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Abstract

In this paper a new type of PID controllers is introduced and some properties are

given. The novelty of the proposed controllers consists in the extension of derivation

and integration order from integer to non integer numbers. This approach provides a

more flexible tuning strategy and therefore an easier achieving of control requirements

with respects to classical controllers.

1 Introduction

The idea of fractional derivatives and integrals seems to be quite a strange topic, very hard

to explain, due to the fact that, unlike commonly used differential operators, it is not related

to some important geometrical meaning, such as the trend of functions or their convexity.

A number N of first order differential equations usually model a complex dynamic. In sys-

tems theory, we call N the degree of the system. Moreover, the theory of Laplace transfor-

mation in the case of linear systems has given us the possibility of studying an input–output

relation via the ratio of its Laplace transform, which is called the “Transfer Function” of

the system and whose denominator is a polynomial of degree N . In fact there are physi-

cal phenomena whose study involves transfer functions of degree m, m being a non integer

number.

For this reason, this mathematical tool could be judged “far from reality”. But many

physical phenomena have “intrinsic” fractional order description and so fractional order

calculus is necessary in order to explain them.

Transmission lines [1], electrical noises [2-3], dielectric polarization [4] and heat transfer

phenomena [5] are some of the fields having “Non Integer Order“ physical laws.

2 An overview on non integer order systems

The most common definition of non integer order integral is the following [6-7]:

d−qf(t)

dt−q
=

1

Γ(q)

∫ t

0
(t− τ)q−1f(τ)dτ (2.1)
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The lower limit is chosen to be zero (it could be any real number) because in the following

time series with t > 0 will be considered. In the above definition, Γ(q) is the factorial

function, defined for positive real q, by the following expression:

Γ(q) =
∫ ∞

0
xq−1e

−x
dx (2.2)

for which, when q is an integer, it holds that:

Γ(q + 1) = q! (2.3)

The definition of fractional derivative easily derives from (2.1) by taking an n order

derivative (n suitable integer) of an m order integral (m suitable non integer) to obtain

an n−m = q-order one:

dqf(t)

dtq
=
dn−mf(t)

dtn−m
=

dn

dtn

[

d−mf(t)

dt−m

]

==
1

Γ(m)

dn

dtn

∫ t

0
(t− τ)m−1f(τ)d(τ) (2.4)

It is now useful to introduce the most important features of fractional systems. They will

be discussed using the same tools usually adopted for integer order systems which allow

an easy comparison among the two different behaviors. For example, let us focus on Bode

Diagrams, that is the principal tool in systems and control theory: considering the following

equation:

F (s) =
k

(

s
p

+ 1
)m (2.5)

and assuming s=jω we obtain:

F (jω) =
[

k1/m

(jω/p+1)

]m
=

[

∣

∣

∣

k1/m

(jω/p+1)

∣

∣

∣ e
jϕ

[

k1/m

(jω/p+1)

]

]m

=

=
∣

∣

∣

k1/m

(jω/p+1)

∣

∣

∣

m
e

jmϕ

[

k1/m

(jω/p+1)

]
(2.6)

and, therefore the magnitude expressed in decibels is

|F (jω)|dB = 20 log10

[

k1/m√
ω2/p2+1

]m

=

20 log10 k − 20m log10

√

ω2/p2 + 1
(2.7)

It must be noted that, if ω → ∞, (2.7) becomes –20mlog10(ω/p) resulting, on a semi-

logarithmic plane, in a line having slope –20m dB/dec (instead of 20 dB/dec for first order

systems). This fact is useful to plot an asymptotic diagram whose maximum error emax can

be found close to the pole ω=p. This error can be calculated as follows:

emax =
∣

∣

∣|F (jp)|dB,app − |F (jp)|dB

∣

∣

∣ =
∣

∣

∣

∣

−20m log10
ω
p

∣

∣

∣

ω=p
−

(

−20m log10

√

ω2

p2 + 1
)

ω=p

∣

∣

∣

∣

∼= 3mdB
(2.8)
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while for first order systems this value is 3 dB. Examples of magnitude Bode’s diagrams are

reported in Fig. 2.1.

Remark: It is quite evident that the fractional order m modulates the slope of the mag-

nitude diagram, providing a parameter useful for the open loop synthesis of the controller.

Regarding the phase displacement, it must be noted that, considering the exponent of

expression 2.6, it holds that:

ϕ [F (jω)] = mϕ

[

k1/m

jω/p+ 1

]

= mϕ

[

1

jω/p+ 1

]

= −marctgω
p

(2.9)

Expression (2.9) shows that m modulates the scale of the phase law. In fact, it can be

easily seen that for ω → ∞the phase angle approaches –mπ/ 2 instead of –ψ/ 2 typical of

first order systems. Examples of phase diagrams are depicted in Fig. 2.2.

Fig. 1. Magnitude Bode Plot of fractional systemsF (s) =1/(s+ 1)m with m =1 (solid),

m =0.5 (dashed), m =1.5 (dotted).

Similar results can be obtained considering the transfer function

F (s) =
k

(

s
p

)m
+ 1

(2.10)

For large ω, the magnitude in dB is
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|F (jω)|dB = 20 log10
k√

ω2m/p2m+2ωm/pm cos(mπ/2)+1
≈

≈ 20 log10 k − 20m log10(ω/p)
(2.11)

It must be noted that in this case that the maximum error emax at ω=p could be zero for

a certain value of m. This fact happens when

2 cos(mπ/2) + 1 = 0

(m = 4/3, m = 8/3)
(2.12)

The general formula is the following:

emax =
∣

∣

∣|F (jp)|dB,app − |F (jp)|dB

∣

∣

∣ =

= 10 log10

(

2 + 2 cos mπ
2

)

= 10 log10 4
(

1+cos mπ
2

2

) ∼= 6 + 20 log10

∣

∣

∣cos mπ
4

∣

∣

∣

(2.13)
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Fig. 2. For case 1 the formula to evaluate the correction error is e = 3mdb, giving

e = 1.5db. For all other cases the formula is e = 6 + 20 ∗ log10(|cos(mπ/4)|db, resulting

e = 5.3db, e = −2.34db and e = 0db respectively. 1/(s+ 1)0.5 continuous, 1/(s0.5 + 1) small

dot, 1/(s1.5 + 1) dashed and 1/(s4/3 + 1) big dot.

3 The non integer order PID controller

Suppose to have a non integer order PID of the form

4



C(s) = KP +
KI

sλ
+KDs

λ (3.14)

While a traditional PID provides a phase contribution -π/2 < θ < π/2 , the PIλDλ provides

-λπ/2 < θ < λπ/2, with a significant improvement when λ > 1

Let us now consider the frequency domain design. According to project requirements, C(s)

must be so that

C(jω1)G(jω1) = ej(ϕm−π) (ϕm = phase margin, ω1 = 0db frequency)

C(jω1) = ej(ϕm−π)

|G(jω1)|ej arg(G(jω1))

KP + KIe−j λπ
2

ωλ
1

+KDω
λ
1e

j λπ
2 = ejθ

|G(jω1)|
(θ = ϕm − π − arg(G(jω1))

(3.15)

The following two equations in the four variables KP ,KI ,KD and λgan be written:















KP +
(

KI

ωλ
1

+KDω
λ
1

)

cos λπ
2

= cos θ
|G(jω1)|

(

−KI

ωλ
1

+KDω
λ
1

)

sin λπ
2

= sin θ
|G(jω1)|

(3.16)

The use of non integer order PID provide to the controller a further tuning parameter,

which improves the set of obtainable configurations

Fig. 3. An example of PIλDλ magnitude asymptotic plot

The transfer function of a PIλDλ controller is the following:

C(s) = KP + KI

sλ +KDs
λ = KDs2λ+KP sλ+KI

sλ =

= KD(sλ+a1)(sλ+a2)
sλ where a1,2 =

KP±
√

K2
P
−KIKD

2KD

(3.17)
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4 Conclusion

In this paper the non integer order PIλDλ controller have been introduced and a new tuning

strategy has been presented. The approach is validate step by step by an extension of the

classical PID control theory. Further research activities are running in order to define new

effective tuning techniques for non integer order controller of the more general for PIλDµ.
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Fig. 4. An example of PID (dotted) and PIλDλ, magnitude and phase plot.

Fig. 5. An example of PID (dotted) and PIλDλ, magnitude and polar plot.
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