, u) ∈ E for all t ∈ R. Every control set is contained in a chain control set.

The following inner-pair condition guarantees much closer a relationship between control

sets and chain control sets (cf. [1]):

Definition 2.1. If for all ρ1, ρ2 ∈ [0, ρ∗], ρ1 < ρ2, and for all x ∈ M, u ∈ U ρ1 , there is T > 0

such that φ(T ; x, u) ∈ intO+,ρ2(x), then the family of control systems (1.1) is said to fulfill

the inner-pair condition.

Theorem 2.1. Let Eρ1 ⊂ M be a chain control set of (1.1)ρ1, and for each ρ ∈ [ρ1, ρ
∗] let

Eρ ⊂ M be the unique chain control set of (1.1)ρ with Eρ1 ⊂ Eρ. Moreover let the family

(1.1) be locally accessible and fulfill the inner-pair condition.

Then for each ρ there is precisely one control set Dρ with Eρ1 ⊂ intDρ, and for all but

countably many values of ρ the following holds:

(i) clDρ = Eρ.

(ii) The mapping ρ 7→ clDρ is continuous with respect to the Hausdorff metric.

At the discontinuities control sets merge and possibly change their stability behavior.

The inner-pair condition can be extended to time dependent systems in the obvious way

and the following holds.

Proposition 2.1. Consider the family of n-th order systems

y(n)(t) + f(t, y, y(1), . . . , y(n−1)) = b(t, y, . . . , y(n−1)) u(t) (2.2)

2



where f, b : R
n+1 → R are continuous mappings and u ∈ U ρ. If there is α > 0 such that

|b(t, y0, y1, . . . , yn−1)| ≥ α holds for all (t, y0, y1, . . . , yn−1) ∈ R
n+1, then (2.2) fulfills the

inner-pair condition.

If the right hand side in (1.1) is generalized to be explicitly periodically time dependent, the

control setting can still be used. Let f : R×M×R
m → TM be smooth and a system be given

by ẋ(t) = f(t, x(t), u(t)). If f is T -periodic in the first coordinate: f(t, x, u) = f(t + T, x, u),

we can consider the associated time-independent system

(

ẋ

ż

)

=

(

f(z, x, u)

T/2π

)

(2.3)

where we identify z = 0 and z = 2π. If control sets for such a system have contact for one

z ∈ R/2πZ, they have contact for the whole interval.

Proposition 2.2. If D1 and D2 are control sets for the control system (2.3) and if there is

(z0, x0) ∈ R/2πZ × M such that (z0, x0) ∈ clD1 ∩ clD2, then for every z ∈ R/2πZ there is

x ∈ M such that (z, x) ∈ clD1 ∩ clD2.

Proof. For proofs of Propositions 2.1 and 2.2 see [5].

3 Numerical approximation of control sets

Control sets can not be approximated directly but the computation of chain control sets

is almost as good according to Theorem 2.1. Szolnoki developed three algorithms whose

combination is a powerful tool for locating chain control sets (see [7] and [8]). They have in

common that a compact subset Q of the state space is chosen and successively divided in

finer and finer partitions. A selection criterion in each step defines a decreasing sequence of

subsets of Q.

A graph algorithm finds strongly connected components of a directed graph associated

to the discretized dynamics. In principle these strongly connected components converge to

the chain control sets if the partition gets finer but memory and time consumption do not

allow for fine partitioning in higher dimensions. The subdivision algorithm approximates

viability kernels V (Q) relative to the start set Q. If Q contains precisely one chain control

set E, then E = V (Q). If Q possibly contains more than one chain control set, then in some

cases a continuation algorithm can be used to create a covering of precisely one chain control

set, which allows the subdivision algorithm to be used. A combination of these methods

together with smart selection of the set Q often produces good results. But for systems that

are sensitive to small changes in their initial conditions or for high dimensions resources are

limited.

In the special case of time-periodic systems (2.3) one can spare one dimension by investi-

gating Poincaré-cuts and using Proposition 2.2 to draw conclusions for the full dimensional

system.
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4 The controlled escape equation

As an example we consider the controlled escape equation

ẍ(t) + γẋ(t) + x(t) − x(t)2 = F sin(ωt) + u(t)

γ, ω, F > 0, t ∈ R.

This equation has been intensively studied for instance by Soliman and Thompson (see [6]).

Interpreting the controls u as bounded noise terms it models the rocking movement of a ship

on sea under the influence of periodic waves and some additional disturbance. According to

Proposition 2.1 the inner-pair condition is satisfied. Transferring it into the form of system

(1.1) leads to




ẋ(t)

ẏ(t)

ż(t)



 =





y(t)

−γ y(t) − x(t) − x(t)2

ω



 +





0

F sin(z(t)) + u(t)

0



 ,

where M = R × R × R/2πZ, u(t) ∈ U ρ := [−ρ, ρ], 0 ≤ ρ ≤ ρ∗. We choose the parameter

values ω = 0.85, γ = 0.1, F = 0.06. The system proves too complicated for a direct three

dimensional investigation. Therefore we look at four Poincaré-cuts, at z = 0, z = 0.25 ∗ 2π,
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Figure 1. For ρ = 0 the picture shows two unstable

(blue) and two stable (red) fixed points. The unsta-

ble manifold of FP4 is depicted in green, its stable

one in light brown. The unstable manifold of FP2

has the yellow color, its stable one is dark brown.

z = 0.5 ∗ 2π, and z = 0.75 ∗ 2π and

investigate the discrete dynamics in-

duced by the time-2π-map. For the

uncontrolled case ρ = 0 we find four

fixed points. At z0 = 0 FP1 is lo-

cated close to (0; 0.25) and is stable,

FP2 is near (−0.2; 0.4) and unstable,

stable FP3 is close to (−0.3;−0.4)

and unstable FP4 finally is close

to (1; 0). Choosing small neighbor-

hoods of these fixed points and using

the continuation algorithm we also

find the unstable and stable man-

ifolds of the unstable fixed points

(see Figure 1). Now if we go to

ρ = 0.005, according to Theorem

2.1 around these fixed points develop

invariant control sets D1ρ and D3ρ

and variant control sets D2ρ and

D4ρ for which we draw the domains

of attractions as well. Finding a pa-

rameter value ρ for which there are

three control sets is difficult. Only

for z = π/2 the graph algorithm is
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able to resolve that at ρ = 0.0085 the control sets D1ρ and D2ρ have merged whereas D3ρ

is still separated from them. But then Proposition 2.2 states that D30.0085 must be separate

for all z and therefore we can cut out D10.005 and apply subdivision to the rest which gives

the displayed pictures. At ρ = 0.01 the three control sets around the origin have merged

to one invariant control set. At ρ = 0.013 the whole inner area has become transient since

now the exit via the D4 control set is possible. Let A(D4ρ) denote the domain of attraction

of D4ρ and A(D2ρ) denote the domain of attraction of the variant control set that includes

D20.005 (see Figure 2).

We get the full 3D-pictures of the control sets by inserting the results at the selected

four Poincaré-cuts, computing connecting orbits and applying subdivision afterwards (see

Figure 3).
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Figure 2. For ρ = 0.005 control sets (red = invariant, blue = variant)

have developed around the fixed points. At ρ = 0.0085 invariant D1ρ

has merged with variant D2ρ forming D120.0085 and lost its invariance.

For ρ = 0.01 the sets D120.0085 and D30.0085 have merged and form one

invariant control set in the middle. At ρ = 0.013 this control set in the

middle has merged with the variant control set near (0, 1) and formed

one variant control set. Exit is now possible from everywhere. A(D4ρ)

is depicted dark brown, A(D2ρ) is yellow.
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Figure 3 The 3D control sets for ρ = 0.005, 0.0085, 0.01, 0.013.
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