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Abstract

The nonsymmetric Lanczos algorithm, which belongs to the class of Krylov subspace methods, is increas-
ingly being used for model reduction of large scale systems of the form f(s) = cT (sI −A)−1b, to exploit the
sparse structure and reduce the computational burden. However, a good approximation is, usually, achieved
only with relatively high order reduced models. Moreover, the computational cost of the Lanczos algorithm
is dominated by the full rebiorthogonalization procedure, which is necessary because the Lanczos vectors
tend to lose their biorthogonality. A method based on linear fractional transformations (LFTs) is proposed
to compute a reduced mth order model by applying k “small” Lanczos algorithms with m/k steps each;
thus reducing the computational cost and storage requirements. Applying this method, one can compute a
tridiagonal similar realization of f(s) and when combined with conventional model reduction techniques, a
minimal or reduced realization.

1 Introduction
Model reduction is widely employed to deal with large scale linear systems, which are usually sparse and large
dimensional. In this paper, stable, linear single-input single-output (SISO) systems are considered, described
by the equations

ẋ1(t) = A1x1(t) + b1u(t), y1(t) = cT
1 x1(t), (1.1)

where x1(t) ∈ R
n denotes the state vector, u(t) and y1(t) the scalar input and output, respectively. The

matrix A1 ∈ R
n×n is assumed to be of large dimension and sparse and b1, c1 ∈ R

n. The subscript 1 is
used for consistency of notation with subsequent sections. The transfer function of (1.1) is denoted as f1(s) =
cT
1 (sIn−A1)−1b1

s= (A1, b1, c
T
1 , 0) where In denotes the n×n identity matrix. The objective of model reduction

is to produce a stable approximate rth order model,

ẋ1,r(t) = A1,rx1,r(t) + b1,ru(t), y1,r(t) = cT
1,rx1,r(t),

in which x1,r(t) ∈ R
r and r � n. Conventional model reduction techniques, such as balanced truncation [4],

are not suitable for large scale systems because they require O(n3) operations, and hence, for large n, they are
not practical. The Lanczos algorithm, which belongs to the class of Krylov subspace projection methods, is
suitable for large sparse matrix computations, since only matrix-vector multiplications and inner products in
the large dimension are involved. A Krylov subspace Km(A, v), given a vector v and a matrix A, is defined as
Km(A, v) = span{v,Av, . . . , Am−1v}. The nonsymmetric Lanczos algorithm is an oblique projection method
and simultaneously constructs a pair of biorthogonal bases Vm and Wm for two Krylov subspaces such that
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W T
mVm = Im. However, in finite precision arithmetic, the bases Vm and Wm tend to lose their biorthogonality.

To remedy this, either full rebiorthogonalization [6] against the previous vectors is employed at each step, or
a compromise known as maintaining semiorthogonality [3] by monitoring the loss of biorthogonality. Alterna-
tively, to avoid rebiorthogonalization, more steps may be taken in order to deal with the presence of spurious
eigenvalues [2].

In this paper, a method employing linear fractional transformations (LFTs) is described, to obtain a reduced
mth order model using k “small” Lanczos algorithm of size mj each, where

∑k
j=1 mj = m. A modified matrix

of the form A1−FjG
T
j is used at each iteration, but sparsity is preserved since it is not explicitly formed. The

matrices Fj and Gj contain 2j vectors each, where j is the iteration number. Applying this method, an exact
decomposition of f1(s) in terms of smaller order models can be computed, if

∑k
j=1 mj = n. Approximating

these reduced order realizations using balanced truncation, one can compute an approximation of f1(s). This
procedure, therefore, avoids some of the drawbacks of the nonsymmetric Lanczos algorithms. Model reduction
using the Lanczos algorithm is outlined in Section 2 and the theoretical foundation for the proposed method
is provided in Section 3. Description of the algorithms to compute Lanczos-derived realizations and minimal
or reduced realizations are given in Sections 4 and 5, respectively, along with numerical examples. Finally,
conclusions are drawn in Section 6.

2 The nonsymmetric Lanczos algorithm for model reduction
The nonsymmetric Lanczos algorithm with full reorthogonalization [6] is employed to construct a pair of
biorthogonal bases, V1,m1 , W1,m1 ∈ R

n×m1 , for the Krylov subspaces, Km1(A1, b1) and Lm1(A
T
1 , cT

1 ), which
span the first m1 columns of the controllability and observability subspaces, respectively. The algorithm may
break down[5]; however, in this paper, it will be assumed that no breakdowns occur. The following equations,
referred to as the Lanczos equations [5], hold,

A1V1,m1 = V1,m1A1,m1 + ṽ1,m1 ã
T
1,m1V

, b1 = V1,m1b1,m1 , (2.2)

AT
1 W1,m1 = W1,m1A

T
1,m1

+ w̃1,m1 ã
T
1,m1W

, c1 = W1,m1c1,m1 , (2.3)

where A1,m1 = W T
1,m1

A1V1,m1 is a tridiagonal matrix. Then, the m1th order model is given by f1,m1(s)
s=

(W T
1,m1

A1V1,m1 , W
T
1,m1

b1, c
T
1 V1,m1 , 0) = (A1,m1 , b1,m1 , c

T
1,m1

, 0).

3 An exact decomposition of state space systems
The following lemma shows that f(s) can be decomposed using and LFT-based formulation. This results is
the starting point for deriving an exact decomposition of f(s).

Lemma 3.1. Let f1,m1(s)
s= (A1,m1 , b1,m1 , c

T
1,m1

, 0) denote the reduced order approximation of f1(s) obtained
after m1 steps of the nonsymmetric Lanczos algorithm have been taken, so that equations (2.2)–(2.3) hold.
Then,

f1(s) = Fl(F1,m1(s), f2(s)) (3.4)

where Fl(·, ·) denotes the lower linear fractional transformation (LFT) and

F1,m1(s) =

[
F

(11)
1,m1

(s) F
(12)
1,m1

(s)
F

(21)
1,m1

(s) F
(22)
1,m1

(s)

]
s=




A1,m1 b1,m1 ã1,m1W

cT
1,m1

0 0
ãT

1,m1V
0 0


 , (3.5)

f2(s)
s=

[
A1 − ṽ1,m1 ã

T
1,m1V

W T
1,m1

− V1,m1 ã1,m1W
w̃T

1,m1
ṽ1,m1

w̃T
1,m1

0

]
=

[
A2 b2

cT
2 0

]
. (3.6)
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Proof. Expanding (3.4) (see [8]) gives

Fl(F1,m1(s), f2(s))
s=




A1,m1 ã1,m1W
w̃T

1,m1
b1,m1

ṽ1,m1 ã
T
1,m1V

A2 0

cT
1,m1

0 0


 (3.7)

and applying a similarity transformation with

T =

[
Im −W T

1,m1

V1,m1 In − V1,m1W
T
1,m1

]
, T−1 =

[
0 W T

1,m1

−V1,m1 In

]

to (3.7) gives

Fl(F1,m1(s), f2(s))
s=


 A1,m1 ã1,m1W

w̃T
1,m1

b1,m1

0 A1 b1

0 cT
1 0


 =

[
A1 b1

cT
1 0

]
s= f1(s),

where the last equation follows by removing the unobservable part.

Corollary 3.1. Let f2,m2(s)
s= (A2,m2 , b2,m2 , c

T
2,m2

, 0) denote the reduced order approximation of f2(s) ob-
tained after m2 steps of the nonsymmetric Lanczos algorithm have been taken, and the corresponding Lanczos
equation, similar to (2.2)–(2.3), hold. Then,

f2(s) = Fl(F2,m2(s), f3(s)), (3.8)

f1(s) = Fl(F1,m1(s) � F2,m2(s), f3(s)) = Fl(F12,m12(s), f3(s)) (3.9)

where F2,m2(s), f3(s) are defined similarly to (3.5), (3.6), respectively, and

F12,m12(s) = F1,m1(s) � F2,m2(s)
s=




A1,m1 ã1,m1W
cT
2,m2

b1,m1 0
b2,m2 ã

T
1,m1V

A2,m2 0 ã2,m2W

cT
1,m1

0 0 0
0 ãT

2,m2V
0 0


 (3.10)

and (· � ·) denotes the Redheffer star product [8].

Proof. Equation (3.8) follow directly from Lemma 3.1. Substituting (3.8) into (3.4) gives

f1(s)=Fl(F1,m1(s),Fl(F2,m2(s), f3(s)))=Fl(F1,m1(s) � F2,m2(s), f3(s))=Fl(F12,m12(s), f3(s))

as described in [8].

The following theorem shows that any mth order Lanczos approximation of f1(s) can be constructed by
applying k times the Lanczos algorithm with mj steps each, such that

∑k
j=1 mj = m. Furthermore, exploiting

this property, one can also compute an exact decomposition of f1(s) in terms of reduced order models using
the Lanczos algorithm.
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Theorem 3.1. Let f1,m(s) s= (A1,m , b1,m , cT
1,m , 0) denote the reduced order approximation of f1(s) obtained

after m = m1 + m2 steps of the nonsymmetric Lanczos algorithm have been taken, and the corresponding
Lanczos equations hold. Then,

1. the realizations F12,m12(s) in (3.10) and F1,m(s) s=




A1,m b1,m ã1,m
W

cT
1,m 0 0

ãT
1,m

V
0 0


 are identical.

2. The realizations of f12,m12(s) and f1,m(s) are also identical, where f12,m12(s) = F
(11)
12,m12

(s).

3. Assuming that m steps of the nonsymmetric Lanczos algorithm can be taken without breakdown and
m1+m2+ · · ·+mk = m, then f1···k,m1···k(s) = f1,m(s) where f1···k,m1···k(s) = F

(11)
1···k,m1···k(s). Furthermore,

if m = n, f1(s) = f1···k,m1···k(s) = f1,m(s).

The proof can be derived from Corollary 3.1 and the Lanczos equations. An interpretation of part 3 of
Theorem 3.1 is that a similar tridiagonal realization of f(s) can be constructed, provided that no breakdowns
occur. Consequently, one can draw conclusions about its minimality, as shown in the following corollary.

Corollary 3.2. A realization of f1(s) is minimal if and only if the realization of f1···k,m1···k(s) as derived in
Theorem 3.1 is minimal.

Proof. In the third part of Theorem 3.1, the realizations of f1,m(s) and f1(s) are similar, which implies that
if f1(s) is minimal, f1,m(s) is also minimal. Therefore f1···k,m1···k(s) is minimal since f1···k,m1···k(s) = f1,m(s).
Similarly, if f1···k,m1···k(s) is minimal, f1,m(s) is also minimal and, hence, f1(s) is minimal. Note that the
dimensions of the state space realizations are the same.

The aforementioned theoretical results can be applied to derive the solution for two problems; firstly, to
compute a Lanczos reduced order model in terms of a number of low order models instead of directly reducing
the original one, and secondly, to reduce f1(s) via its decomposition in a number of low order models. In
exact arithmetic, the first problem gives an exact solution, but for the second an approximation is obtained.
In the following section, these two problems are described along with numerical examples.

4 Computing Lanczos approximations
The third part of Theorem 3.1 can be used for computing an mth order Lanczos approximation, where∑k

j=1 mj = m. The matrix Aj+1 is not formed explicitly but only the necessary vectors are stored; namely,
Aj+1 can be expressed in an outer product form as Aj+1 = A1 − FjG

T
j , where Fj and Gj contain 2j vectors

each; a property following from the structure of the Lanczos quantities. To avoid explicitly forming Aj+1, an
outer product version of the standard Lanczos algorithm is employed. A significant saving in computational
cost and storage results from rebiorthogonalization of the bases. Specifically, when constructing f1,m(s), each
new vector is rebiorthogonalized against all previous ones up to m, whereas for f1···k,m1···k(s) only up to mj

vectors are used for each step. This saving comes at the expense of performing the outer product Lanczos
algorithm; however, the latter is much cheaper.

Another important issue is that although local biorthogonality holds, i.e., W T
j,mj

Vj,mj = Imj , global biorthog-
onality may be lost, i.e., W T

j1,mj1
Vj2,mj1

�= Imj for j1 �= j2 and mj1 = mj2 = mj . As an example, assume that∑k
j=1 mj = mL; also, for simplicity, let mj = m, hence mL = km. Denote the dominant cost of applying mL

4



Table 1: Computational costs and CPU times for an example with 1000 states.

Algorithm Flops CPU time

Standard Lanczos (L) 6.544e+8 1.916e+2
LFT-based Lanczos (LFT) 1.894e+8 5.110e+1

Ratio (L)/(LFT) 3.46 3.75

steps of the standard Lanczos algorithm by KL, and the dominant cost of the proposed method by KLFT;
then, KL = kKLFT. Therefore, the cost of the LFT-based approach is k times smaller than the standard
approach. This result is verified with a state space model with n = 1000 states, for which the state matrix A1

arises from a three dimensional simulation model of an oil reservoir [1] and the vectors b1, c2 contain normally
distributed random numbers. The values of the parameters used are m = 100, k = 4 and mL = mk = 400.
The computational cost and CPU times are shown in Table 1, where the ratio of flops and CPU time is close
to k. The error norms between the resulting realizations are

‖f1···k,m1···k(s) − f1,mL(s)‖∞ = 4.200 · 10−5, ‖f1···k,m1···k(s) − f1,mL(s)‖2 = 9.522 · 10−5

where f1···k,m1···k(s) denotes the model obtained from the LFT-based approach, and f1,mL(s) the model from
the standard Lanczos algorithm. The error norms indicate that there is a small difference between the
two realization; the main reason being the absence of global biorthogonality. Although in theory the two
realizations should be identical, in floating point arithmetic, an approximation is computed. It should be noted
that this an illustrative example; further investigation may shed light to the problem of choosing suitable values
for m and k in order to minimize the error norms, and, possibly, employing a different rebiorthogonalization
scheme.

5 Approximate model reduction of state space models
The second problem is to compute approximate reduced order models in terms of a number of low order models
instead of directly reducing the original one. Following a similar notation for the reduced models, the idea
is to combine F1···j−1,r1···j−1(s) with Fj,mj (s) and, then, reduce the resulting realization, where

∑k
j=1 mj = n.

As an example, assume that mj = m, hence n = km. Denote the dominant cost of directly reducing f1(s)
with KMR, and the dominant cost of the proposed method by KLFT-MR. For the numerical example used in
Section 4 with n = 1000, m = 100 and k = 10, the average value of rj was rj = m/2; then,

KMR =
mk2

2m + 3k2 + k
KLFT-MR = 19.61KLFT-MR

where rj denotes the order of F1···j−1,r1···j−1(s). The computational cost and CPU times are shown in Table 2.
The tolerance for model reduction was set equal to the machine precision, ε = 2.22 · 10−16, hence a minimal
realization was computed. This problem is closely related to LFT model reduction and controller reduction
and may be carried out more efficiently than presented here; however, to illustrate the idea balanced truncation
was used. The SLICOT library [7] was used for model reduction; this explains why the ratio of the CPU times
is much smaller than expected. The error norms between the resulting realizations are

‖f1···k,r1···k(s) − f(s)‖∞ = 7.560 · 10−5 ‖f1,r(s) − f(s)‖∞ = 3.498 · 10−9

‖f1···k,r1···k(s) − f(s)‖2 = 1.535 · 10−4 ‖f1,r(s) − f(s)‖2 = 9.057 · 10−9
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where f1···k,r1···k(s) denotes the model obtained from the LFT-based approach, and f1,r(s) the model obtained
from balanced truncation on f(s). The orders of f1···k,r1···k(s) and f1,r(s) are 56 and 30, respectively. The
main reason for the difference in the error norms is, as before, the absence of global biorthogonality. Also,
f1···k,r1···k(s) is not necessarily stable, since the Lanczos algorithm does not guarantee stability. Note that
f1,r(s) was computed for comparison purposes; for a system of 1000 states, balanced truncation is not practical.

Table 2: Computational costs and CPU times for an example with 1000 states.

Algorithm Flops CPU time

Standard model reduction (MR) 3.000e+10 4.738e+2
LFT-based Lanczos model reduction (LFT-MR) 1.744e+09 1.890e+2

Ratio (MR)/(LFT-MR) 17.20 2.51

6 Conclusions
A method combining the Lanczos algorithm and LFTs was developed to obtain an exact approximation of
a state space model. The idea was to compute a number of “small” Lanczos algorithms instead of a “big”
one. Avoiding global rebiorthogonalization that dominates the computational cost and storage requirements
of the Lanczos algorithm, is the main advantage. Computation of Lanczos-derived reduced order realizations
and approximate model reduction are two potential application of the proposed method. Algorithms and
preliminary numerical results were presented. Further investigation regarding the values of the two parameters,
m and k, and their effect on the loss of global biorthogonality in floating point arithmetic is required.
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