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Abstract

There is a good notion of rational functions with coefficients in a commutative
ring. Using this notion, we easily obtain a neat generalization of Chapter 10 of the
classical book by Kalman et al. to linear systems over an arbitrary commutative ring.
The generalizations certainly exist already. However, we believe that the approach we
present is more natural and straightforward.

In this note we would like to show that the classical results of Kalman given in [Ch. 10, 5]

can be generalized with absolutely no difficulty to the case when linear systems are defined

over a commutative ring. For other generalizations we refer to [2, 3, 4, 6, 7].

Throughout, A is a commutative ring (with a unit of course, but not necessarily Noethe-

rian), s an indeterminate, m an input number and p an output number.

By a monic polynomial we shall understand a one whose leading coefficient is an invetible

element of A. Obviously monic polynomials form a multiplicative subset in A[s]. The

corresponding localization of A[s], denoted by A(s), is called the ring of rational functions

with coefficients in A. Thus, by definition, A(s) consists of fractions of the form f/g, where

f is an arbitrary polynomial and g a monic polynomial. We remark that a monic polynomial

can not be a zero divisor. Hence, f1/g1 = f2/g2 if and only if f1g2 = f2g1. This implies, in

particular, that the canonical homomorphism

A[s]→ A(s), f 7→ f/1

is an embedding, and we shall identify A[s] with its image under this embedding.

A rational function f/g is called proper if deg(f) ≤ deg(g). It is easily seen that proper

rational functions form a ring, and we shall denote it by O. Clearly, we have A(s) = ∩n≥0s
nO.

Notice that the Euclidean algorithm holds; namely, if f and g are polynomials and if g is

monic, then there exists a unique pair of polynomials q and r such that f = qg + r and

deg(r) < deg(g). (We put deg(0) = −∞.) Consequently, we have a fundamental relation

A(s) = A[s]⊕ s−1O.

Given a rational function f , define its residue Res(f) as the coefficient at s−1 in the

representation of f as a series in A((s−1)). The map Res : A(s) → A is A-linear and

vanishes on A[s]. Therefore it determines a canonical A-linear map A(s)/A[s] → A, which

will be denoted by Res again.
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We make the following

Convention. An element of an A[s]-module will be said to be torsion if (and only if) it is

anihilated by a monic polynomial.

Finitely generated torsion modules over A[s] will be called finite.

Let X be a finitely generated module over A, and let F be an endomorphism of X. Clearly,

X together with the multiplication

A[s]×X → X, (a, x) 7→ a(F )(x)

becomes a module over A[s]. Let XF denote this module.

Lemma 1. If X and F are as above, then XF is a finite A[s]-module.

Proof. Obviously XF is finitely generated. Consider any epimorphism X ′ → X, where

X ′ is a free module of finite rank. Clearly F can be ”lifted” to an endomorphism F ′ of

X ′. If h(s) is the characteristic polynomial of F ′, then, by the Cayley-Hamilton theorem,

h(F ′) = 0. It follows that h(F ) = 0. So, h(s)x = 0 for each x ∈ X. �
Let X and F be as above, and let X[s]→ XF be the A[s]-homomorphism taking

∑
(xi⊗si)

to
∑
F i(xi).

Lemma 2. The sequence

0→ X[s]
sI−F→ X[s]→ XF → 0

is exact.

Proof. The statement can be found in [1] (see Prop. 18, §8, Ch III), except that X[s] →
X[s] is injective. So we restrict ourselves by proving this.

Suppose that (x0 ⊗ 1) + (x1 ⊗ s) + · · ·+ (xn ⊗ sn) goes to zero, that is,

−Fx0 ⊗ 1 + (x0 − Fx1)⊗ s+ · · ·+ (xn−1 − Fxn)⊗ sn) + xn ⊗ sn+1 = 0.

It immediately follows from this that xn = 0, xn−1 = 0, . . . , x0 = 0. �

Corollary 1. The homomorphism

sI − F : X(s)→ X(s)

is bijective.

Proof. Tensoring the exact sequence of the previous lemma by A(s), we get an exact

sequence

0→ X(s)
sI−F→ X(s)→ XF ⊗ A(s)→ 0.

Because XF is a torsion module, we have XF ⊗ A(s) = 0. The statement follows. �
If X is an A-module, then clearly X[s] is a torsion free A[s]-module. Hence, we may

identify X[s] with its image under the canonical homomorphism X[s]→ X(s).
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IfX and Y are finitely generatedA-modules andR : X[s]→ Y [s] is anA[s]-homomorphism,

then we denote by R again the induced A(s)-homomorphism X(s)→ Y (s). We define

RX [s] = {Rx| x ∈ X[s]} and R−1Y [s] = {x ∈ X(s)| Rx ∈ Y [s]}.

Let X, X1 and X2 be finitely generated A-modules. We say that A[s]-homomorphisms

G1 : X1[s]→ X[s] and G2 : X2[s]→ X[s] are left coprime if

G1X1[s] +G2X2[s] = X[s].

The definition of right coprimeness is less obvious. We say that A[s]-homomorphisms H1 :

X[s]→ X1[s] and H2 : X[s]→ X2[s] are right coprime if

H−1
1 X1[s] ∩H−1

2 X2[s] = X[s].

Lemma 3. The mapping (X,F ) 7→ XF establishes a one-to-one correspondence between the

class of pairs consisting of a finitely generated A-module and its endomorphism and the class

of finite A[s]-modules.

Proof. Let Q be a finite A[s]-module. We can find a monic polynomial h that anihilates

the whole Q. Clearly Q can be viewed as a module over A[s]/hA[s]. By the Euclidean

algorithm, the elements 1, s, . . . , sd−1, where d is the degree of h, generate A[s]/hA[s] as an

A-module. It follows that Q is finitely generated as an A-module. One easily completes the

proof. �
Let X be a finitely generated A-module and F : X → X its endomorphism. For each

linear map G : Am → X, define an A[s]-homomorphism

GF : A[s]m → XF , GF (
∑
i≥0

uis
i) =

∑
i≥0

F iG(ui).

Lemma 4. The mapping G 7→ GF establishes a one-to-one correspondence between

HomA(Am, X) and HomA[s](A[s]m, XF ).

Proof. Obvious. �
Let again X be a finitely generated A-module and F : X → X its endomorphism. For

each linear map H : X → Ap, define an A[s]-homomorphism

HF : XF → A(s)p/A[s]p, HF (x) = (
∑
i≥0

HF i(x)s−i−1)modA[s]p.

(This is well-defined because
∑

i≥0 HF
i(x)s−i−1 = H(sI − F )−1x.)

Lemma 5. The mapping H 7→ HF establishes a one-to-one correspondence between

HomA(X,Ap) and HomA[s](XF , A(s)p/A[s]p).
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Proof. If H : X → Ap is a linear map, then obviously H = Res ◦HF . Hence, the mapping

is injective.

Let now ψ be a homomorphism of XF into A(s)p/A[s]p, and let H = Res ◦ ψ. Take an

arbitrary x ∈ X, and suppose that

ψ(x) = (
∑
i≥0

ais
−i−1)modA[s]p.

Then

∀n ≥ 0, ψ(snx) = (ans
−1 + an+1s

−2 + · · · )modA[s]p.

We see that

∀n ≥ 0, an = Resψ(snx) = HF nx.

Hence, ψ = HF . �
We can now pass to system theory.

A transfer function is defined to be a rational matrix of size p × m. A linear system

is a quintuple (X;F,G,H, J), where X is a finitely generated A-module F : X → X,

G : Am → X, H : X → Ap are A-linear maps, and J is a polynomial p×m matrix. If J is

constant, then the system is called regular. The rational matrix H(sI −F )−1G+ J is called

the transfer function.

Let (X;F,G,H, J) and (X1;F1, G1, H1, J1) be linear systems. If J = J1, then a transfor-

mation of the first one into the other is a linear map K : X → X1 such that F1K = KF ,

G1 = KG and H = H1K. A transformation is not defined when J 6= J1.

Let (X,F,G,H, J) be a linear system. We remind that

X[s]/(sI − F )X[s] ' XF (1)

(see Lemma 2), and that

F n = a1F
n−1 + · · ·+ anI (2)

for some n ∈ Z+ and a1, . . . , an ∈ A (see the proof of Lemma 1).

Theorem 1. The following conditions are equivalent:

(a) Im(G) + Im(FG) + · · ·+ Im(F nG) = X for sufficiently large n;

(b) GF : A[s]m → XF is surjective;

(c) G : A[s]m → X[s] and sI − F : X[s]→ X[s] are left coprime.

Proof. (a) ⇐⇒ (b) Obviously ImGF =
∑

i≥0 ImF
iG. From this and (2) the equivalence

follows.

(b)⇐⇒ (c) Using (1), we have a commutative square

A[s]m = A[s]m

↓ ↓
X[s]/(sI − F )X[s] ' XF

,

where the left downward arrow is defined as u 7→ (Gu)mod(sI−F )X[s], u ∈ A[s]m. Clearly,

(c) means surjectivity of this arrow, and the equivalence follows. �
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Theorem 2. The following conditions are equivalent:

(a) Ker(H) ∩Ker(HF ) ∩ · · · ∩Ker(HF n) = 0 for sufficiently large n;

(b) HF : XF → A(s)p/A[s]p is injective;

(c) H : X[s]→ A[s]p and sI − F : X[s]→ X[s] are right coprime.

Proof. (a)⇐⇒ (b) Obviously KerHF = ∩i≥0KerHF
i. From this and (2) the equivalence

follows.

(b)⇐⇒ (c) Using (1), we have a commutative square

X[s]/(sI − F )X[s] ' XF

↓ ↓
A(s)p/A[s]p = A(s)p/A[s]p

,

where the left downward arrow is induced by x 7→ H(sI − F )−1x, x ∈ X[s]. Clearly, (c)

means injectivity of this arrow, and the equivalence follows. �
A linear system (X;F,G,H, J) is said to be controllable if it satisfies the conditions of

Theorem 1 and observable if it satisfies the conditions of Theorem 2. A linear system is

called minimal if it is both controllable and observable.

A Kalman model is a quadruple (Q;φ, ψ, J), where Q is a finite A[s]-module, φ : A[s]m →
Q, ψ : Q→ A(s)p/A[s]p are A[s]-homomorphisms and J : Am → Ap is a polynomial matrix

of size p×m. If J is constant, the model is called regular. The model is controllable if φ is

surjective, and observable if ψ is injective. A Kalman model is called minimal if it is both

controllable and observable.

Let (Q;φ, ψ, J) and (Q1;φ1, ψ1, J1) be Kalman models. If J = J1, then a transformation of

the first one into the other is a homomorphism θ : Q→ Q1 such that φ1 = θφ and ψ = ψ1θ.

A transformation is not defined when J 6= J1.

Given a linear system Σ = (X;F,G,H, J), we set

K(Σ) = (XF ;GF , HF , J).

This is a Kalman model.

It is easily seen that ”K” is a functor. Obviously, this functor preserves the property

of regularity. The theorems 1 and 2 say that this functor preserves also the properties of

controllability and observability.

Theorem 3. The functor ”K” establishes a canonical equivalence between linear systems

and Kalman models.

Proof. Follows from the lemmas 3, 4 and 5. �

Corollary 2. There is a canonical one-to-one correspondence between isomorphism classes

of minimal linear systems and transfer functions.

Proof. Given a transfer function T , let Q(T ) denote the image under the composition

A[s]m
T→ A(s)p → A(s)p/A[s]p,
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and let Tspr and Tpol denote respectively the strictly proper and the polynomial parts of T .

Then, clearly

(Q(T );Tspr, id, Tpol)

is a minimal Kalman model. It is easily seen that (up to isomorphism) every minimal Kalman

model is obtained this way. The statement follows now from the previous theorem. �
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