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Abstract

The use of constrained binary two-dimensional codes can provide significant density

improvement for data-storage devices that are modeled as two-dimensional intersymbol-

interference channels with additive noise. The two-dimensional capacity of such codes

is bounded by considering strips in the plane of width n and constructing matrix recur-

sions that simplify bound computations with increasing n. Curve-fitting and bounding

techniques allow precise estimates of the capacity to be made. Finally, by assuming

that capacity-achieving encoders and decoders exist, density improvements for full-

surface channels by use of checkerboard codes are calculated, and those calculations

verified by numerical simulation.

1 Introduction

Two-dimensional constrained codes (i.e. checkerboard codes) have important applications

in the reliable transmission of data across optical channels where data are referenced by a

two-dimensional index set, (i.e. full-surface channels). This paper connects the calculation

of the capacity of checkerboard codes with increased information density in full-surface data-

storage systems.

Many authors have examined two-dimensional constrained codes. Recent work in two-

dimensional runlength-limited codes, which arise in magnetic recording applications, includes

multitrack recording [17], [16], work in cascading arrays [4], and calculation of capacity of

two- and three-dimensional RLL codes [11], [15], [10]. The two-dimensional codes examined

in this paper are related to two-dimensional RLL codes. Work related to computing capacity

for general constraints for two-dimensional codes also exists [3], [2], [19], [6], [5]. Finally,

work in constructing efficient encoders and decoders for constrained two-dimensional codes

has also been completed [8].

Computing the capacity of a two-dimensional constrained code appears to be intrinsically

harder than computing the capacity of a one-dimensional constrained code. In Section 2

the capacity of a constrained 2-D code (i.e. checkerboard code) is computed by construct-

ing a matrix recursion, calculating a sequence of eigenvalues, and computing bounds that

result in precise estimates of the capacity. These estimates of capacity are then used to
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Figure 1: Various checkerboard constraints.

compute potential density improvements in full-surface data-storage systems that employ

simple threshold demodulation. In Section 3 notation and system model is introduced for

full-surface channels, and in Section 4 optimized thresholds are computed, efficient encoders

and decoders for constrained codes and differential encoders and decoders are presumed to

exist, and predicted results are verified for simple cases.

2 Capacity

A checkerboard constraint is a two-dimensional arrangement of zeros that must surround

every one in a two-dimensional binary code. Various checkerboard constraints are shown in

Figure 1. An n×m checkerboard code is the set of all binary arrays of size n×m that satisfy

a given checkerboard constraint.

The capacity, C, for a given checkerboard code is

C = lim
n→∞

lim
m→∞

log2[M(n, m)]

nm

where M(n, m) is the number of distinct codewords in the code. It is known [9] that the

capacity exists for the checkerboard constraints in this paper.
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The capacity Cn of a an n×∞ block is

Cn = lim
m→∞

log2[M(n, m)]

nm
.

The sequence Cn will be used to estimate C.

For a general checkerboard constraint and fixed n, we may write

x(m) = Anx(m− 1)

where xi(m) is the number of distinct n × m codewords that end with some pattern of d

column vectors, and An is a matrix for elements of x. The parameter d specifies the order

of the constraint and is equal to one for constraints labeled with “I”, two for constraints

labeled with “II” and so forth. For m ≥ 1, we have

x(m) = Am−1
n x(1)

The Perron-Frobenius theorem [13] can be applied to the adjacency matrices and it can

be shown that as m approaches ∞,

Cn =
log2[λn]

n

where λn is the largest eigenvalue of An.

Finally, for arbitrary n and a dth-order constraint

Cn

n

n + d
≤ C ≤ Cn.

The capacity, C, is given by

C = lim
n→∞

Cn

Computational limits prevent us from determining C to arbitrary accuracy by letting n

increase. Rather, the sequence Cn results in a series of upper and lower bounds on C.

We have developed convenient recursions to construct An, facilitating the efficient compu-

tation of λn. By carefully numbering the set of all legal n×1 column vectors, we can construct

the recursion for the diamond constraint ([19] states the recursion without explanation).

An =





An−1 Bn−1

BT
n−1 0



Bn−1 =





An−2

BT
n−2





where 0 is the zero matrix.

This recursion is subject to the initial conditions that

A1 =

[

1 1

1 0

]

, B1 =

[

1

1

]
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This simple recursion for An allows us to construct successive An very quickly. Recursions

for the other constraints in Figure 1 can be found in the paper by Weeks and Blahut [18].

If we assume that Cn has the form of a polynomial in inverse powers of n,

Cn =
∞
∑

k=0

ak

nk

then we may truncate this series at k = N and use the data Cn, Cn+1, . . . , Cn+N to determine

the ak. As n approaches infinity, Cn approaches a0; therefore, a0 serves as the best estimate

of C. This technique is known as Richardson extrapolation, and for a given N , it turns out

that (see [1])

a0 =

∞
∑

k=0

Cn+k(n + k)N (−1)k+N

k!(N − k)!

For all constraints, the best estimates of the capacity, along with the number of digits of

precision in the estimate, have been listed in Table 1.

If An is real and symmetric (conditions met by the square and diamond constraints), we

may use results from Calkin and Wilf [2] in conjunction with the recursive structure of An

to produce tight upper and lower bounds on the capacity. We have the following as a lower

bound on C:

C ≥
log2

[

λp+2q+1

λ2q+1

]

p

where p is a positive integer and q is a nonnegative integer. The following is an upper bound:

C ≤
log2[λ

′
p]

p

where λ′ is the eigenvalue associated with the adjacency matrix of a checkerboard constraint

defined on a cylinder of circumference p, where p is a positive even integer. These bounds are

due to Calkin and Wilf [2] and usually improve capacity estimates by narrowing the bound

window.

3 Full-Surface Data-Storage Model

In a full-surface data-storage system model the user data u is a one-dimensional signal over

a two-dimensional index set, i.e., a matrix of data values. The data value in the ith row and

jth column of u is denoted by ui,j. The data u has Nx rows and Ny columns. The channel

introduces isi when the data is transmitted. The noise-free output of the channel, denoted

v, is modeled as the two-dimensional convolution of the user data u and the channel model

c. The noise-free signal is written v = c ∗u. The channel c has γx rows and γy columns. To

calculate any single value of v, the following expression can be used:

vi0,j0 =
∑

i

∑

j

ci0−i,j0−jui,j
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Table 1: Estimates of 2-D capacity

Constraint Capacity Precision

Diamond .587891161775 10−12

Hexagonal .482644 10−6

Square .4250 10−4

Diamond II .350308 10−6

Hexagonal II .2775 10−4

Square II .236 10−3

Diamond III .241 10−3

Hexagonal III .181 10−3

Square III .148 10−3

The channel model c characterizes the amount and extent of isi in the full-surface channel.

The values ci,j are computed according to [12]

ci,j = exp

{

−
((i− ic)δx)

2

2σ2
c

}

exp

{

−
((j − jc)δy)

2

2σ2
c

}

, (3.1)

where i ε {0, 1, . . . , γx − 1}, j ε {0, 1, . . . , γy − 1}, ic = γx−1
2

, jc = γy−1
2

(it is assumed that

γx and γy are odd and that the center sample has an amplitude of 1), and δx and δy are

the physical separation of bits in the vertical and horizontal directions, respectively. The

channel model is the smallest rectangular grid of samples such that no sample outside the

rectangular grid exceeds 1% of the center sample.

This definition of the channel model allows the definition of unitless data-separation pa-

rameters. Define

∆x =
δx

σc

, ∆y =
δy

σc

.

Data with separation parameters ∆x and ∆y has density given by 1
∆x∆y

. This “dimensionless”

density has units of bits
σ2

c
. To compute physical density the unitless density is multiplied by

σ2
c .

Samples of a Gaussian random variable corrupt the noise-free output v, which results in

the received signal r = v + n. Elements of n are independent Gaussian variables with mean

zero and variance N0 = σ2
n. The signal-to-noise ratio (snr) is given in decibels by 10 log10

Eb

N0
,

where Eb = ||c||2

4
is the variance of the noise-free signal and N0 = σ2

n, is the variance of the

noise, and ||c|| is the Frobenius norm [7] (F -norm) of c, i.e., ||c||2 =
∑

i,j c2
i,j.
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Figure 2: Block diagram for the competing systems: (a) uncoded system and (b) coded

system.

4 Threshold Demodulation

In the uncoded full-surface data-storage system in Figure 2, an ON-OFF keyed (ook) mod-

ulator sends unconstrained data across a noisy, full-surface channel. A threshold device

performs demodulation by comparing received values with an optimized threshold. Bit deci-

sions are made from the received values on an individual basis. If a received bit is less than

(greater than) the threshold value, that bit is decided to be a zero (one).

In the one-dimensional coded system in Figure 2, a finite-state machine encodes user data

to satisfy a d = 1 runlength-limited (rll) code along every row. The encoder operates

at rate 2/3, and by definition every output one in the rll code is surrounded by at least

one zero on both the left and right. Then, a differential encoder translates ones into data

transitions; i.e., denoting the output of the differential encoder as y and the input as x, the

differential encoder implements yk = yk−1+xk, where addition is performed modulo-2, and it

is understood that input and output symbols are either binary zero or binary one. The rll

encoder and differential encoder ensure that at any place in the channel sequence any one or

zero is always accompanied by another one or zero before or after. This grouping of elements

widens the threshold eye and hence improves the ber. Next, an ook modulator transmits

the coded data across a noisy channel, a threshold device performs demodulation, a decoder

inverts the differential code, and a sliding-block device decodes the d = 1 rll code. The

d = 1 rll encoder and sliding-block decoder are based on state-splitting algorithms [14].

The threshold is set midway between the lowest noise-free sample attributable to a one and

the highest noise-free sample attributable to a zero. More precisely, the optimized threshold

is given by

topt = average( max
u|ui,j=0

(vi+ic,j+jc
), min

u|ui,j=1
(vi+ic,j+jc

)),

where (ic, jc) is the offset of the center peak from the upper-left corner of the channel model
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matrix, i.e., (ic, jc) = argmax(i,j)ci,j. This optimized threshold is computed assuming a data

set of infinite size so that edge effects may be neglected, and topt does not depend on the

choice of i and j.

If max
u|ui,j=0(vi+ic,j+jc

) < min
u|ui,j=1(vi+ic,j+jc

), threshold demodulation is reliable in the

sense that as snr approaches infinity, the ber approaches zero. This criterion provides a

simple test for reliable demodulation at a given data density.

Since data takes values in the set {0, 1} and since channel coefficients are nonnegative,

the maximum and minimum values for the uncoded threshold demodulation system can be

calculated as

min
u|ui,j=1

(vi+ic,j+jc
) = cic,jc

= 1

max
u|ui,j=0

(vi+ic,j+jc
) =

(

∑

i,j

ci,j

)

− cic,jc
=

(

∑

i,j

ci,j

)

− 1.

For the coded threshold demodulation system, the minimum value is calculated as

min
u|ui,j=1

(vi+ic,j+jc
) = cic,jc

+ cic,jc+1,

and the maximum value is calculated as

max
u|ui,j=0

(vi+ic,j+jc
) =

(

∑

i,j

ci,j

)

− cic,jc
− cic,jc+1.

Performing these calculations in the absence of noise shows that one-dimensional storage

systems can achieve 16% linear data density improvement (at ber=0) by using d = 1 rll

coding. In the full-surface system, coding along rows improves areal data density by only

9%. These percentages for data density include the effects of data density-reducing codes

and show that improvement in ber outweighs the rate cost of using codes (at high snr).

The intertrack interference accounts for the reduction in data density improvement between

serial and full-surface systems.

Further density improvements are realized by using checkerboard constraints [18]. When

used with a differential encoder, these constraints work to prevent isi from causing erroneous

demodulation. Comparing the coded systems with uncoded systems yields the density im-

provements in Table 2. These numbers reflect data density that has been adjusted by code

rate and assume the existence of encoders and decoders that can come arbitrarily close to

capacity values calculated by Weeks and Blahut [18]. Such encoders and decoders can be

designed by using a multitrack approach [8], though issues of complexity and suboptimality

loom. It is also assumed that a differential encoder exists that guarantees large blocks of

ones and zeros. Designing capacity-achieving encoders, decoders, and appropriate differen-

tial encoders remains an open problem. Because such encoders and decoders have not been

designed, the density improvement values in Table 2 provide only a theoretical estimate.
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Table 2: Density Improvement for Various Coding Schemes

Constraint % Improvement Sampling

d = 1 RLL (serial) 16 center

d = 1 RLL (full-surface) 9 center

Diamond I 11 center

Hexagonal I 29 center

Square I 31 side

Diamond II 27 side

Hexagonal II 27 mixed

Square II 57 center

Diamond III 58 center

Hexagonal III 84 mixed

Square III 72 side

The numbers in Table 2 show that as the extent of the isolation of ones gets larger, greater

density improvement is possible. Correspondingly, larger constraints require greater compu-

tational complexity to implement encoders and decoders. The column labeled “Sampling”

denotes the type of sampling across the Gaussian psf. “Center” sampling is the standard

sampling in Equation (3.1). With “side” sampling the Gaussian function has been sampled

on a grid that is displaced by 1
2
δx in the vertical direction and 1

2
δy in the horizontal direction

from the center sampling. Finally, displacing either the horizontal or vertical axes from the

center sampling results in “mixed” sampling.

Figure 3 displays density improvement for the modeled optical data storage system that

stores a single row of data and demodulates at a fixed ber of 10−3. These curves show

linear density performance, and the coded system yields 19% improvement over the uncoded

system. This result is close to the predicted values. The discrepancy may be due to the

fact that the simulation results operated at a ber of 10−3 and the theory predicted the

density improvement at a ber of zero. Furthermore, the decoders can occasionally correct

errors. This effect was neglected in the theoretical computation. Note the crossover point at

low snr. This crossover is a common characteristic of coded systems. At high noise levels,

errors have a greater impact on the coded systems that rely on block decoders, whereas in

the uncoded systems, errors remain isolated.

Theoretical calculations for full-surface data show that the maximum possible density

improvement of the coded system over the uncoded is 9.1%. Indeed, the simulation results

in Figure 4 verify this theoretical result. The improvement at high snr is 9.2%. Figure 4

shows only one curve for each system; however, many curves can be generated for each

system by varying the ratio of δx to δy. For the coded system, a value of r = 2.5 achieves

the best density performance where r = δx

δy
. This result implies that in the coded system
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where coding occurs along rows, the best performance is achieved when the data bits are

closer along rows than along columns.

Therefore, d = 1 rll coding on full-surface systems achieves modest density improve-

ments. The density improvement is significantly less than for serial systems. The law of

diminishing returns applies to this full-surface application, and the intertrack interference

plays a significant role in this reduction. Nevertheless, the full-surface system can gain 9% in

data density at minimal complexity cost under the Gaussian blur model, and the overall data

density of the full-surface system is better than a serial system where tracks are stored in a

two-dimensional media. Finally, checkerboard constraints show much promise for improving

data density under simple threshold demodulation if some of the remaining open problems

in codec design can be solved.

5 Conclusion

The capacity of various checkerboard codes has been estimated using matrix recursions,

eigenvalue computations, and upper and lower bounds. These capacity values lead to pre-

dicted theoretical density improvements in full-surface data-storage systems that have been

verified for simple cases. While the existence of encoders and decoders for constrained two-

dimensional codes has been established, work remains to develop differential encoders and

decoders.
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