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Abstract

The problem of reassigning a part of the open-loop spectrum of a linear system
by feedback control, leaving the rest of the spectrum invariant, is called the partial
eigenvalue assignment problem. In this paper, we derive new necessary and sufficient
conditions for existence and uniqueness of solution of the partial eigenvalue assignment
problem and then present a practical parametric algorithm to numerically solve it. The
algorithm is feasible for large-scale solution and computationally viable. It also offers
an opportunity to devise a robust solution to the problem by exploiting the arbitrary
nature of the parameters.

1 Introduction

Given a set S = {µ1, . . . , µn} of complex numbers, closed under complex conjugation, the

eigenvalue assignment problem (EVA) for the linear control system

ẋ(t) = Ax(t) + Bu(t) (1.1)

is the problem of finding a real matrix F , called the feedback matrix, such that the spectrum

of the matrix A−BF is the S.

The EVA problem is one of the central problems in control system design and has been

widely studied both from theoretical and computational view points. A brief account of the

existing numerical methods and the conditioning of the EVA problem can be found in [4,

Chapter 11].

Many practical applications such as the design of large and sparse structures, electrical

networks, power systems, computer networks, etc., give rise to very large and sparse problems
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and the conventional numerical methods (e.g. the QR based and Schur methods) for EVA

problem do not work well. Furthermore, in most of these applications only a small number

of eigenvalues, which are responsible for instability and other undesirable phenomenons,

need to be reassigned. Clearly, a complete eigenvalue assignment, in case when only a few

eigenvalues are “bad”, does not make sense.

These consideration gives rise to the following partial eigenvalue assignment problem

(PEVA) for the linear control system (1.1). Given a pair (A,B) whose spectrum, Ω(A) =

{λ1, . . . , λp; λp+1, . . . , λn} and S = {µ1, . . . , µp}, closed closed under complex conjugation,

find a real feedback matrix F such that Ω(A−BF ) = {µ1, . . . , µp; λp+1, . . . , λn}. The PEVA

problem was considered by [6] and [3] and projection algorithms were developed. In [6],

conditions for existence and uniqueness for the single-input problem were given.

In this paper, we give another close-look at this problem. We prove new necessary and

sufficient conditions for existence and uniqueness (nonuniqueness) for both the single-input

and multi-input problems and then propose a parametric approach for solving the PEVA

problem.

The major computational requirements of this new approach are solutions of a small

Sylvester equation of order p and a p × p linear algebraic system. The parametric na-

ture of the algorithm offers an opportunity to devise a numerically robust feedback matrix

F .

The paper is organized as follows. In Section 2, we state the well-known criteria of control-

lability, and result on existence and uniqueness of solution of EVA problem. In Section 3,

we state and prove our result on existence and uniqueness of solution of the PEVA problem.

The new parametric approach for the multi-input PEVA problem is described in Section 4.

The results of numerical experiments are displayed in Section 5.

2 Existence and Uniqueness Result for Eigenvalue As-

signment Problem

In this section, we state a well known result on the existence and uniqueness of solution of

the eigenvalue assignment problem. The notion of controllability is crucial to these results

(see, for example, [4]).

Theorem 2.1. (Eigenvector Criterion of Controllability).

The system (1.1) or, equivalently, the matrix pair (A,B) is controllable with respect to the

eigenvalue λ of A if yHB 6= 0 for all y 6= 0 such that yHA = λyH .

Definition 2.1. The system (1.1) or the matrix pair (A,B) is partially controllable with

respect to the subset {λ1, . . . , λp} of the spectrum of A if it is controllable with respect to each

of the eigenvalues λj, j = 1, . . . , p.

Definition 2.2. The system (1.1) or the matrix pair (A,B) is completely controllable if it

is controllable with respect to every eigenvalue of A.
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Theorem 2.2. (Existence and Uniqueness for Eigenvalue Assignment Problem).

The eigenvalue assignment problem for the pair (A,B) is solvable for any arbitrary set S if

and only if (A,B) is completely controllable. The solution is unique if and only if the system

is a single-input system (that is, if B is a vector). In the multi-input case, there are infinitely

many solutions, whenever a solution exists.

Proof. The proof is available in any control theory text book, e.g. [4, 1, 5].

3 Existence and Uniqueness Result for Partial Eigen-

value Assignment Problem

We now prove a result similar to Theorem 2.2 for the existence and uniqueness for the partial

eigenvalue assignment problem. This result and the proof are new.

Theorem 3.1. (Existence and Uniqueness for Partial Eigenvalue Assignment Prob-

lem).

Let Λ = diag(λ1, . . . , λp; λp+1, . . . , λn) be the diagonal matrix containing the eigenvalues

λ1, . . . , λn of A ∈ Cn×n. Assume that the sets {λ1, . . . , λp} and {λp+1, . . . , λn} are disjoint.

Let the eigenvalues λ1, . . . , λp to be changed to µ1, . . . , µp and the remaining eigenvalues to

stay invariant.

Then the partial eigenvalue assignment problem for the pair (A,B) is solvable for any

choice of the closed-loop eigenvalues µ1, . . . , µp if and only if the pair (A,B) is partially

controllable with respect to the set {λ1, . . . , λp}. The solution is unique if and only if the

system is a completely controllable single-input system. In the multi-input case, and in the

single-input case when the system is not completely controllable, there are infinitely many

solutions, whenever a solution exists.

Proof. We first prove the necessity. Suppose the pair (A,B) is not controllable with respect

to some λj, 1 ≤ j ≤ p. Then there exists a vector y 6= 0 such that yH(A − λjI) = 0 and

yHB = 0. This means that for any F , we have yH(A − BF − λjI) = 0, which implies that

λj is an eigenvalue of A−BF for every F , and thus λj cannot be reassigned.

Next we prove the sufficiency. Denote Λ1 = diag(λ1, . . ., λp) and Λ2 = diag(λp+1, . . ., λn).

Then we need to prove that there exists a feedback matrix F which assigns the eigenvalues

in Λ1 arbitrarily while keeping all the other eigenvalues unaltered.

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be, respectively, the right and left eigenvector

matrices of A, and let Y1 = (y1, . . . , yp). Since Y HX = I and Y HAX = diag(Λ1, Λ2),

then the partial controllability of the matrix pair (A,B) with respect to eigenvalues in Λ1

implies the partial controllability of the pair (diag(Λ1, Λ2), Y
HB) with respect to the same

eigenvalues. Therefore, the pair (Λ1, Y
H
1 B) is completely controllable because {λ1, . . . , λp}∩

{λp+1, . . . , λn} = ∅.

3



By Theorem 2.2, there exists a feedback matrix Φ such that the closed-loop matrix Λ1 −
Y H

1 BΦ has the desired eigenvalues µ1, . . . , µp. Denote

F = ΦY H
1 . (3.2)

Then the eigenvalues of the closed-loop matrix are exactly as required. This is seen as

follows:

{µ1, . . . , µp, λp+1, . . . , λn} = Ω
(
diag(Λ1, Λ2)− Y HB(Φ, 0)

)
=

Ω
(
Y H

(
A−B((Φ, 0)Y H)

)
X

)
= Ω

(
A−B(ΦY H

1 )
)

. (3.3)

Uniqueness of the solution in the single-input case that is completely controllable and the

existence of infinitely many solutions in the multi-input case follows directly from Theorem

2.2.

To complete the proof we need to show that infinitely many solutions to the partial eigen-

value assignment problem are possible when B is a vector (single-input case) and there exists

an uncontrollable eigenvalue λk for some k > p (that is, the associated kth right eigenvector

yk is such that yH
k A = λky

H
k and yH

k B = 0).

Let F be a solution to the partial eigenvalue assignment problem. Denote the left and

right eigenvectors of the closed-loop matrix Ac = A − BF by Yc and Xc. Clearly yH
k Ac =

yH
k (A − BF ) = λkyk and thus yk is also the kth column of Yc. Let Fα = αyH

k , where α is

an arbitrary scalar. As in (3.3) we can show that the eigenvalues µ1, . . . , µp, λp+1, . . . , λk−1,

λk+1, . . . , λn of Ac remain unchanged by the application of feedback Fα. Furthermore, the

eigenvalue λk of Ac also remains unchanged by the feedback Fα, since the pair (Ac, B) is not

controllable with respect to λk by the necessity part of this theorem. Thus

Ω ( A−BF ) = Ω ( Ac ) = Ω ( Ac −BFα ) = Ω
(
A−B(F + αyH

k )
)
,

showing that if F is a solution, so is F + αyH
k for an arbitrary α.

4 A Parameterization Approach for the Partial Eigen-

value Assignment

In this section, we develop a parametric approach to the partial eigenvalue assignment prob-

lems for both the first-order pair (A,B).

We remark that developing parametric solutions to these problems is useful in that one

can then think of solving some other important variation of the problems, such as the robust

partial eigenvalue assignment problem, by exploiting freedom of these parameters.

We make the following assumptions that will simplify the proofs of our theorems for the

rest of the chapter. Justification for each of these assumptions is also stated.

Assumption 4.1. The control matrix B has full rank.
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Justification: Indeed, if the n × m matrix B has rank m1 < m, then it admits the

economy-size QR decomposition B = QR, where R is an m1 × m matrix of full rank (see

[2]). Suppose that we have performed partial eigenvalue assignment with the full-rank matrix

Q (instead of B) and obtained the feedback matrix K. Then QK = BF = (QR)F and we

recover the feedback matrix F for use with the original control matrix B, thus solving the

underdetermined linear system K = RF in the least-square sense.

Note that if the full-rank matrix B is close to the rank-deficient matrix; that is, if the

absolute values of some diagonal entries of R are less than certain tolerance, then elimination

of such “almost linearly dependent” parts of B via the economy-size QR decomposition might

result in a better feedback matrix.

Example 4.1 (Rank deficient control matrix). Consider the control matrix B and the

feedback matrix F defined by

B =




1 1

1 1

1 1


 and F =

(
1 2 3

−4 −5 −6

)
.

The economy-size QR decomposition of B is

B =




1 1

1 1

1 1


 =




1/
√

3

1/
√

3

1/
√

3


 (

√
3,
√

3) = QR.

Therefore, BF = BnewFnew, where

Bnew = Q =




1/
√

3

1/
√

3

1/
√

3




is a full rank matrix and

Fnew = RF = (−3
√

3,−3
√

3,−3
√

3).

Now suppose that in order to satisfy Assumption 4.1, the feedback control problem was

solved with full-rank Bnew instead of rank-deficient B and a feedback matrix

K = (1, 2, 3)

was obtained. To get the equivalent 2 × 3 feedback matrix Fold corresponding to the control

matrix B, we then solve the linear system

K = (1, 2, 3) = (
√

3,
√

3)Fold = RFold

giving

Fold = R†K =

(
1

2
√

3
1

2
√

3

)
(1, 2, 3) =

(
1

2
√

3
1√
3

√
3

2
1

2
√

3
1√
3

√
3

2

)
.

It is easily verified that BnewK = BFold.
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Assumption 4.2. The sets {λ1, . . . , λn} and {µ1, . . . , µp} are closed under complex conju-

gation and disjoint.

Justification: The closeness under complex conjugation of the above sets is necessary to

guarantee that the closed-loop eigenvalues are self-conjugate, since any closed-loop system

designed with the feedback that has physical sense (that is, real feedback) must have self-

conjugate spectrum.

If {µ1, . . . , µp} ∩ {λ1, . . . , λp} 6= ∅, it means that some open-loop eigenvalues that we have

selected to reassign in fact would not move. In this case, we should renumber the open-loop

eigenvalues in such a way that the eigenvalues that would remain unaltered would go last

and the number p of the eigenvalues to be reassigned will be decreased. This way we obtain

the partial eigenvalue assignment problems with {µ1, . . . , µp} ∩ {λ1, . . . , λp} = ∅.
Designing a closed-loop system such that {µ1, . . . , µp} ∩ {λp+1, . . . , λn} 6= ∅ is generally

considered a “bad practice” in engineering. Systems with such artificially created multiple

eigenvalues are usually less robust compared to the systems designed with slightly perturbed

µ1, . . . , µp because multiple eigenvalues are usually very sensitive to perturbations.

The following theorem gives a parametric solution to the first-order partial eigenvalue

assignment problem.

Theorem 4.1. (Parametric Solution to the Partial Eigenvalue Assignment Prob-

lem).

Let the Assumptions 4.1 and 4.2 hold and let the pair (A,B) be partially controllable with

respect to {λ1, . . . , λp}. Assume further that the closed-loop matrix has a complete set of

eigenvectors. Let Γ = (γ1, . . . , γp) be a matrix such that

γj = γk whenever µj = µk . (4.4)

Set Λ1 = diag(λ1, . . . , λp) and Λc1 = diag(µ1, . . . , µp). Let Z1 be a unique nonsingular

solution of the Sylvester equation

Λ1Z1 − Z1Λc1 = Y H
1 BΓ . (4.5)

Let Φ satisfy the linear system

ΦZ1 = Γ . (4.6)

Then the real feedback matrix F is given by

F = ΦY H
1 (4.7)

solves the partial eigenvalue assignment problem for the pair (A,B).

Conversely, if there exists a real feedback matrix F of the form (4.7) that solves the partial

eigenvalue assignment problem for the pair (A,B), then the matrix Φ can be constructed

satisfying (4.4) through (4.6).
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Proof. First, we prove the “converse part” of the Theorem. Let a matrix F of the form (4.7)

solve the partial eigenvalue assignment problem. Denote by Xc1 = (xc1, . . . , xcp) the matrix

of right eigenvectors of the closed-loop pencil corresponding to the eigenvalues µ1, . . . , µp.

Define the matrix Γ = FXc1. Then the following equation is obviously satisfied:

AXc1 −Xc1Λc1 = BΓ . (4.8)

Multiplying this equation to the left by the Y H
1 and defining Z1 = Y H

1 Xc1, we obtain (4.5).

From (4.7) and (4.8), we have

0 = (A−BΦY H
1 )Xc1 −Xc1Λc1 = BΓ−BΦY H

1 Xc1 = B(Γ− ΦZ1) . (4.9)

Since B has linearly independent columns, (4.9) is equivalent to (4.6).

Finally, if µj = µk, then xcj = xck, where Xc1 = (xc1, . . . , xcp). Since F is real and the jth

column of Γ is γj = Fxcj, we get γj = γk, proving (4.4).

Now we will prove the theorem in the other direction. Let Γ be chosen to satisfy (4.4) and

(4.5). Since {µ1, . . . , µp} ∩ {λ1, . . . , λp} = ∅, then Φ is also uniquely defined by (4.5) and

(4.6).

Since Y1 and X2 are, respectively, the left and the right eigenvectors of A corresponding to

disjoint sets of eigenvectors, we have Y H
1 X2 = 0. Thus, for any Φ with F = ΦY H

1 we have

(A−BF )X2 = AX2 −BΦ(Y H
1 X2) = X2Λ2 , (4.10)

where Λ2 = diag(λp+1, . . . , λn) and X2 is the matrix of right eigenvectors of A corresponding

to the eigenvalues λp+1, . . . , λn. Thus, both the eigenvalues λp+1, . . . , λn and the associated

right eigenvectors xp+1, . . . , xn of the closed-loop system are the same as those of the open-

loop system.

It thus remains to be shown that with our above choice of Φ, the set {µ1, . . . , µp} is also

in the spectrum of A−BF and the matrix F is real.

Since the set {µ1, . . . , µp} and the spectrum of A are disjoint, the Sylvester equation (4.8)

has a unique solution (see [4] for details), which we denote by Xc1. Multiplying the equation

(4.8) by Y H
1 and noting that Y H

1 A = Λ1Y
H
1 , we obtain

Λ1(Y
H
1 Xc1)− (Y H

1 Xc1)Λc1 = Y H
1 BΓ . (4.11)

Thus, Y H
1 Xc1 and Z1 satisfy the same Sylvester equation. Since this Sylvester equation has

a unique solution (because spectra of Λ1 and Λc1 are disjoint), we have

Z1 = Y H
1 Xc1 . (4.12)

Using (4.6) and (4.12), we obtain

(A−BF )Xc1 −Xc1Λc1 = AXc1 −Xc1Λc1 −BΦY H
1 Xc1 =

B(Γ− Φ(Y H
1 Xc1)) = 0,
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which shows that the set {µ1, . . . , µp} is in the spectrum of A−BF .

To complete the proof of the theorem, we must show that F is real.

Since the set {µ1, . . . , µp} is closed under complex conjugation, there exists a permutation

matrix Tc such that Λc1 = T T
c Λc1Tc. Then (4.4) implies that Γ = ΓTc. Similarly, there exists

a permutation matrix T such that Λ1 = T T Λ1T , X1 = X1T and Y1 = Y1T . Conjugating the

equation (4.5), we get

(T T Λ1T )Z1 − Z1(T
T
c Λc1Tc) = (T T Y H

1 )B(ΓTc) . (4.13)

Clearly Z1 = T T Z1Tc, since such Z1 satisfies the equation (4.13), because T T
c = T−1

c . Again,

conjugating (4.6), we get

Φ(T T Z1Tc) = ΓTc ,

which implies that Φ = ΦT .

Therefore,

F = (ΦT )(T T Y H
1 ) = F ,

showing that the obtained feedback matrix F is real.

Remark 4.1. Substituting the expression of Γ from (4.6) into (4.5), we obtain

(Λ1 − Y H
1 BΦ)Z1 = Z1Λc1 , (4.14)

which shows that Z1 is the eigenvector matrix for Λ1 − Y H
1 BΦ. From (4.14) it then follows

that the nonsingularity of Z1 is equivalent to the linear independence of the eigenvectors of

the closed-loop matrix A−BF .

This observation is important because it is well known that the sensitivity of the eigenvalues

of the closed-loop matrix is related to the conditioning of the eigenvector matrix.

Based on the Theorem 4.1, we now state the following algorithm:

Algorithm 4.2. (Parametric Algorithm for Partial Eigenvalue Assignment Prob-

lem).

Inputs:

(a) The n× n matrix A.

(b) The n×m control matrix B.

(c) The set {µ1, . . . , µp}, closed under complex conjugation.

(d) The self-conjugate subset {λ1, . . . , λp} of the spectrum {λ1, . . . , λn} of the matrix

A and the associated right eigenvector set {y1, . . . , yp}.
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Outputs:

The real feedback matrix F such that the spectrum of the closed-loop matrix A − BF

is {µ1, . . ., µp; λp+1, . . ., λn}.

Assumptions:

(a) The matrix pair (A,B) is partially controllable with respect to the eigenvalues

λ1, . . . , λp.

(b) The sets {λ1, . . . , λp}, {λp+1, . . . , λn}, and {µ1, . . . , µp} are disjoint.

Step 1. Form

Λ1 = diag(λ1, . . . , λp), Y1 = (y1, . . . , yp), and Λc1 = diag(µ1, . . . , µp).

Step 2. Choose arbitrary m × 1 vectors γ1, . . . , γp in such a way that µj = µk implies

γj = γk and form Γ = (γ1, . . . , γp).

Step 3. Find the unique solution Z1 of the Sylvester equation

Λ1Z1 − Z1Λc1 = Y H
1 BΓ .

If Z1 is ill-conditioned, then return to Step 2 and select different γ1, . . . , γp.

Step 4. Solve ΦZ1 = Γ for Φ.

Step 5. Form F = ΦY H
1 .

5 Numerical Examples

In this section, we report results of our numerical experiments with Algorithm 4.2 on a

400× 400 matrix obtained by discretization of the partial differential equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ 20

∂u

∂x
+ 180u(x, y, t) +

2∑
i=1

Fi(x, y)gi(t) (5.15)

on the unit square Ω = (0, 1)× (0, 1) with the Dirichlet boundary conditions

u(x, y, t) = 0 for (x, y) ∈ ∂Ω and t ≥ 0

and some initial condition which is of no importance for the PEVA problem. This problem

was earlier considered by [6]. Using finite difference scheme of order O(||∆x||2, ||∆y||2) we

discretize (5.15) in the region Ω with 20 interior points in both the x and y directions, thus

obtaining 400 × 400 matrix problem of the form (1.1). The 400 × 2 matrix B, whose i-th

column discretizes the function Fi(x, y) is filled with random numbers between −1 and 1.
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Using sparse MATLAB command eigs, the following ten eigenvalues with the largest real

parts are computed

λ1 = 55.0660, λ2 = 29.2717, λ3 = 25.7324, λ4 = −0.0618, λ5 = −13.0780,

λ6 = −22.4283, λ7 = −42.4115, λ8 = −48.2225, λ9 = −71.0371, λ10 = −88.3402.

The residual of each eigenpair ||yH(A− λI)|| < 4 · 10−12 and each left eigenvector is normal-

ized.

Algorithm 4.2 is used to reassign λ1, λ2, λ3 and λ4 to −7,−8,−9 and −10, respectively,

obtaining the 2× 400 feedback matrix F with ||F ||2 < 127. Note that the ||A||2 = 3.3 · 103.

The ten eigenvalues of the closed-loop matrix A − BF with the largest real parts obtained

by the algorithm are the following:

µ1 = −7.0000, µ2 = −8.0000, µ3 = −9.0000, µ4 = −10.0000, λ5 = −13.0780,

λ6 = −22.4283, λ7 = −42.4115, λ8 = −48.2225, λ9 = −71.0371, λ10 = −88.3402.

6 Conclusion

The design of large space structures, power plants, computer networks, etc., give rise to

large-scale control problems. For most of these problems, in practice, only a small number

of system eigenvalues are ”bad” in the sense that they are not in the stability region or

other desirable region of the complex plane. Thus it make sense to reassign only those small

number of bad eigenvalues, keeping the remaining large number of good eigenvalues invariant.

The partial eigenvalue assignment problem is thus a practically significant problem.

New necessary and sufficient conditions for existence and uniqueness of solution for this

problem has been derived and a parametric algorithm for numerical solution has been pre-

sented in this paper. The algorithm requires knowledge of only those small number of

eigenvalues (and the associated eigenvectors) that are required to be reassigned, and the

major computational requirements are solutions of a small Sylvester equation and a linear

algebraic system, for which there exist excellent numerical methods. The algorithm is thus

numerically viable and computationally feasible for large and sparse problems. Furthermore,

the parametric nature of the algorithm offers an opportunity to design a numerically robust

feedback controller.

A similar parametric approach has been also developed for the partial eigenstructure as-

signment problem in the recent Ph.D. Thesis [7].
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