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Abstract

Rosenbrock’s notion of system equivalence is general in nature; it is a kind of
equivalence which in algebra is often termed as stable. We have shown recently that
Fuhrmann’s notion of system equivalence can be viewed as a homotopy equivalence,
and as such is also general in nature. This note deals with a generalization of the
theory of system equivalences from the field case to the commutative ring case.

In this note we generalize the classical theory of Rosenbrock models and their equivalences,

given in [2,6,7], to the commutative ring case. We shall follow very closely our recent paper

[3]. For other generalization the reader is refered to [5].

Throughout, A is an arbitrary commutative ring, s an indeterminate, m an input number

and p an output number.

We define A(s) to be the localization of A[s] with respect to polynomials with invertible

leading coefficient. Elements of this ring will be called rational functions. A rational function

f/g will be said to be proper if deg(f) ≤ deg(g). We let O denote the ring of proper

rational functions. One has the notion of a finite A[s]-module, the notions of left and right

coprimeness. (For details, see [4].)

A Rosenbrock model is a quintuple (Z;T, U, V,W ), where Z is a finitely generated A-

module, T : Z[s] → Z[s] is a “generical” isomorphism and U : A[s]m → Z[s], V : Z[s] →
A[s]p, W : A[s]m → A[s]p are arbitrary homomorphisms. (The condition on T means that

it induces an isomorphism Z(s) ' Z(s).) The transfer function is defined as the rational

matrix V T−1U +W . A model is called regular if its transfer function is proper.

A transformation of a model (Z;T, U, V,W ) into a model (Z ′;T ′, U ′, V ′,W ′) is a quadruple

(K,L,M,N) consisting of homomorphisms K : Z[s]→ Z ′[s], L : A[s]m → Z ′[s], M : Z[s]→
Z ′[s], and N : Z[s]→ A[s]p such that[

M 0

N I

] [
T U

−V W

]
=

[
T ′ U ′

−V ′ W ′

] [
K −L
0 I

]
;

that is,

MT = T ′K, MU = −T ′L+ U ′, NT − V = −V ′K, NU +W = V ′L+W ′.

If Φ1 = (K1, L1,M1, N1) and Φ2 = (K2, L2,M2, N2) are two transformations such that the

range of the first one is equal to the domain of the second, then their composition is defined

to be

Φ2 ◦ Φ1 = (K2K1, K2L1 + L2,M2M1, N2M1 +N1).
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The identity transformation of a Rosenbrock model Σ = (Z;T, U, V,W ) is defined as IΣ =

(I, 0, I, 0).

One can easily check that Rosenbrock models together with transformations form a cat-

egory. Isomorphisms in this category are called strict equivalences. It is easy to see that a

transformation (K,L,M,N) is a strict equivalence if and only if K and M are unimodular.

Proposition 1. Two Rosenbrock models have the same transfer function if there is a trans-

formation of one into the other.

Proof. Left to the reader. (See also [3].) �
A Kalman model is a quintuple (X;F,G,H, J), where X is a finitely generated A-module,

F : X → X, G : Am → X and H : X → Ap are homomorphisms, and J is a polynomial

p×m matrix. Such a quintuple can be rewritten as (X; sI − F,G,H, J), and so, a Kalman

model can be viewed as a special form of a Rosenbrock model. One introduces in an evident

way the notion of transformations for Kalman models. Obviously Kalman models and their

transformations form a category. Isomorphic Kalman models are said to be similar. As in

the classical case, there is an equivalent definition of a Kalman model (see [4]), which will

be used in the sequel. This can be defined as a quadruple (Q;ϕ, ψ, J), where Q is a finite

A[s]-module, ϕ : A[s]m → Q and ψ : Q → A(s)p/A[s]p are homomorphisms, and J is as

above.

The problem is to define a procedure that could allow one to bring an arbitrary Rosenbrock

model to the Kalman form (see [2,6,7]).

Given a Rosenbrock model Σ = (Z;T, U, V,W ), we define the Kalman representation

KR(Σ) as the quadruple consisting of the module Z[s]/TZ[s], the homomorphisms

u 7→ (Uu)modTZ[s] (u ∈ A[s]m),

zmodTZ[s] 7→ (V T−1z)modA[s]p (z ∈ Z[s]),

and the polynomial part of the transfer function of Σ. Notice that KR(Σ) has the same

transfer function as Σ.

One can see that KR is a (covariant) functor from the category of Rosenbrock models to

that of Kalman models, and one can check without difficulty that KR preseves the properties

of regularity, controllability and observability.

Let Σ = (Z;T, U, V,W ) and Σ′ = (Z ′;T ′, U ′, V ′,W ′) be Rosenbrock models. If Φ1 =

(K1, L1,M1, N1) and Φ2 = (K2, L2,M2, N2) are transformations of the first one into the

second, then we say that Φ1 is homotopic to Φ2 (and write Φ1 ≈ Φ2) if there exists a

homomorphism H : Z[s]→ Z ′[s] satisfying the following two equivalent conditions

T ′H = M1 −M2 and HT = K1 −K2.

Lemma 1. Let Σ = (Z;T, U, V,W ) be a Rosenbrock model. Then, all transformations that

are homotopic to IΣ have the form

(HT + I,−HU, TH + I,−V H),
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where H ∈ Hom(Z[s], Z[s]).

Proof. Left to the reader. �

Lemma 2. Homotopy is an equivalence relation on the set of all transformations of one

Rosenbrock model into another.

Proof. Left to the reader. (See also [3].) �
A transformation Φ : Σ → Σ′ is a homotopy equivalence if there exists a transformation

Φ′ : Σ′ → Σ such that

Φ′ ◦ Φ ≈ IΣ and Φ ◦ Φ′ ≈ IΣ′ .

(Compare with the definition of strict equivalence: A transformation Φ is a strict equivalence

if there exists a transformation Φ′ such that Φ′ ◦ Φ = IΣ and Φ ◦ Φ′ = IΣ′ .) Intuitively,

the notion of homotopy equivalence is a notion that is somewhat coarser than the notion of

strict equivalence.

Two Rosenbrock models are homotopy equivalent (or equivalent in the sense of Fuhrmann)

if there exists a homotopy equivalence between them. We shall write Σ ≈ Σ′ to denote that

Σ and Σ′ are homotopy equivalent.

Lemma 3. The relation between Rosenbrock models of being homotopy equivalent is an

equivalence relation.

Proof. Follows from the previous lemma. �

Proposition 2. Two transformations are homotopy equivalent if and only if they have equal

Kalman representations.

Proof. Left to the reader. (See also [3].) �
From this proposition we immediately obtain the following

Theorem 1. Every Rosenbrock model is homotopy equivalent to a Kalman model; two

Kalman models are homotopy equivalent if and only if they are similar.

For each r ≥ 1, let Ωr denote the Rosenbrock model (Ar; Ir, 0, 0, 0). (We put Ω0 = 0.) If

(Z1;T1, U1, V1,W1) and (Z2;T2, U2, V2,W2) are Rosenbrock models, their parallel connection

is defined to be

(Z1 ⊕ Z2;

[
T1 0

0 T2

]
,

[
U1

U2

]
, [V1 V2],W1 +W2).

We say that two Rosenbrock models Σ and Σ′ are stably equivalent (or equivalent in the

sense of Rosenbrock) if

Ωl ⊕ Σ ' Ωl′ ⊕ Σ′

for some nonnegative integers l and l′.

We need the following
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Lemma 4. A Rosenbrock model Σ with ”latent” rank r ≥ 1 is homotopy equivalent to 0 if

and only if it is strictly equivalent to Ωr.

Proof. Left to the reader. (See also [3].) �

Theorem 2. Two Rosenbrock models are stably equivalent if and only if they are homotopy

equivalent.

Proof. Let Σ = (Z;T, U, V,W ) and Σ′ = (Z ′;T ′, U ′, V ′,W ′) be Rosenbrock models.

”If” Let (K,L,M,N) be a homotopy equivalence. Then, there exist a transformation

(K ′, L′,M ′, N ′) and homomorphisms H, H ′ such that

(K ′K,K ′L+ L′,M ′M,N ′M +N) = (HT + I,−HU, TH + I,−V H)

and

(KK ′, KL′ + L,MM ′, NM ′ +N ′) = (H ′T ′ + I,−H ′U ′, T ′H ′ + I,−V ′H ′).

Now, from the fact that (K,L,M,N) is a transformation we have M ′ I 0

−T ′H ′ −M 0

V ′H ′ −N −I

 I 0 0

0 T U

0 −V W

 =

 I 0 0

0 T ′ U ′

0 −V ′ W ′

 M ′ T U

−H ′ −K L

0 0 −I

 .
The extreme matrices here are unimodular. Indeed, by the equalities above, we have[

M ′ I

−T ′H ′ −M

] [
M I

−TH −M ′

]
=

[
I 0

0 I

]
.

and [
M ′ T

−H ′ −K

] [
M T ′

−H −K ′

]
=

[
I 0

0 I

]
.

”Only if” Using the previous lemma, we have

Σ ≈ Ωl ⊕ Σ ' Ωl′ ⊕ Σ′ ≈ Σ′.

The theorem is proved. �
The definitions of poles and zeros as given in [1,8] (and reproduced in [3]) can be obviously

generalized. Indeed, let Σ = (Z;T, U, V,W ) be a Rosenbrock model, and let G be its transfer

function. Let ”T” denote the functor taking the torsion part. We define the finite and infinite

pole modules to be

Pf =
Z[s]

TZ[s]
and P∞ =

Op +GOm

Op
.
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We define the finite (invariant) and infinite (invariant) zero modules to be

Zf = T(
Z[s]⊕ A[s]p[

T U

−V W

]
(Z[s]⊕ A[s]m)

) and Z∞ = T(
Op +GOm

GOm
).

We define the input-decoupling and output-decoupling zero modules to be

Z i.d. =
Z[s]

TZ[s] + UA[s]m
and Zo.d. = T(

Z[s]⊕ A[s]p[
T

−V

]
Z[s]

).

(Decoupling zero modules at infinity are defined to be zero.) All these modules surely are

finite. Remark that the model has no i.d. zeros if and only if T and U are left coprime, and

has no o.d. zeros if and only if T and V are right coprime.

It is easily seen that the constructions of poles and zeros are functorial; that is, a trans-

formation gives rise canonically to homomorphisms of pole modules and zero modules.

One can check without difficulty that two homotopy equivalent transformations induce the

same homomorphisms of pole and zero modules. (The statement is trivial for the infinite

poles and zeros, in view of Proposition 1.) Hence, we have the following

Theorem 3. Pole and zero modules are invariant under homotopy equivalence.
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