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Abstract

This paper deals with a numerical approximation of optimal controls by solv-

ing a Hamilton-Jacobi-Bellman (HJB) equation, corresponding to control problems

of parabolic PDE. The method is based on a model reduction, using POD (Proper

Orthogonal Decomposition), and on the approximation of the HJB equation of the

reduced problem by a finite difference scheme.

1 Introduction

We are interested in the computation of optimal controls for parabolic partial differential

equation. For that, we develop the following method:

Using a POD basis (see K. Kunisch and S. Volkwein [4]), the problem is approximated

by another control problem governed by an ODE of low order. The control of this reduced

problem is calculated by solving the corresponding Hamilton-Jacobi-Bellman equation.

We apply this method to two different problems, for which we compare the known solution

and its numerical approximation.

1. Consider the problem

inf {J (u, y) | (u, y) satisfied (1.1) , u ∈ U [0, T ]} , (P)

with the one-dimensional parabolic equation:





yt − yxx = 0 in ]0, T [× Ω = ]0, T [× ]0, L[ ,
∂y

∂n
+ |y|3 y

∣∣∣∣
x=L

= (b (t) + u (t)− y (L, t)) ,

∂y

∂n

∣∣∣∣
x=0

= 0,

y(·, 0) = y0 (·) in Ω,

(1.1)

1This work is a part of my PHD thesis, J.P. Raymond advisor, in collaboration with J.F. Bonnans and

H.Zidani (Sydoco project), from INRIA Rocquencourt (France).
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U [0, T ] = {u ∈ L∞ (0, T ; R) | ua ≤ u (t) ≤ ub for a.e. t ∈ [0, T ]} ,

and

J (u, y) =
κ

2

∫ T

0

u (t)2 dt +
1

2
‖y (T )− yT‖2

L2(Ω) +

∫ T

0

(−a (t) y (L, t) + d (t) u (t)) dt.

(1.2)

2. The second problem is defined by replacing equation (1.1) by the following Burgers

type equation: 



yt − yxx + yyx = f + u in ]0, T [× ]0, L[ ,

y (0, t) = y (L, t) = 0,

y(·, 0) = y0 (·) in Ω.

(1.3)

2 Presentation and construction of the POD basis:

2.1 Finite Element discretization:

In these two examples, if u ∈ L∞ (0, T ) , the solution y of the state equation belongs to

L2 (0, T ; H1 (Ω)) (and y ∈ L2 (0, T ; H1
0 (Ω)) for (1.3)) . For equation (1.1), we approximate

H1 (Ω) by a P1-finite element method. We denote by Vh:

Vh =
{
ϕ ∈ C

(
Ω; R

)
| ϕ
∣∣
[xi,xi+1] ∈ P1 i = 1, N + 1

}
. (2.4)

Let yh (t, x) =
N+1∑
i=1

yi (t) ϕi (x) ∈ L∞ (0, T ; Vh) , with ϕi (xj) = δij. Setting

Y (t) =




y1 (t)

:

yN+1 (t)


 ,

we look for the solution Y of a nonlinear ODE of the form:
{

Ẏ (t) = fh (t, Y (t) , u (t)) ,

Y (0) = Y0.

We use an implicit (Euler) finite difference scheme for the time discretization. And we

approximate the nonlinear solution by a Newton method. We obtain a matrix (Yij)i,j (where

(Yij) ' y(xi, tj)). For equation (1.3), we calculate an approximate solution of the equation

by using N − 1 components (ϕ1 and ϕN+1 are identically zero).

2.2 Presentation of the Reduced model, POD:

Goal: For an element yh ∈ L2 (0, T ; Vh) , where Vh ⊂ L2 (Ω) is a n−dimensional subspace,

we want to minimize the gap

‖yh(·, ·)− z(·, ·)‖L2(0,T ;L2(Ω)) ,
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where the function z is looked of the form:

z(t, ·) =
l∑

i=1

zi(t)Ψ
i(·), (2.5)

l << n, and

{
Ψi
}l

i=1
is an orthonormal basis of L2 (Ω) satisfying : Ψi =

n∑

j=1

Ψjiϕi(·). (2.6)

Construction: We take the set of NT + 1 vectors {yh(·, tj)}NT +1
j=1 of L2 (Ω) :

yh(·, tj) =

n∑

i=1

Yijϕi(·). (2.7)

The functions Ψi are determined as the solution of the optimization problem:

min
{Ψi}l

i=1

〈Ψi,Ψj〉=δij

NT +1∑

j=1

αj

∥∥∥∥∥yh(·, tj)−
l∑

i=1

〈
yh(·, tj), Ψi

〉
Ψi

∥∥∥∥∥

2

L2(Ω)

, (2.8)

where

αj = ∆t, j = 2, .., NT , αj =
∆t

2
, j = 1 and NT + 1. (2.9)

Remark 2.1. The reals αj are chosen as in (2.9) because

In(y) =

NT +1∑

j=1

αj

∥∥∥∥∥yh(·, tj)−
l∑

i=1

〈
yh(·, tj), Ψi

〉
Ψi

∥∥∥∥∥

2

L2(Ω)

is the trapeze method approximation of the integral:

I(y) =

∫ T

0

∥∥∥∥∥yh(·, t)−
l∑

i=1

〈
yh(·, t), Ψi

〉
Ψi

∥∥∥∥∥

2

L2(Ω)

dt.

And for all y ∈ C ([0, T ] ; L2 (Ω)) we have:

In(y) → I(y) as n →∞.

So, we denote by Θ and B the positive definite matrices such that

Θji = 0, if i 6= j, Θjj =
√

αj, j = 1, .., NT + 1, and Bij =

∫ L

0

ϕiϕjdx.
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We deduce from [4], that the matrix Ψ (given in (2.6)) and the vectors Ψi, are determined

by the algorithm:
1. Set: Ỹ = B

1

2 Y Θ

2. UΣV T = SV D(Ỹ )

3. Ūij = Uij for 1 ≤ i ≤ n, and 1 ≤ j ≤ l

4. Ψ = B− 1

2 Ū ,
where SVD is the Singular Value Decomposition.

The number l of elements chosen for the reduced model, depends on the ratio:

ε (l) =

l∑
i=1

σ2
i

rg(Ỹ )∑
i=1

σ2
i

(2.10)

where the (σi)1≤i≤rg(Ỹ ) are the singular values of Ỹ .

The error estimation between an element yh(·, tj) and its projection on the POD basis

is given by:

Err(l) =




NT +1∑

j=1

αj

∥∥∥∥∥yh(·, tj)−
l∑

i=1

〈
yh(tj), Ψ

i
〉
Ψi

∥∥∥∥∥

2

L2(Ω)




1/2

=




rg(Ỹ )∑

i=l+1

σ2
i




1/2

(2.11)

The proof of this result is adapted from [5].

2.3 Application.

For the two problems let us give some results.

1. For (1.1): With u ≡ 0, N = 30 and NT = 38, we have:

l 1 2 3 4

ε (l) 0.9895643 0.9999941 1.0− 1.0−

Err(l) 0.0496332 0.0011831 .0000419 .0000018 .

.

2. For (1.3), with u, N and NT as above:

l 1 2 3 4 5

ε (l) 0.8078 0.9528 0.9849 0.9944 0.9979

err(l) 0.2549510 .1256981 .0707107 .0424264 .0264575

.
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Remark 2.2. In the second case, we need 3 or 4 elements of the POD basis to have the

same precision as for (1.1) with only l = 1 pod element.

Now, we are going to define the reduced model, and the reduced optimal control problem.

So, first, we look for the initial value condition z0 solution of

min
z0=

∑l
i=1

z0iΨi

∥∥yh
0 − z0

∥∥2

L2(Ω)
.

In fact z0 is the orthogonal projection of yh
0 on the l−dimensional subspace spanned by

the Ψi, i = 1, .., l. So we have

z0j =
〈
yh

0 , Ψj
〉

L2(Ω)

=
N+1∑

i,k=1

Ψijy
h
0 (xk)

∫

Ω

ϕkϕi

=
(
Y T

0 BΨ
)

j

where Y0 = (y0(xi))
N+1
i=1 . Now, as for the Finite Element method, we obtain in the two cases

(1.1), (1.3) an ODE of the form:
{

ż(t) = fpod(t, u(t), z(t))

z(0) = z0,
(2.12)

with

z(t, x) =
l∑

i=1

zi(t)Ψ
i (x) .

We solve (2.12) by an implicit finite difference scheme, and we obtain POD solutions

dependent of l, of the initial value condition, and of the command u. We have plotted error

estimations in Figures 1 and 2.

For l = 1 pod, we see the maximal error on the Figures 1, and 2 are respectively 0.12 and

0.247.

For l = 2 pod, and u = 1/2 the maximal error is less than 5.66×10−3.

For l = 2 pod, and u = 0 the maximal error is less than 2.10×10−4.

Remark 2.3. For the first equation, the kind of values for ε (l) is very characteristic of this

type of equation (the heat as) and the regularity used. The solution is very smooth, and its

variations are small. We can see that it is very different in the second one.

2.4 Approximation of the control problem:

Now we look at the control problem

inf
{
Jpod

t,z0
(u, z) | (u, z) satisfied (2.12) on ]t, T ] , u ∈ U [t, T ]

}
,
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Figure 1: Difference between the FE state and the POD state, with l = 1, u = 1/2.
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Figure 2: Difference between the FE state and the POD state, with l = 1, u = 0.
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with the new initial condition at t time:

z (t) = z0, (2.13)

where:

Jpod (u, z) =

∫ T

0

l (s, z (s) , u (s)) ds + ϕ (z (T )) (2.14)

l (s, z, u) =
κ

2
u2 + au (s) u− ay (s)

l∑

i=1

ΨN+1,izi

ϕ (z) =
1

2
‖z − zT‖2

L2(Ω) =
1

2

l∑

i=1

(zi − zTi
)2 . (2.15)

The value function is defined by:

vpod (t, z0) = inf
u∈U [t,T ]

Jpod
t,z0

(u, z) .

It is known ( see [3] or [2] for example) that vpod is the viscosity solution of the Hamilton-

Jacobi-Bellman equation:

{
−vt (t, z0) +H (t, z0, Dyv (t, z0)) = 0,

v (T, z0) = ϕ (z0) ,
(2.16)

where H is the Hamiltonian function of the problem:

H (t, z0, p) = sup
u∈U

{−l (t, z0, u)− p · fpod (t, z0, u)} .

3 Numerical scheme:

The method we are going to present is based on an explicit finite difference scheme, where

the control u ∈ U takes a finite number of values. The convergence of this scheme follows

from a monotonicity and a stability condition (see [1] or [6]). This kind of scheme has been

studied in [8], where it is applied it to several simple examples.

3.1 Discretisation of the Hamilton-Jacobi-Bellman equation:

We are going to present the scheme to discretize (2.16) in dimension l.

Set w(t, z) = vpod(T − t, z), and we consider the initial value problem:

{
wt (t, z) + supu∈U

[
−
∑l

k=1 fk
pod (T − t, z, u) · ∂kw − l (T − t, z, u)

]
= 0,

w (0, z) = ϕ (z) ,
(3.17)
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where z = (z1, .., zl) ∈ R
l, and (t, z) ∈ ]0, T ]×

l∏
k=1

[ak, bk] . We denote by

i = (i1, i2, ..., il) , ik+ = (i1, i2, .., ik−1, ik + 1, .., il) ,

ik− = (i1, i2, .., ik−1, ik − 1, .., il) ,

zk,ik = ak + ik∆zk, ik = 0....Mk, with ∆zk = (bk − ak)/Mk,

tn = (n− 1)∆t, n = 1...NT + 1, with ∆t = T/NT.

Algorithm 3.1.

% Initialisation of {w1
i }

Mk

ik=0 k = 1, ..., l

For n = 1 : NT

For ik = n : Mk − n, k = 1, ..., l

Hn
i (u) =

[
−∑l

k=1

(
fn+

k,i (u) ·D+
ikw

n + fn−

k,i (u) ·D−
ikw

n
)
− l (T − tn, zi, u)

]

un
i = arg supu∈Uk

Hn
i (u)

wn+1
i = wn

i −∆tHn
i (un

i )

end;

end;

where

fn+

k,i (u) = max
(
fk (T − tn, zi, u) , 0

)
, fn−

k,i (u) = min
(
fk (T − tn, zi, u) , 0

)
(3.18)

D+
ikw =

wik+ − wi

∆zk
, D−

ikw =
wi − wik−

∆zk
, (3.19)

and Uk is a finite subset of U .

Remark 3.1. The lines (3.18) and (3.19), mean that we use decentered finite differences:

we decentrate at left when f k (T − tn, zi, u) is negative, and at the right if it is positive.

Remark 3.2. We can see that even if at the beginning the computational region a hyper-

pyramidal region, it is needed to compute all the values wn
i .

3.1.1 Monotony of the scheme :

If we write wn+1
i in function of wn

i−1, w
n
i , wn

i+1, we have:

wn+1
i = wn

i −∆t

[
−

l∑

k=1

(
fn+

k,i (un
i ) ·D+

ikw
n + fn−

k,i (un
i ) ·D−

ikw
n
)
− l (T − tn, zi, u

n
i )

]

=


1−∆t

l∑

k=1

(
fn+

k,i (un
i )− fn−

k,i (un
i )
)

∆zk


wn

i + ∆t

l∑

k=1

fn+

k,i (un
i )wn

ik+ − fn−

k,i (un
i )wn

ik−

∆zk

+∆t l (T − tn, zi, u
n
i ) . (3.20)

Besides:
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• f+ − f− = |f | , and

1−∆t

l∑

k=1

(
fn+

k,i (un
i )− fn−

k,i (un
i )
)

∆zk
= 1−∆t

l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk
. (3.21)

We choose ∆t satisfying the (CFL) condition:

l∑

k=1

∥∥fk
∥∥
∞

∆zk
∆t ≤ 1, (CFL)

where
∥∥fk
∥∥
∞

= max
(t,x,u)∈[0,T ]×

l∏
k=1

[ak ,bk]×U

∣∣fk
pod(t, x, u)

∣∣ . Therefore:

(3.21) ≥ 1−∆t

l∑

k=1

∥∥fk
∥∥
∞

∆zk
≥ 0.

• Since f+ ≥ 0 and −f− ≥ 0,

reporting this inequality in (3.20), we see that wn+1
i is a non-decreasing monotone function

of wn
i−1, wn

i and wn
i+1.

3.1.2 Stability of the scheme:

As shown in [1], the CFL condition implies the stability of the scheme. It is shown in [7]

that it is sufficient to verify the stability condition for l = 0. If we take l = 0 in (3.20) we

have:

∣∣wn+1
i

∣∣ =

∣∣∣∣∣∣


1−∆t

l∑

k=1

(
fn+

k,i (un
i )− fn−

k,i (un
i )
)

∆zk


wn

i + ∆t
l∑

k=1

fn+

k,i (un
i )wn

ik+ − fn−

k,i (un
i ) wn

ik−

∆zk

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1−∆t

l∑

k=1

(
fn+

k,i (un
i )− fn−

k,i (un
i )
)

∆zk

∣∣∣∣∣∣
|wn

i |+ ∆t

∣∣∣∣∣

l∑

k=1

fn+

k,i (un
i )wn

ik+ − fn−

k,i (un
i ) wn

ik−

∆zk

∣∣∣∣∣

≤
∣∣∣∣∣1−∆t

l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk

∣∣∣∣∣ sup
i
|wn

i |+ ∆t sup
i
|wn

i |
l∑

k=1

∣∣∣fn+

k,i (un
i )
∣∣∣+
∣∣∣fn−

k,i (un
i )
∣∣∣

∆zk

=

(∣∣∣∣∣1−∆t
l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk

∣∣∣∣∣ + ∆t
l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk

)
sup

i
|wn

i | . (3.22)

From the (CFL) condition it follows that

∣∣∣∣∣1−∆t

l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk

∣∣∣∣∣ = 1−∆t

l∑

k=1

∣∣fn
k,i (u

n
i )
∣∣

∆zk
,
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and (3.22) becomes ∣∣wn+1
i

∣∣ ≤ sup
i
|wn

i | ,

that is ∥∥wn+1
∥∥
∞
≤ ‖wn‖

∞
≤
∥∥w0

∥∥
∞

.

Q.E.D.

To validate our algorithm, we have applied the scheme in some simple examples in dimen-

sion one and two. Now, we are going to apply this scheme in our reduced problem.

3.2 Application of the scheme on the reduced model:

We denote

vpod(t, z) = inf
u∈U

Jpod
t,z (u, yt,z)

where Jpod
t,z is given in (2.14). We propose the following approach:

1. Determine a set of trust region within live the coordinates of the POD solution: yt,z,

2. Apply the finite difference scheme,

3. Rebuild the optimal control.

Remark 3.3. For the moment we have not tested all of that for the Burger’s equation. So,

the end of the paper is devoted to the first example.

3.2.1 Set of trust region for the POD solution for the first problem:

We can show that the first coordinate obeys −0.802 < z01
≤ 0,, and by empirical estimation,

z2 ∈ [−0.02, 0.05]. Other coordinates belongs to smaller intervals.

Proof. Let us shown that |z1| ≤ 0.802. We have first:

z0j
=

(
Y T

0 BΨj
)

=
〈
Y0, BΨj

〉
RN+1

=
〈
B

1

2 Y0, B
1

2 Ψj
〉

RN+1

so: ∣∣z0j

∣∣ ≤
∥∥∥B 1

2 Y0

∥∥∥
RN+1

∥∥∥B 1

2 Ψj
∥∥∥

RN+1
,

and else ∥∥∥B 1

2 Ψj
∥∥∥

RN+1
=
∥∥U j

∥∥
RN+1 = 1 : U j unitary vector from the SVD,
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∣∣z0j

∣∣ ≤
∥∥∥B 1

2 Y0

∥∥∥
RN+1

.

It is sufficient to numerically compute this value to have the result on the first coordinate,

since

∥∥∥B 1

2 Y0

∥∥∥
RN+1

≤ 0.802.

We can even choose the sign of z0j
: it is enough to change Ψj in −Ψj, or (this is the same)

to change the column vectors sign uj in −uj in matrix U (from the SVD since Ψ = B− 1

2 U).

U keeps its unitary properties.

3.2.2 Rebuilding methods of the optimal control:

There are several possible choices: the first one discretize the minimisation of the Hamil-

tonian, because the optimal u for the problem (1.1) (or (1.3)) is the same as the one who

minimise the Hamiltonian. This method avoid stocking a big matrix un
j , full of optimal

values of the control for each point of the grid. The second one is based on the interpolation

of these stocked values un
j , and the third one is by taking closest values of the control on the

grid. We will give the algorithm, only in the first case.

1. Minimisation of the Hamiltonian : after having determinated the value function

approximation: v̂, we do another loop on the time-discretisation to determine the

optimal control. Besides the reconstruction of the POD state can be done by an

implicit or an explicit scheme:

For the explicit one:
{

un+1 = arg minu∈U [l(Z (tn) , u) + fpod (Z (tn) , u, tn) ·Dv̂ (tn, Z (tn))]

Z (tn+1) = Z (tn) + ∆t.fpod (Z (tn) , un+1, tn)

Algorithm 3.2.

Z1 = Z0 % the initial value condition

For n = 1 : NT

F̃ = fpod(Z
n, U, tn)

j = max(find(X1 ≤ Zn)) % the sufficies ji s.t Zn ∈
∏l

i=1 [X1ji
, X1j+1i

]

H = l(Zn, U, T − tn) +
∑l

i=1 (V aln(ji+)− V aln(ji)) · F̃i/∆zi

un+1 = arg minU(H)

Zn+1 = Zn + ∆t.fpod (Zn, un+1, tn)

end

For the implicit one:

{
Z (tn+1) = Z (tn) + ∆t.fpod (Z (tn+1) , un+1, tn+1) ,

un+1 = arg minu∈U [l(Z (tn+1) , u) + fpod (Z (tn+1) , u, tn+1) ·Dv̂ (tn+1, Z (tn+1))] .
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In the algorithm, we must do another Newton method; besides to find a first value of

u we use the Algorithm 3.2:

Algorithm 3.3.

Z1 = Z0; % The first u :

F̃ = fpod(Z
n, U, tn);

j = max(find(X1 ≤ Z1))

H = l(Z1, U, T ) +
∑l

i=1 (V al1(ji+)− V al1(ji)) · F̃i/∆zi

u = arg minU(H)

For n = 1 : NT

Z2 = Zn;

while ‖F (Z2, u, Zn)‖ > ε % F the newton function.

F̃ = fpod(Z2, U, tn+1); j = max(find(X1 ≤ Z2));

H = l(Z2, U, T − tn+1) +
∑l

i=1 (V aln(ji+)− V aln(ji)) · F̃i/∆zi;

u = arg minU(H)

computation of DF; d = −F (Z2, u, Zn)/DF ;

Z2 = d + Z2;

end (while)

u optn+1 = u

2. Interpolation: We are going to present it only when l = 1 pod. For the implicit

scheme we have:




Z (tn+1) = Z (tn) + ∆t.fpod (Z (tn+1) , un+1, tn+1)

find λ s.t. Z (tn+1) = λZj + (1− λ)Zj+1

un+1 = λun+1
j + (1− λ)un+1

j+1 ,

where u is the matrix with all the optimal values of the controls, and Z the vector grid

of the space pod coordinates.

3. Closest values: For the implicit scheme we have:





Z (tn+1) = Z (tn) + ∆t.fpod (Z (tn+1) , un+1, tn+1)

find j s.t.
∣∣Z(tn+1)− Zj

∣∣ ≤
(∣∣Z(tn+1)− Zi

∣∣)
i

for all i

un+1 = un+1
j .

3.3 Numerical results and graphics:

To minimize the dependence and to improve the results, we applied several times the algo-

rithm in injecting the found sub-optimal control. After 3 or 4 times, it is stabilized and we

observe that it is the one we were looking for. For all the Figures presented (3, 4, 5), we use

only one POD. For the first equation, we can show different graphics. With the interpola-

tion method, we can see Figures 3 and 4 that after 3 iterations of the global algorithm, the
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Figure 3: Error estimation when u = 0 with only one global iteration, interpolation
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Figure 4: Error estimation when u = 0 with 3 global iteration, interpolation
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Figure 5: Error estimation when u = 1/2 with 1 global iteration, minimisation of the

hamiltonian
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maximal error is about 0.016. With the minimization of the Hamiltonian, we see Figure 5,

that the maximal error is about 0.09 with only one iteration of the global algorithm, when

we take u = 1/2 at the beginning of the program. In this example if we use more than one

POD element, the optimal control found is very bad. It can be explained by the size of ∆zk.

The CFL condition implies that ∆zk must be really bigger than ∆t. And the size of the

second trust region is about 0.07, whereas ∆z2 ≈ 0.12 if we want to have a reasonnable time

computation, indeed, we must add 2 NT steps in each direction of space. And bigger is l,

higher is the number of steps. So, to find a nice number l of pod elements, we need to look

carefully all these sizes.

Remark 3.4. In the first problem, if we bring a small perturbation, in front of the term |y|3 y,

and if we change the set of admissible controls, 2 pod elements are needed to approximate

this new problem. For the moment the results found are not so nice.

4 Conclusion:

In the case of example 1, we have obtained promizing results with only one element of the

POD basis. The dependence of the basis with respect to the initial control, is not so true.

We want to improve this method for applying it to the Burger’s example, and later in two

dimensional problems.
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